首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Lake Ohrid, located on the Balkan Peninsula within the Dinaride–Albanide–Hellenide mountain belt, is a tectonically active graben within the South Balkan Extensional Regime (SBER). Interpretation of multichannel seismic cross sections and bathymetric data reveals that Lake Ohrid formed during two main phases of deformation: (1) a transtensional phase which opened a pull‐apart basin, and (2) an extensional phase which led to the present geometry of Lake Ohrid. After the initial opening, a symmetrical graben formed during the Late Miocene, bounded by major normal faults on each side in a pull‐apart type basin. The early‐stage geometry of the basin has a typical rhomboidal shape restricted by two sets of major normal faults. Thick undisturbed sediments are present today at the site where the acoustic basement is deepest, illustrating that Lake Ohrid is a potential target for drilling a long and continuous sediment core for studying environmental changes within the Mediterranean region. Neotectonic activity since the Pliocene takes place along the roughly N–S‐striking Eastern and Western Major Boundary Normal Faults that are partly exposed at the present lake floor. The tectono‐sedimentary structure of the basin is divided into three main seismic units overlying the acoustic basement associated with fluvial deposits and lacustrine sediments. A seismic facies analysis reveals a prominent cyclic pattern of high‐ and low‐amplitude reflectors. We correlate this facies cyclicity with vegetation changes within the surrounding area that are associated with glacial/interglacial cycles. A clear correlation is possible back to ca. 450 kyrs. Extrapolation of average sedimentation rates for the above mentioned period results in age estimate of ca. 2 Myrs for the oldest sediments in Lake Ohrid.  相似文献   

2.
The sedimentary fill of Lake Annecy (northwestern Alps) - related to the last glacial/post-glacial episode - was investigated through high resolution (sparker) and very high resolution (2.5 kHz) seismic-reflection surveys. A seismostratigraphic approach led to subdivision of a 150 m-thick pile (maximum thickness in axial part) into five units. Basal units (1 and 2) represent an imbrication of subglacial and glacio-lacustrine deposits, close to the grounding line of the glaciers' fronts (respectively at the northern and southern terminations of the lake). The first acoustically well-stratified unit (3) developed during a fast retreat of the glaciers fronts far from the lake basin, and a progradational alluvial regime, with abundant underflows, in a lake larger than the present one. Unit 4 represents the progressive decrease of this clastic input mixed with the progressive development of in situ bio-induced production. As in many other alpine lakes, a topmost unit (5), relatively thin (about 8-10 m) and with a conspicuous drape configuration, is the signature of the Holocene interglacial climatic conditions with a sedimentation rate of about 1 mm/yr. On the lacustrine basin slopes, slumps and debris flow occurred mainly within Unit 3; they may be due to, either climate-induced high rate terrigenous sedimentation, or/and to a period of increased seismo-tectonic activity.  相似文献   

3.
A 2.5-m-long sediment core was retrieved from Lake Somaslampi, a small lake located in a kame field on the north slope of the Scandes Mountains in Finnish Lapland. Holocene environmental changes were inferred from the lithological, geochemical, pollen, diatom and Cladocera records stored in the lake sediment. The chronology was based on six radiocarbon AMS dates supported by a palynological control chronology. The sediment profile consists of a glacial sedimentary sequence truncated by a lacustrine one. A hiatus, tentatively correlated with climate cooling and advances of glaciers during the 8.2 ka yrs BP “Finse cooling Event”, occurs between these sequences. The glacial sequence was composed of fluvioglacial clastics, smoothly changing into glacio-lacustrine diatomaceous ooze deposited in a meromictic proglacial lake that covered the kame field. The meromixis was probably caused by the greater depth of the lake, the extended ice-cover, and the microbial mats covering large areas of the lake bottom. A distinct change in the biota of the glacio-lacustrine sediments indicates higher trophic conditions than during deposition of the fluvioglacial clastics. The late-Pleistocene vegetation was characterised by subarctic birch tundra vegetation (BetulaSalix–Ericaceae) with low biodiversity gradually changing to BetulaPinus dominance in the early Holocene. The lake was deep and had a diatom inferred pH ~ 7 indicated also by the dominance of planktonic Cladocera. The base of the lacustrine sediment sequence (6,650–6,300 cal. BP) consisted of loess-rich sediment indicating an increase in eolian activity. This is also supported by the pollen record, which is dominated by more long-distant taxa such as Alnus and Pinus, and by the increased C/N ratio of the sediment. After the initial meromictic phase of the lake, an abrupt lowering of the water level occurred. Lake Somaslampi was isolated from the larger Pre-Lake Somas basin and became holomictic, shallow, much warmer and more productive, until the deterioration of climate around 3,000 yr BP and the increased input of clastics from the tundra soils. The vegetation followed the general climatic trend by gradually changing from the dominance of Betula and Pinus to the dominance of more tundra-related vegetation like Poaceae and Cyperaceae. However, the higher frequencies of planktonic Cladocera and centric diatoms in the most recent sediments indicates higher trophic conditions, increased turbulence and a prolonged ice-free period, which can possibly be linked to the recent climate warming especially in areas of higher altitude and latitude.  相似文献   

