首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
Two types of basic igneous rocks have been mapped in the middle Hecla Hoek succession in the area between St. Jonsfjorden and Isfjorden, central western Spitsbergen: the metadiabase-gabbros from the calc-argillo-volcanic formation and the Trollheimen volcanics from the quartzite-shale formation; both formations are older than the Eocambrian tilloid formation. The former has diabasic and gabbroic textures and occurs as thin discontinuous lensoid masses, while the latter exhibits definite extrusive structures with large amounts of pyroclastics and tuffs and relatively small amounts of solid lavas with abundant amygdules. Both basic rocks have been metamorphosed under the greenschist facies conditions, characterized by actinolite-epidote-biotite-albite assemblage.
The metadiabase-gabbros are moderate-high Fe tholeiites and the Trollheimen volcanics are mainly Na-alkaline, accompanied by a small amount of calk alkaline rocks. The immobile minor and trace element contents indicate that the metadiabase-gabbros are oceanic, similar to the MORB, while those of the Trollheimen volcanics show non-oceanic chemical characteristics and occur in shallow marine, shelf-shelfedge sediments.
The calc-argillo-volcanic formation reveals a shallow marine sedimentary environment and this does not conform with the oceanic nature of the metadiabase-gabbros, occurring in the formation. To overcome this disagreement, an idea of changing tectonic position is postulated to bring a shallow marine sedimentary regime onto a mid-oceanic tectonic zone. This hypothesis supports the concept of active consuming margin tectonics of the Svalbard Caledonides and explains, for example, the occurrence of the high-P metamorphic rocks in the western part of the present area.  相似文献   

2.
Fission‐track (FT) analysis of detrital zircon from synorogenic sediment is a well‐established tool to examine the cooling and exhumation history of convergent mountain belts, but has so far not been used to determine the long‐term evolution of the central Himalaya. This study presents FT analysis of detrital zircon from 22 sandstone and modern sediment samples that were collected along three stratigraphic sections within the Miocene to Pliocene Siwalik Group, and from modern rivers, in western and central Nepal. The results provide evidence for widespread cooling in the Nepalese Himalaya at about 16.0±1.4 Ma, and continuous exhumation at a rate of about 1.4±0.2 km Myr?1 thereafter. The ~16 Ma cooling is likely related to a combination of tectonic and erosional activity, including movement on the Main Central thrust and Southern Tibetan Detachment system, as well as emplacement of the Ramgarh thrust on Lesser Himalayan sedimentary and meta‐sedimentary units. The continuous exhumation signal following the ~16 Ma cooling event is seen in connection with ongoing tectonic uplift, river incision and erosion of lower Lesser Himalayan rocks exposed below the MCT and Higher Himalayan rocks in the hanging wall of the MCT, controlled by orographic precipitation and crustal extrusion. Provenance analysis, to distinguish between Higher Himalayan and Lesser Himalayan zircon sources, is based on double dating of individual zircons with the FT and U/Pb methods. Zircons with pre‐Himalayan FT cooling ages may be derived from either nonmetamorphic parts of the Tethyan sedimentary succession or Higher Himalayan protolith that formerly covered the Dadeldhura and Ramgarh thrust sheets, but that have been removed by erosion. Both the Higher and Lesser Himalaya appear to be sources for the zircons that record either ~16 Ma cooling or the continuous exhumation afterwards.  相似文献   

3.
Formed during an early compressional period in the opening of North Atlantic Ocean, a Tertiary fold-thrust belt extends along the mid-to- southern part of the western coast of Spitsbergen. Complex thrust structures involve the basement (Caledonian and older) and many shallow dipping thrust faults dissect the overlying cover rocks (Devonian and younger) in Oscar II Land in the northern part of the belt. Some of these faults occur within the basement rocks with slivers or fault blocks of the cover rocks from south-western Brøggerhalvøya to innermost St. Jonsfjorden in north-eastern Oscar II Land. Six of the slivers contain Carboniferous rocks and one is a fault-bounded block with Devonian rocks. These steeply west-dipping faults form a complex fault system- EOFC (Engelskbukta-Osbornbreen Fault Complex) - within the basement area. The lithological units of the basement are separated by faults within the EOFC, which is structurally continuous with the Brøggerhalvøya fold-thrust zone to the north and is thought to continue to the fold-thrust zone on the south-eastern coast of St. Jonsfjorden. Some previous authors considered that the two lithologically contrasting Vendian diamictites and intervening Moefjellet Formation are stratigraphically continuous and defined two separate tilloid successions in the present area. This interpretation has been extended over the whole of western Spitsbergen. However, the present study indicates that these two tilloid formations and the Moefjellet Formation are separated by the faults, probably thrusts, within the EOFC and are not in a continuous stratigraphic relation. Therefore, the two-stage history of Vendian glaciation seems questionable.  相似文献   