4.
A high resolution sediment record spanning the entire time since the ice retreat after the Last Glacial Maximum has been recovered from Lac d'Annecy. The main focus of this study is to develop a reliable chronology of the record and to evaluate the environmental variability during the period of Late Würmian ice retreat. Most of the record is laminated. These laminations are of different structure, composition, and thickness. On the basis of varve stratigraphy five sedimentation units were identified which correspond to particular stages in the deglaciation of the region. Except for one each facies type has been related to an annual cycle of deposition. Varve counting in combination with radiocarbon dating provides the time control of the record and dates the base of lacustrine deposits to 16,600 varve yrs BP. The beginning of the Late Glacial is marked by a shift from clastic to endogenic carbonate varves caused by the climatic warming. Clastic varves have been further subdivided into a succession of complex and standard varve types. These variations of clastic varve formation are triggered by the ice retreat and related hydrological variations in the watershed of the lake. Sedimentological, mineralogical and isotopic data help identify different sediment sources of the sub-layers. Proximal sediments originate from local carbonaceous bedrock whereas distal sediments have characteristics of the molassic complex of the outer Alps. The alternation of proximal and distal sediments in the varve sequence reflects the deglaciation of the Annecy area with a changing influence of local and regional glaciers. The melting of the Alpine ice sheet is the driving force for regional environmental changes which in turn control the sediment transport and deposition processes in Lac d'Annecy.  相似文献   

5.
Lake Simcoe is a large lake 45 km across and in places over 30 m deep, located between Lake Huron and Lake Ontario, in the glaciated terrain of southern Ontario, Canada. Seismostratigraphic analysis of high-resolution seismic reflection profiles, together with lakebed sediment sampling and pollen study, revealed distinctive sequences in the sediments beneath Lake Simcoe, Ontario. A surface unit (Blue Sequence) of soft Holocene mud (low-amplitude surface reflection, discontinuous parallel internal reflections) lies in the deeper basins of the lake. The underlying unit (Green Sequence) is characterized by high-amplitude parallel internal reflections; basal sediments of this sequence consist of clay rhythmites with dropstones. The Green Sequence was deposited by lacustrine sedimentation in proglacial Lake Algonquin; sedimentation persisted until the basin was isolated from other glacial lakes at about 10 14C ka at the Penetang post-Algonquin phase. Subsequent erosion of the uppermost portion of the Green Sequence is attributed to wave action in a low-level early Holocene lake, possibly closed hydrologically and coeval with closed lowstands in the Huron and Georgian Bay basins. Two sequences with high-amplitude surface reflections and chaotic internal reflections (Purple and Red Sequences) lie below the Green Sequence. Northeast-southwest trending ridges, tens of metres in height, on the Red Sequence (the lowermost of these two units) are interpreted to be drumlins. An erosion surface descends into narrow valleys 50–80 m deep beneath the lake in bays to the west and south of the main lake basin. These depressions are interpreted as subglacial tunnel channels cut by rapid flows of meltwater. The sediments of Purple Sequence are interpreted as channel-fill sediments rapidly deposited during waning stages of the meltwater drainage. The Red Sequence is correlated with the Newmarket Till of the last glacial maximum identified beneath the Oak Ridges Moraine to the south.  相似文献   

6.
We studied the role that submersed aquatic vegetation (SAV) plays in the sedimentation of organic matter (OM) and phosphorus (P) in Lake Panasoffkee, Florida (USA), a shallow, hard-water, macrophyte-dominated water body. Carbon/Nitrogen ratios (C/N) and stable isotope signatures (δ13C and δ15N) in algae, higher plants, and surface sediments were measured to identify sources of OM to the lake mud. Pollen, plant macrofossils, and geochemistry in sediment cores indicated that primary productivity and SAV abundance in Lake Panasoffkee increased in the late 1800s, probably as a response to increased P loading from human settlement and forest clearance. SAV and associated periphyton served as temporary sinks for soluble P, maintaining relatively clear-water, low-nutrient conditions in the lake. P accumulation in Lake Panasoffkee sediments increased together with indicators for greater SAV presence. This suggests that SAV and associated epiphytes promote P burial and retention in sediments. Although it might be assumed that rooted submersed macrophytes are directly responsible for P uptake from water and transfer to sediments, C/N and stable carbon isotope results argue for the importance of other macrophyte growth forms, and perhaps epiphytic algae, in permanent OM and P sequestration. For instance, high rates of photosynthesis by epiphytes in hard-water systems consume CO2 and promote CaCO3 precipitation. Sloughing of accumulated carbonates from macrophyte leaves transfers epiphytes and associated P to the sediment. Our paleolimnological findings are relevant to restoration efforts in the Florida Everglades and support the claim that constructed SAV wetlands remove P from waters effectively.  相似文献   

7.
Glacial Lake Hind was a 4000 km2 ice-marginal lake which formed in southwestern Manitoba during the last deglaciation. It received meltwater from western Manitoba, Saskatchewan, and North Dakota via at least 10 channels, and discharged into glacial Lake Agassiz through the Pembina Spillway. During the early stage of deglaciation in southwestern Manitoba, part of the glacial Lake Hind basin was occupied by glacial Lake Souris which extended into the area from North Dakota. Sediments in the Lake Hind basin consist of deltaic gravels, lacustrine sand, and clayey silt. Much of the uppermost lacustrine sand in the central part of the basin has been reworked into aeolian dunes. No beaches have been recognized in the basin. Around the margins, clayey silt occurs up to a modern elevation of 457 m, and fluvio-deltaic gravels occur at 434–462 m. There are a total of 12 deltas, which can be divided into 3 groups based on elevation of their surfaces: (1) above 450 m along the eastern edge of the basin and in the narrow southern end; (2) between 450 and 442 m at the western edge of the basin; and (3) below 442 m. The earliest stage of glacial Lake Hind began shortly after 12 ka, as a small lake formed between the Souris and Red River lobes in southwestern Manitoba. Two deltas at an elevation of 450 were formed in this lake. At the same time, the Souris Lobe retreated far enough to allow glacial Lake Souris to expand farther north along the western side of the basin from North Dakota into what was to become glacial Lake Hind. Three deltas were built at an elevation above 460 m in the Canadian part of this proglacial lake. Continued ice retreat allowed the merger of glacial Lake Souris with the interlobate glacial Lake Hind to the east. Subsequent erosion of the outlet to the Pembina Spillway allowed waters in the glacial Lake Hind basin to become isolated from glacial Lake Souris, and a new level of glacial Lake Hind was established at 442 m, with 5 deltas built at this level by meltwater runoff from the west. Next, a catastrophic flood from the Moose Mountain uplands in southeastern Saskatchewan flowed through the Souris River valley to glacial Lake Souris, spilling into Lake Hind and depositing another delta. This resulted in further incision of the outlet (Pembina Spillway). A second flood through the Souris Spillway from glacial Lake Regina further eroded the outlet; most of glacial Lake Hind was drained at this time except for the deeper northern part. Coarse gravel was deposited by this flood, which differs from previous flood gravel because it is massive and contains less shale.  相似文献   