4.
Pre-Carboniferous rocks in central western Svalbard can be divided into two rock packages that have experienced three phases of deformation. The lower package includes upper Proterozoic sediments, the upper package is of upper Ordovician to lower Silurian age. Pre-upper Ordovician (Caledonian) deformation is characterized by north-south fold-axes, and is recorded in the lower package only. Following the Ordovician, east-west fold axes developed in the upper package but only locally in the lower. The third phase, probably Tertiary in age, produced easterly directed thrusting, and refolding about sub-horizontal, north-south fold axes in both packages. This complex structural history has resulted in tectonic thickening of the rock sequences by refolding and thrusting which has not been recognized by previous workers.  相似文献   

5.
Summary. Some 180 km of new VIBROSEIS profiles have been acquired in the southern Appalachian Inner Piedmont, Brevard fault zone and eastern Blue Ridge as part of the ADCOH Project site investigation. These data are of the highest quality yet obtained in a crystalline terrane in the US, perhaps in the world, and reveal several conclusions that should have a direct bearing upon the world-wide nature of composite crystalline thrust sheets and their modes of interaction with the platform rocks beneath. Strong reflections previously interpreted as the base of the crystalline sheet are clearly part of the platform sedimentary (clastic rocks) sequence resting upon the autochthonous basement and early Palaeozoic rift basins. This reflection package and related transparent zones are clearly repeated beneath the crystalline sheet indicating a complex of thrusts repeating units within the platform succession. Reflectors (granitoid-amplibolite contacts) in the crystalline sheet in the Inner Piedmont represent recumbent folds of similar wavelengths and amplitudes to folds mappable on the surface. Duplexing of platform rocks beneath the crystalline sheet appears to have resulted in doming of the crystalline sheet. Similarly, duplex formation in the platform was probably controlled by both the thickness of the crystalline sheet and the rheological properties of the platform succession.  相似文献   

6.
Caledonian low-temperature, high-pressure metamorphic rocks, as first recognised at Motalafjella, central western Spitsbergen, include characteristic brown dolostone and serpentinite. Similar rocks are scattered in the strandflats, along the eastern marginal fault of the Tertiary Forlandsundet Graben, and along thrust faults to the east on both sides of St. Jonsfjorden. The mineral chemistries of the constituent carbonates and oxides are diagnostic of high-pressure metamorphic rocks, containing high contents of MgO in the carbonates and Cr2O3 in the oxides. Based on a surface magnetic-anomaly survey and fault-plane observations, some of these rocks are considered to have been pressed up along faults produced by strike-slip faulting during an early stage of the Forlandsundet Graben formation. The distribution of these rocks indicates that the high-pressure metamorphic rocks extend as much as 50 km to the NNW from Motalafjella to Sarsøyra.  相似文献   

7.
This paper addresses foreland basin fragmentation through integrated detrital zircon U–Pb geochronology, sandstone petrography, facies analysis and palaeocurrent measurements from a Mesozoic–Cenozoic clastic succession preserved in the northern Andean retroarc fold‐thrust belt. Situated along the axis of the Eastern Cordillera of Colombia, the Floresta basin first received sediment from the eastern craton (Guyana shield) in the Cretaceous–early Palaeocene and then from the western magmatic arc (Central Cordillera) starting in the mid‐Palaeocene. The upper‐crustal magmatic arc was replaced by a metamorphic basement source in the middle Eocene. This, in turn, was replaced by an upper‐crustal fold‐thrust belt source in the late Eocene which persisted until Oligocene truncation of the Cenozoic section by the eastward advancing thrust front. Sedimentary facies analysis indicates minimal changes in depositional environments from shallow marine to low‐gradient fluvial and estuarine deposits. These same environments are recorded in coeval strata across the Eastern Cordillera. Throughout the Palaeogene, palaeocurrent and sediment provenance data point to a uniform western or southwestern sediment source. These data show that the Floresta basin existed as part of a laterally extensive, unbroken foreland basin connected with the proximal western (Magdalena Valley) basin from mid‐Paleocene to late Eocene time when it was isolated by uplift of the western flank of the Eastern Cordillera. The Floresta basin was also connected with the distal eastern (Llanos) basin from the Cretaceous until its late Oligocene truncation by the advancing thrust front.  相似文献   