8.
This study presents the age control and environmental magnetism components of a new, late Pleistocene paleoclimate record for the Great Basin of western North America. Two new cores from the Summer Lake sub-basin of pluvial Lake Chewaucan, Oregon, USA are correlated to basin margin outcrops on the basis of tephrochronology, lithostratigraphy, sediment magnetism and paleomagnetic secular variation. Eleven tephra layers were found in the cores that correlate to tephra identified previously in the outcrop. The Olema ash was also found in one of the cores; its stratigraphic position, relative to 3 dated tephra layers, indicates that its age is 50-55 ka, somewhat younger than has been previously reported. The Summer Lake sediments are divided into deep and shallow lake lithosomes based on sedimentary features. The stratigraphic position of these lithosomes support the tephra-based correlations between the outcrop and the cores. These sediments contain a well resolved record of the Mono Lake Excursion (MLE) and an earlier paleomagnetic excursion as well as a high quality replication of the paleosecular variation immediately above the MLE.Relative sedimentation rates increased dramatically toward the depocenter during intervals of low-lake level. In contrast, during intervals of high-lake level, relative sedimentation rates were comparable along the basin axis from the basin margin to the depocenter. The magnetic mineralogy of the Summer Lake sediments is dominated by pseudo-single domain (titano)magnetite and intervals of high/low magnetite concentration coincide with lithosomes that indicate high/low lake levels. Magnetic grain size also varies in accord with bulk sediment grain size as indicated by the silt/clay ratio. To a first order, variations in magnetic parameters, especially those attributable to the concentration of magnetic minerals, correlate well with global glacial/interglacial oscillations as indicated by marine oxygen isotope stages. This relationship can be explained by increased dissolution of (titano)magnetite minerals as lake level dropped and the lake became more productive biologically. This inference is supported by a correspondence between lower concentrations of magnetite with higher levels of total organic carbon and vice-versa.  相似文献   

9.
The Kanas River originates on the southern slope of Youyi Peak, the largest center of modern glaciers in Altai Mountains, China. Three sets of moraines and associated glacial sediments are well preserved near the Kanas Lake outlet, recording a complex history and landscape evolution during the Last Glacial. Dating the moraines allows the temporal and spatial glacier shift and climate during the Last Glacial to be determined, and then constrains when and how the Kanas Lake basin was formed. Dating of the glacial tills was undertaken by utilizing the optically stimulated luminescence (OSL) method. Results date four samples from the three sets of moraines to 28.0, 34.4, 38.1, and 49.9 ka and one sample from outwash sediment to 6.8 ka. The Kanas Lake basin is a downfaulted basin and was eroded by glacier before 28.0 ka, and the glacial moraines blocked the glacier-melt water after the glacier retreat, which made the present-day Kanas Lake eventually form at least before 6.8 ka BP. In Altai Mountains, the glacier advance was more extensive in Marine Isotope Stage (MIS) 3 than MIS 2, probably because the mid-latitude westerlies shifted northward and/or intensified during the MIS 3, resulting in a more positive glacier mass balance. Nevertheless, the Siberian High dominated the Altai Mountains in MIS 2, resulting in a relative decrease in precipitation.  相似文献   

10.
中国干旱区不同成因沉积物吹蚀速率的实验研究   总被引:1,自引:0,他引:1  
通过对中国干旱区8种不同成因沉积物吹蚀速率的风洞实验,从风蚀动力机制上讨论沙漠的物质来源及其与沙丘发育和沙漠形成的关系。对比风洞实验测定结果发现,在我国西北干旱区及其周围分布最广的8种沉积物中,吹蚀速率从大到小依次是:湖相沙 > 河流沙 > 砂页岩风化物 > 洪积物 > 冰水沙 > 花岗岩风化物 > 坡积物 > 冰碛物。吹蚀速率与沉积物组成中0.063~2 mm的易蚀性颗粒含量和分选性成显著线性正相关,与 < 0.063 mm的粉粘粒和 > 2 mm的砾石含量成显著线性负相关。根据不同沉积物吹蚀速率的差异性,可以将这8种沉积物划分为4类:(1) 湖相沙和河流沙在干燥条件下极易遭受风蚀,是最主要的沙源物质;(2) 砂页岩风化物、洪积物和冰水沙吹蚀速率较强,为次要的沙源物质;(3) 花岗岩风化物和坡积物吹蚀速率较差,仅能提供少量沙物质;(4) 冰碛物对风力有较强的抗蚀性,所能提供的沙物质数量甚微。我国沙漠的形成除了强盛的风力条件以外,内陆湖盆的干涸导致大范围湖相沙层的暴露以及流水对碎屑物质的前期分选起到了关键作用,这可能是我国沙漠一般分布在内陆湖盆周围或河流沿岸的主要物质原因。  相似文献   