8.
The landscape of the Canadian Rockies in southern Alberta is not a direct result of constructional processes; that is, the ridges and peaks have not been pushed into the positions in which we see them today. Tectonic activity provided original elevation but not mountains: at the end of Laramide time, what are now the front ranges and foothills of the Rockies comprised a high-elevation upland of relatively low relief. The present mountain physiography is the result of 55–60 million years of post-orogenic differential erosion, in which more resistant rocks have been left at higher elevations than less-resistant rocks.The Canadian Rockies and the foothills are developed in a thin-skinned, thrust-and-fold belt created during the Laramide Orogeny; the adjacent Interior Plains cut across foreland basin sediments derived from the mountains. The mountains currently consist of large parts of ridges of well-indurated Paleozoic and, locally, Proterozoic rock alternating with valleys developed in soft Mesozoic clastic rock. In the foothills, where the soft Mesozoic rock is at the surface, relief is subdued, but ridges of more-resistant sandstone rise above shaley lowlands. The plains are relatively flat but also contain erosional outliers of higher paleo-plains-surfaces.Numerous lines of evidence suggest that the mountains and foothills have lost several kilometers of overburden since the end of the Laramide Orogeny, while the western plains have lost at least 2 km, requiring that the local relief of the mountains and foothills that we see is erosional in origin. Local physiography is adjusted to lithology: the mountains have high relief because the exposed sub-Mesozoic rocks can hold up high, steep slopes, whereas the foothills have low relief because the underlying Cretaceous rocks cannot hold up high, steep slopes. The east-facing escarpment at the mountain front is a fault-line scarp along a low-angle thrust.Mesozoic rocks involved in the deformation originally extended all the way across the thrust and fold belt, and physiography of the belt at the end of Laramide time (60–55 Ma) depended mainly on whether Mesozoic or Paleozoic/Proterozoic rocks were exposed at the surface at that time. A reconstruction using critical-taper theory generally agrees with reconstructions from earlier stratigraphic and paleothermometry studies: what are now the front ranges at the eastern edge of the Rocky Mountains were mostly or perhaps entirely covered with Mesozoic rocks and despite that high elevation had a hilly, not mountainous, character. The main ranges, in the central Rocky Mountains, were in part stripped of Mesozoic cover by then and more mountainous. Treeline was higher then, and the thrust belt may have been largely or entirely vegetated. Generation of modern relief in the front ranges, including the escarpment at the mountain front, had to await stripping of Mesozoic rocks and incision of rivers into harder substrates in post-Laramide time.The Interior Plains are an erosional surface that was cut 1 to 3 km below the aggradational top of the foreland basin sediments. Although some of the present low local relief of the plains results from weakness of underlying Cretaceous/Tertiary rocks, the low relief is probably largely related to the process of denudation.  相似文献   

9.
The stratigraphic importance of fossils is never more apparent than in attempts to unravel the complexities of metamorphic terrains. The age and stratigraphic relationships of the thick metasedimentary and metavolcanic succession of Prins Karls Forland, western Svalbard, have been the subject of investigation and debate since the early part of this century (Hoel 1914; Craig 1916; Tyrrel 1924), and sharply different interpretations have been proposed (e.g. Harland et al. 1979; Hjelle et al. 1979). Until now, such interpretations have been unconstrained by palaeontological data, an understandable consequence of the metamorphic alteration undergone by these rocks. In this paper, we report the discovery of stratigraphically useful microfossils preserved in chert nodules from carbonaceous, dolomitic shales on northern Prins Karls Forland. These fossils have significant implications for the stratigraphic and structural interpretation of Forland metasediments, as well as for the more general problem of palaeontological prospecting in severely deformed and metamorphosed terrains, including those characteristic of the Archean Eon.  相似文献   