11.
Analysis of a 3.5 m vibracore from the Olson buried forest bed in the southern Lake Michigan basin provides new paleolimnological data for the early Holocene. The core records a rise in lake level from the Chippewa low water phase toward the Nipissing high water phase. Deepening of the water level at the core site is suggested by a trend toward decreasing organic carbon content up core that is interpreted as a response to increasing distance between terrestrial debris sources and the core site.Published data from deep water cores from the southern Lake Michigan basin suggest there had been an inflow of isotopically light water from glacial Lake Agassiz into the southern basin between 10.5-11 ka (A1 event). The data also indicate a second flood of isotopically light water between 8-9 ka (A2 event).Three new 14C dates from the Olson site core suggest that most of the sediment was deposited between 8.45 ka and 8.2 ka, an interval roughly coeval with the second pulse of 18O-depleted water (A2) from Lake Agassiz into the southern basin. Oxygen isotope ratio analysis of shell aragonite from the gastropods Probythinella lacustris and Marstonia deceptashows increasingly negative values up core. This trend in18O values suggests that 18O - depleted water entered the southern basin about 8.4 ka. The Olson site core thus provides a chronology of events in the southern Lake Michigan basin associated with the draining of glacial Lake Agassiz.  相似文献   

12.
High-resolution seismic reflection profile data show that the modern sediment cover (over the last 150 years) in Georgian Bay is thin and spatially discontinuous. Sediments rich in ragweed pollen, largely derived from siltation linked to land clearing and European settlement, form a thin, discontinuous veneer on the lakebed. Much of the lakebed consists of exposed sediments deposited during the late glacial or early postglacial. Accumulation rates of modern sediments range from < 0 mm/year (net erosion) to ∼3.2 mm/year, often within a few hundred metres spatially. These rates are much lower than those reported for the main basin of Lake Huron and the other Great Lakes, and are attributed to the low sediment supply. Only a few small rivers flow into Georgian Bay, and most of the basin is surrounded by bedrock of Precambrian gneiss and granite to the east, and Silurian dolostone, limestone and shale to the west. Thick deposits of Pleistocene drift, found on the Georgian Bay shoreline only between Meaford and Port Severn, are the main sediment source for the entire basin at present. Holocene to modern sediments are even absent from some deep basins of Georgian Bay. These findings have implications for the ultimate fate of anthropogenic contaminants in Georgian Bay. While microfossil assemblages in the ragweed-rich sediments record increased eutrophication over the last 150 years, most pollutants generated in the Georgian Bay catchment are not accumulating on the lakebed and are probably exported from the Bay.  相似文献   

13.
柴达木盆地是我国西北地区最干旱的盆地之一,常年盛行强劲的西北风,尤其在冬春季更甚。柴达木盆地西部地区自新生代以来沉积了巨厚的河湖相沉积。自上新世晚期以来,随着气候的逐步干化和盆地内部构造变形的加剧,该地区风力侵蚀地貌开始出现。早更新时出现的古盐壳和古雅丹地貌说明当时侵蚀已经相当剧烈。晚更新时以来,气候的极端干旱化和冰期的出现,更加促进了风蚀地貌的发育,在强劲的低空风力的雕刻下,形成了盆地西部几万平方千米的“百万雅丹”地貌,十分壮观。柴达木盆地不同地区风蚀地层的厚度和速率都不同,最大可达3 km和1.1 mm/yr,如此巨量的物质搬运必然为下风向的地区(都兰、青海湖地区、西宁盆地、黄土高原)的粉尘堆积提供可观的物源物质。研究表明,柴达木盆地西部被侵蚀的古湖相地层是上述地区,尤其是黄土高原重要的物源物质。随着研究的深入,其盆地内侵蚀物质输送到黄土高原的机制,已被学界越来越清晰的认识。  相似文献   

14.
柴达木盆地是我国西北地区最干旱的盆地之一,常年盛行强劲的西北风,尤其在冬春季更甚。柴达木盆地西部地区自新生代以来沉积了巨厚的河湖相沉积。自上新世晚期以来,随着气候的逐步干化和盆地内部构造变形的加剧,该地区风力侵蚀地貌开始出现。早更新世出现的古盐壳和古雅丹地貌说明当时侵蚀已经相当剧烈。晚更新世以来,气候的极端干旱化和冰期的出现,更加促进了风蚀地貌的发育,在强劲的低空风力的雕刻下,形成了盆地西部几万平方千米的"百万雅丹"地貌,十分壮观。柴达木盆地不同地区地层的厚度和风蚀速率都不同,最大分别可达3 000 m和1.1 mm/yr,如此巨量的物质搬运必然为下风向的地区(都兰、青海湖地区、西宁盆地、黄土高原)的粉尘堆积提供可观的物源物质。研究表明,柴达木盆地西部被侵蚀的古湖相地层是上述地区,尤其是黄土高原重要的物源物质。随着研究的深入,其盆地内侵蚀物质输送到黄土高原的机制,已得到学界越来越清晰的认识。  相似文献   

15.
The continuous Cenozoic strata in the Xining Basin record the growth and evolution of the northeastern Qinghai–Tibetan Plateau. Here, the mechanisms and evolution of the Xining Basin during the Cenozoic were investigated by studying the sedimentary facies of 22 Cenozoic sections across the basin and detrital zircon U‐Pb ages of three Cenozoic sections located in the eastern, central and western basin, respectively. In the Eocene (ca. 50–44 Ma), the India‐Eurasia Collision affected the northeastern Qinghai–Tibetan Plateau. The Central Qilian Block rotated clockwise by ca. 24° to form the Xining Basin. The Triassic flysch sediments surrounding the basin were the primary sources of sediment. Between ca. 44–40 Ma, the basin enlarged and deepened, and sedimentation was dominated by saline lake sediments. Between ca. 40–25.5 Ma, the Xining Basin began to shrink and dry, resulting in the deposition of saline pan and saline mudflat sediments in the basin. After ca. 20 Ma, the Laji Shan to the south of the Xining Basin was uplifted due to the northward compression of the Guide Basin to the south. Clasts that eroded from this range dominated the sediments as the basin evolved from a lacustrine environment into a fluvial system. The Xining Basin was an extensional basin in the Early Cenozoic, but changed into a compressive one during the Late Cenozoic, it was not a foreland basin either to the Kunlun Shan or to the western Qinling Shan in the whole Cenozoic. The formation and deformation of the Xining Basin are the direct responses of the India‐Eurasia Collision and the growth of the Qinghai‐Tibetan Plateau.  相似文献   

16.
Prior to the collection of a series of sediment cores, a high- and very-high-resolution reflection seismic survey was carried out on Lago Puyehue, Lake District, South-Central Chile. The data reveal a complex bathymetry and basin structure, with three sub-basins separated by bathymetric ridges, bedrock islands and interconnected channels. The sedimentary infill reaches a thickness of >200 m. It can be sub-divided into five seismic-stratigraphic units, which are interpreted as: moraine, ice-contact or outwash deposits (Unit I), glacio-lacustrine sediments rapidly deposited in a proglacial or subglacial lake at the onset of deglaciation (Unit II), lacustrine fan deposits fed by sediment-laden meltwater streams in a proglacial lake (Unit III), distal deposits of fluvially derived sediment in an open, post-glacial lake (Unit IV) and authigenic lacustrine sediments, predominantly of biogenic origin, that accumulated in an open, post-glacial lake (Unit V). This facies succession is very similar to that observed in other glacial lakes, and minor differences are attributed to an overall higher depositional energy and higher terrigenous input caused by the strong seismic and volcanic activity in the region combined with heavy precipitation. A long sediment core (PU-II core) penetrates part of Unit V and its base is dated as 17,915 cal. yr. BP. Extrapolation of average sedimentation rates yields an age of ca. 24,750 cal. yr. BP for the base of Unit V, and of ca. 28,000 cal. yr. BP for the base of Unit IV or for the onset of open-water conditions. This is in contrast with previous glacial-history reconstructions based on terrestrial records, which date the complete deglaciation of the basin as ca. 14,600 cal. yr. BP. This discrepancy cannot be easily explained and highlights the need for more lacustrine records from this region. This is the second in a series of eight papers published in this special issue dedicated to the 17,900 year multi-proxy lacustrine record of Lago Puyehue, Chilean Lake District. The papers in this special issue were collected by M. De Batist, N. Fagel, M.-F. Loutre and E. Chapron.  相似文献   