10.
There are three areas in eastern Svalbard where Vendian tillites are exposed: eastern Ny Friesland, western Nordaustlandet (north and south of Murchisonfjorden) and further east in inner Wahlenbergfjorden, near Aldousbreen. Clasts within the massive unmetamorphosed clay-mica-carbonate matrix of the tillites include carbonates, sandstones, siltstones, metavolcanics, schists and different granitoids, the metamorphic and igneous rock types being more frequent in the upper levels of the formation. Large granite boulders, up to 1 m in diameter, are known from the easternmost outcrop at Aldousbreen. Three granitoid boulders from the Aldousbreen outcrop, differing in petrography and chemistry. have been dated by the Pb-Pb singlezircon method. They yield ages of 2830 ± 5 Ma, 1802 ± 4 Ma and 1497 ± 26 Ma. These clasts also differ in petrography, chemistry and age from all known granitic rocks on Nordaustlandet, which have recently yielded Grenvillian (950-960 Ma) and Caledonian (ca. 410 Ma) ages. The concentration of large granitic clasts in the easternmost known tillite outcrops suggests derivation from the east and/or south. Possible areas include those beneath the ice of Austfonna and below the Carboniferous strata of southeastem Nordaustlandet. The apparent lack of a significant Grenvillian overprint suggests the possibility of a more distant source.  相似文献   

11.
An extensive ( 25 km2) landslide complex covers a large area on the west side of the Williams Fork Mountains in central Colorado. The complex is deeply weathered and incised, and in most places geomorphic evidence of sliding (breakaways, hummocky topography, transverse ridges, and lobate distal zones) are no longer visible, indicating that the main mass of the slide has long been inactive. However, localized Holocene reactivation of the landslide deposits is common above the timberline (at about 3300 m) and locally at lower elevations. Clasts within the complex, as long as several tens of meters, are entirely of crystalline basement (Proterozoic gneiss and granitic rocks) from the hanging wall of the Laramide (Late Cretaceous to Early Tertiary), west-directed Williams Range thrust, which forms the western structural boundary of the Colorado Front Range. Late Cretaceous shale and sandstone compose most footwall rocks. The crystalline hanging-wall rocks are pervasively fractured or shattered, and alteration to clay minerals is locally well developed. Sackung structures (trenches or small-scale grabens and upslope-facing scarps) are common near the rounded crest of the range, suggesting gravitational spreading of the fractured rocks and oversteepening of the mountain flanks. Late Tertiary and Quaternary incision of the Blue River Valley, just west of the Williams Fork Mountains, contributed to the oversteepening. Major landslide movement is suspected during periods of deglaciation when abundant meltwater increased pore-water pressure in bedrock fractures.A fault-flexure model for the development of the widespread fracturing and weakening of the Proterozoic basement proposes that the surface of the Williams Range thrust contains a concave-downward flexure, the axis of which coincides approximately with the contact in the footwall between Proterozoic basement and mostly Cretaceous rocks. Movement of brittle, hanging-wall rocks through the flexure during Laramide deformation pervasively fractured the hanging-wall rocks.  相似文献   

12.
The first deep permafrost boreholes (>10 m) ever drilled in Scandinavia for climatic studies constitute part of a transect of deep mountain permafrost boreholes through the mountains of Europe established under the EU PACE (Permafrost and Climate in Europe) Project. In Scandinavia, PACE boreholes are located at Juvvasshøe, southern Norway, Tarfalaryggen in northern Sweden, and northernmost in the transect at Janssonhaugen, western Svalbard. This paper outlines the aims and objectives of the PACE programme, and describes in detail the Svalbard and Scandinavian permafrost boreholes.  相似文献   

13.
The thrust sheets of the Northern Calcareous Alps were emplaced during Late Cretaceous thrust‐dominated transpression expressed by thrust sheets segmented by closely spaced tear faults. Thrust sheet‐top sediments were deposited during thrusting and associated fold growth and were controlled by active folding and tearing. We observe two types of angular unconformities: (1) Angular unconformities above folds between tear faults conform with the model of progressive unconformities. Across these unconformities dip decreases upsection. (2) Here, we define progressive unconformities that are related to tear faults and are controlled by both folding and tearing. Across these unconformities both strike and dip change. In growth strata overlying folds dissected by high‐angle faults, such unconformities are expected to be common. We used analogue modelling to define the geometry of the tear faults and related unconformities. Within the syn‐tectonic sediments, a steep, upward flattening thrust within a broader, roughly tulip‐shaped drag zone develops. The thrust roots in the tear fault in pre‐tectonic deposits and is curved upward toward the downthrown block. Vertical offset on the thrust is related to differential vertical uplift caused by, for example, growth of folds with different wavelength and amplitude on either side of the tear fault. Formation of progressive unconformities is governed by the relationship between the rates of deposition and vertical growth of a structure. Fault‐related progressive unconformities are additionally controlled by the growth of the vertical step across the tear fault. When the rates of vertical growth of two neighbouring folds separated by a tear fault are similar, the rate of growth across the tear fault is small; if the first differ, the latter is high. Episodic tear fault activity may create several angular unconformities attached to a tear fault or allow the generation of angular unconformities near tear faults in sedimentary systems that have a rate of deposition too high to generate classical progressive unconformities between the tear faults.  相似文献   

14.
The metamorphism of upper greenschist facies metasediments exposed in the extreme southwestern portion of St. Jonsjorden, Svalbard, is described. The rocks form part of the Mullerneset Formation of the late Precambrian age Kongsvegen Group and constitute a portion of the central-western Spitsbergen Cale-donides. Four deformations (D, -D4) and two metamorphic episodes (Mi and M2) have affected the rocks of the Mullerneset area. Mi was a prograde event which was initiated prior to the onset of the Di and continued through this deformation. Pre-Dt metamorphism reached biotite grade whereas garnet grade was attained syn-Di. M2 was a lower-middle greenschist facies metamorphism associated with D2. The results of quantitative geothermometry in the pelitic rocks show that peak Mi metamorphic temperatures decrease southwards across the field area from about 540°C to 510°C. Geobarometry and estimates of depth of burial indicate that Mi pressures were in the range of 5–7 kb. The data are consistent with geothermal gradients in the range of 21 ± 4°C/km to 24 ± 5°C/km. M2 metamorphic conditions are not precisely determinable but temperatures and pressures were probably less than those attained during Mi. It is suggested that the rocks of central-western Spitsbergen were originally deposited in an aulacogen before the initiation of Caledonian diastrophism.  相似文献   

15.
Proterozoic igneous rocks occur in three areas in Nordaustlandet, Svalbard, and are found in the upper part of the Lower Hecla Hoek succession, the Botniahalvøya Supergroup. The rocks have been called porphyrites in Botniahalvøya, metadiabases in Prins Oscars Land and quartz porphyries in both areas as well as in the Sabinebukta area. All rocks have been metamorphosed under the greenschist facies conditions. The porphyrites are calc-alkaline acid andesites and dacites of medium to high K2O type, possibly showing a transition to tholeiitic series. The quartz porphyries are calc-alkaline rhyolites of high K20 type. The metadiabases are subdivided into two: the basic dykes of low K20 type and relatively high Fe tholeiite series, while the main bodies are acid andesites of medium to high K20 and low Fe tholeiite series. The basic dykes fall in the oceanic rock field of the Tiø2-K20-P20s diagram, and are most likely belonging to the island arc type volcanism. The metadiabases of main bodies and the porphyrites, and possibly the quartz porphyries, are chemically continuous. The medium to high K20 contents, and their Tiø2-K20-P2O5 ratios suggest that these three rock groups are non-oceanic and resemble the rock associations of the areas having thick continental crust. This conclusion agrees with the reported high initial Sr87/86 ratios and the existence of a distinct unconformity at the base of this volcanogenic succession.  相似文献   