17.
Early and late Holocene water-level changes in Lake Annecy, France, were reconstructed from a sediment sequence from Annecy. Two early Holocene successive rises in lake level at ca. 8900-8700 BP are recorded. Another increase in lake level, beginning at ca. 780 BP, is documented. The higher lake-level conditions in Lake Annecy during the 9th millennium BP, i.e. between the Preboreal oscillation and the 8200 yr event, appear to coincide with a more widespread cooling period which has been recorded in western Europe, in the Greenland ice-sheet and the North Atlantic ocean. The rise in lake level at ca. 780 BP can be related to the early Little Ice Age.  相似文献   

18.
This paper synthesizes data collected to document the modern limnological and sedimentary processes in South Sawtooth Lake located on northern Ellesmere Island, Nunavut, Canada. Field observations show that the finely laminated sediments deposited in the distal basin are formed by the settling of overflows and interflows, and in rare occasions, by non-erosive hyperconcentrated density flows. Thin-sections of these sediments allowed for the classification of the sedimentary fabrics into six facies, each representing different limnological processes. The sediments in this distal basin are considered to be continuous and annually laminated (varved) based on radioisotope analyses, and both limnological and sedimentological evidence.  相似文献   

19.
This study assesses Little Ice Age (LIA) lake sediment morphological and geochemical records and moraine chronologies in the upper Fraser River watershed, British Columbia, Canada, to resolve differences in paleoenvironmental interpretation and to clarify sediment production and sediment delivery processes within alpine geomorphic systems. Moose Lake (13.9 km2), situated at 1032 m a.s.l., contains a partially varved record indicating variable rates of accumulation during the last millennium that, in general, coincide with previously documented LIA glacial advances in the region and locally. Dendrochronological assessment of forefield surfaces in the headwaters of the catchment (Reef Icefield) shows that periods of moraine construction occurred just prior to ad 1770, ad 1839 and ad 1883, and some time before ad 1570. Taken collectively, increases in varve thickness within eight Moose Lake sediment cores coincide with documented glacier advances over the twelfth through fourteenth centuries, the eighteenth century, and nineteenth through twentieth centuries. Glacial activity during the sixteenth century is also indicated. While varve thickness variations in proximal and distal sediments clearly reflect glacial activity upstream of Moose Lake, the intermediate varve record is relatively insensitive to these decadal and longer‐term catchment processes. Variations in Ca and related elements derived from glaciated carbonate terrain within the Moose River sub‐catchment (including Reef Icefield) indicate gradually increasing delivery from these sources from the twelfth through twentieth centuries even where the varve thickness record is unresponsive. Elevated carbonate concentrations confirm glacial activity c. ad 1200, ad 1500, ad 1750, and ad 1900.  相似文献   

20.
Comparing the organic matter (OM) composition of modern and past lake sediments contributes to the understanding of changes in lacustrine environments over time. We investigate modern plant and lake-water samples as well as modern and ancient sediment samples from the Tswaing Crater in South Africa using biomarker and stable carbon isotope analyses on bulk OM and specific biomarker compounds. The characteristic molecular markers for higher land plants (predominantly C3-type deciduous angiosperms) in Lake Tswaing are long-chain n-alkanes (n-C27−33), n-alkanols (n-C28+30), stigmasterol, β-sitosterol, β-amyrin, α-amyrin and lupeol. The C17 n-alkane, tetrahymanol, gammaceran-3-one and C29 sterols dominate the lipid fraction of autochthonously produced OM. By comparing stable carbon isotope analyses on bulk OM and the characteristic biomarkers, we follow the modern carbon cycle in the crater environment and find indications for methanotrophic activity in the lake from isotopically depleted moretene. A comparative study of core sediments reveals changes in the terrestrial (C3 versus C4) and aquatic bioproductivity and allows insights into the variability of the carbon cycle under the influence of changing climatic conditions for the time from the end of the last glacial (Termination I) to the late Holocene, ca. 14,000–2,000 calibrated years before present (years BP). The most pronounced changes occur in the aquatic realm after ca. 10,000 years BP when our results imply climate swings from more humid to more arid and after 7,500 years BP to gradually more humid conditions again, which can be related to a shift in the position of the Inter-Tropical Convergence Zone or to changes in the tropical atmosphere–ocean interaction. Long-chain alkenones (LCAs) have been identified in ancient lake sediments from Africa for the first time. They occur in samples older than 7,500 years BP and their distribution (dominance of C38 and of tri- over tetra-unsaturated LCAs) is distinctly different from other published records suggesting a to date unknown source organism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号