16.
As the highest part of the central Andean fold‐thrust belt, the Eastern Cordillera defines an orographic barrier dividing the Altiplano hinterland from the South American foreland. Although the Eastern Cordillera influences the climatic and geomorphic evolution of the central Andes, the interplay among tectonics, climate and erosion remains unclear. We investigate these relationships through analyses of the depositional systems, sediment provenance and 40Ar/39Ar geochronology of the upper Miocene Cangalli Formation exposed in the Tipuani‐Mapiri basin (15–16°S) along the boundary of the Eastern Cordillera and Interandean Zone in Bolivia. Results indicate that coarse‐grained nonmarine sediments accumulated in a wedge‐top basin upon a palaeotopographic surface deeply incised into deformed Palaeozoic rocks. Seven lithofacies and three lithofacies associations reflect deposition by high‐energy braided river systems, with stratigraphic relationships revealing significant (~500 m) palaeorelief. Palaeocurrents and compositional provenance data link sediment accumulation to pronounced late Miocene erosion of the deepest levels of the Eastern Cordillera. 40Ar/39Ar ages of interbedded tuffs suggest that sedimentation along the Eastern Cordillera–Interandean Zone boundary was ongoing by 9.2 Ma and continued until at least ~7.4 Ma. Limited deformation of subhorizontal basin fill, in comparison with folded and faulted rocks of the unconformably underlying Palaeozoic section, implies that the thrust front had advanced into the Subandean Zone by the 11–9 Ma onset of basin filling. Documented rapid exhumation of the Eastern Cordillera from ~11 Ma onward was decoupled from upper‐crustal shortening and coeval with sedimentation in the Tipuani‐Mapiri basin, suggesting climate change (enhanced precipitation) or lower crustal and mantle processes (stacking of basement thrust sheets or removal of mantle lithosphere) as possible controls on late Cenozoic erosion and wedge‐top accumulation. Regardless of the precise trigger, we propose that an abruptly increased supply of wedge‐top sediment produced an additional sedimentary load that helped promote late Miocene advance of the central Andean thrust front in the Subandean Zone.  相似文献   

17.
18.
The Stara Planina is an E–W-trending range within the Balkan belt in central Bulgaria. This topographically high mountain range was the site of Mesozoic through early Cenozoic thrusting and convergence, and its high topography is generally thought to have resulted from crustal shortening associated with those events. However, uplift of this belt appears to be much younger than the age of thrusting and correlates instead with the age of Pliocene–Quaternary normal faulting along the southern side of the range. Flexural modelling indicates the morphology of the range is consistent with flexural uplift of footwall rocks during Pliocene–Quaternary displacement on S-dipping normal faults bounding the south side of the mountains, provided that the effective elastic plate thickness of 12  km under the Moesian platform is reduced to about 3  km under the Stara Planina. This small value of elastic plate thickness under the Stara Planina is similar to values observed in the Basin and Range Province of the western United States, and suggests that weakening of the lithosphere is due to heating of the lithosphere during extension, perhaps to the point that large-scale flow of material is possible within the lower crust. Because weakening is observed to affect the Moesian lithosphere for ≈10  km beyond (north of) the surface expression of extension, this study suggests that processes within the uppermost mantle, such as convection, play an active role in the extension process. The results of this study also suggest that much of the topographic relief in thrust belts where convergence is accompanied by coeval extension in the upper plate (or 'back arc'), such as in the Apennines, may be a flexural response to unloading during normal faulting, rather than a direct response to crustal shortening in the thrust belt.  相似文献   

19.
The Tertiary deformation in east Oscar II Land, Spitsbergen, is compressional and thin-skinned, and includes thrusts with ramp-flat geometry and associated fault-bend and fault-propagation folds. The thrust front in the Mediumfjellct-Lappdalen area consists of intensely deformed Paleozoic and Mesozoic rocks thrust on top of subhorizontal Mesozoic rocks to the east. The thrust front represents a complex frontal ramp duplex in which most of the eastward displacement is transferred from sole thrusts in the Permian and probably Carboniferous strata to roof thrusts in the Triassic sequence. The internal geometries in the thrust front suggest a complex kinematic development involving not only simple 'piggy-back', in-sequencc thrusting, but also overstep as well as out-of-sequence thrusting. The position of the thrust front and across-strike variation in structural character in east Oscar II Land is interpreted to be controlled by lithological (facies) variations and/or pre-existing structures, at depth, possibly cxtensional faults associated with the Carboniferous graben system.  相似文献   

20.
This note reports the occurrence of two generations of 14C dated raised beach deposits at Pricepynten. southern Prins Karls Forland, western Svalbard, dated to < 12 Kya and >30 Kya. In addition two new 14C ages of ca. 9.2 and 1.8 Ky are presented from Myrilus eclulis and a buried peat deposit, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号