首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The role of post-Little Ice Age (LIA) Neoglacial retreat on landslide activity is investigated in 19 alpine basins along the upper Lillooet River Valley, British Columbia. We examine how Neoglacial scouring and glacial recession have modified hillslope form and slope stability, and construct a decision-making flowchart to identify landslide hazards associated with glacial retreat. This work is based on field mapping, GIS analysis, statistical associations between landslides and terrain attributes, and a comparison between Neoglaciated and non-Neoglaciated terrain within each basin.The bedrock landslide response to glacial retreat varies appreciably according to lithology and the extent of glacial scour below the LIA trimline. Valleys carved in weak Quaternary volcanics show significant erosional oversteepening and contain deep-seated slope movement features, active rock fall, rock slides, and rock avalanches near glacial trimlines. Basins in stronger granitic rock rarely show increased bedrock instability resulting from post-LIA retreat, except for shallow-seated rock slides along some trimlines and failures on previously unstable slopes. In surficial materials, landslides associated with post-LIA retreat originate in till or colluvium, as debris slides or debris avalanches, and are concentrated along lateral moraines or glacial trimlines.Significant spatial association was also observed between recent catastrophic failures, gravitational slope deformation, and slopes that were oversteepened then debuttressed by glacial erosion. Eight out of nine catastrophic rock slope failures occurred just above glacial trimlines and all occurred in areas with a previous history of deep-seated gravitational slope movement, implying that this type of deformation is a precursor to catastrophic detachment.  相似文献   

2.
High‐resolution seismic imaging and coring in Lago Fagnano, located along a plate boundary in Tierra del Fuego, have revealed a dated sequence of Holocene mass‐wasting events. These structures are interpreted as sediment mobilizations resulting from loading of the slope‐adjacent lake floor during mass‐flow deposition. More than 19 mass‐flow deposits have been identified, combining results from 800 km of gridded seismic profiles used to site sediment cores. Successions of up to 6‐m thick mass‐flow deposits, pond atop the basin floor and spread eastward and westward following the main axis of the eastern sub‐basin of Lago Fagnano. We developed an age model, on the basis of information from previous studies and from new AMS‐14C ages on cored sediments, which allows us to establish a well‐constrained chronologic mass‐wasting event‐catalogue covering the last ~12 000 years. Simultaneously triggered, basin‐wide lateral slope failure and the formation of multiple debris flow and postulated megaturbidite deposits are interpreted as the fingerprint of paleo‐seismic activity along the Magallanes‐Fagnano transform fault that runs along the entire lake basin. The slope failures and megaturbidites are interpreted as recording large earthquakes occurring along the transform fault since the early Holocene. The results from this study provide new data about the frequency and possible magnitude of Holocene earthquakes in Tierra del Fuego, which can be applied in the context of seismic hazard assessment in southernmost Patagonia.  相似文献   

3.
This study examines the development of a conceptual model of sediment processes in the upper Yuba River watershed; and we hypothesize how components of the conceptual model may be spatially distributed using a geographical information system (GIS). The conceptual model illustrates key processes controlling sediment dynamics in the upper Yuba River watershed and was tested and revised using field measurements, aerial photography, and low elevation videography. Field reconnaissance included mass wasting and channel storage inventories, assessment of annual channel change in upland tributaries, and evaluation of the relative importance of sediment sources and transport processes. Hillslope erosion rates throughout the study area are relatively low when compared to more rapidly eroding landscapes such as the Pacific Northwest and notable hillslope sediment sources include highly erodible andesitic mudflows, serpentinized ultramafics, and unvegetated hydraulic mine pits. Mass wasting dominates surface erosion on the hillslopes; however, erosion of stored channel sediment is the primary contributor to annual sediment yield. We used GIS to spatially distribute the components of the conceptual model and created hillslope erosion potential and channel storage models. The GIS models exemplify the conceptual model in that landscapes with low potential evapotranspiration, sparse vegetation, steep slopes, erodible geology and soils, and high road densities display the greatest hillslope erosion potential and channel storage increases with increasing stream order. In-channel storage in upland tributaries impacted by hydraulic mining is an exception. Reworking of stored hydraulic mining sediment in low-order tributaries continues to elevate upper Yuba River sediment yields. Finally, we propose that spatially distributing the components of a conceptual model in a GIS framework provides a guide for developing more detailed sediment budgets or numerical models making it an inexpensive way to develop a roadmap for understanding sediment dynamics at a watershed scale.  相似文献   

4.
分布式水文模型结合遥感研究地表蒸散发   总被引:7,自引:5,他引:2  
地表蒸散发是研究土壤-植被-大气系统水热平衡的关键因子。用改进的DHSVM分布式水文模型对汉江上游子午河流域蒸散发进行模拟。根据流域特点,主要进行TM遥感数据的大气校正和几何校正,在此基础上得到叶面积指数和土地覆盖等地表参数;再利用GIS技术基于DEM求出坡度、坡向和地形指数等因子。分析了蒸散发时空分布特征,表明日尺度蒸散发空间分布差异较大。初步验证了结果,表明模型在中国典型湿润区小流域取得较好效果。  相似文献   

5.
Sedimentary bodies emplaced by mass‐wasting processes and exceeding tens of metres of thickness and a hundred of square kilometres in area are widespread in the Cretaceous–Pleistocene marine successions of the Northern Apennines of Italy. At least 10 such bodies are present in the stratigraphic record of the Oligo‐Miocene foredeep during the northeastern, time‐transgressive migration of the accretionary wedge‐foredeep system. The term mass‐wasting complex (MWC) is here adopted for these bodies to emphasize their multistory emplacement mechanism and polymictic composition with variously deformed slabs of different lithology, age and provenance. As one of the more intriguing features, their occurrence was associated with changes in turbidite deposition from basin plain to slope. Wide sectors of the internal margin of the basin (lobe‐fan) and even of the basin plain become a slope at the front of the accretionary wedge for a limited period of time (temporary slope). The temporary slope supplied the intrabasinal components of the MWCs, whereas the diffused extrabasinal components came from the front of the accretionary wedge. Therefore, an enhanced instability of the entire foredeep‐wedge system occurred systematically and cyclically. As a consequence, many variously consolidated sediments were transferred into the foredeep basin invading the depocentre and forcing the turbidite deposition towards the foreland, in a more northeasterly position. The presence of such MWCs therefore conditioned basin size and geometry in an analogous way as that reported for some modern convergent margins, as in the case of Costa Rica. Normal sedimentation was restored on top of the MWC only after the levelling of topographic irregularities.  相似文献   

6.
《Geomorphology》2003,49(1-2):109-124
The impacts of logging activities on mass wasting were examined in five watersheds in the coastal mountains of British Columbia. Historical aerial photos were used to document mass wasting events, and their occurrence was related to logging activities in the study basins. Logged and forested areas were compared in terms of mass wasting magnitude and frequency, with reference to site characteristics. The recovery time of the landscape after logging was assessed. Bedrock type and basin physiography had no identifiable effect on mass wasting frequency and magnitude. Mass wasting failure was primarily controlled by slope gradient. Basin vulnerability increased, following clearcutting relative to forested areas, in that mass wasting was initiated on gentler slopes. The volume of sediment produced from logged slopes is of the same order as that from forested areas, which are steeper by as much as 10°. In both logged and forested areas, the size distribution of mass wasting events follows an exponential distribution. However, the variability in mass wasting size in forested areas is much higher than that obtained for logged areas. The recovery time after forest harvesting is over 20 years, which confirms published estimates based on vegetation reestablishment. Continuous disturbance of the basin, however, may extend the recovery time for the whole basin well beyond 20 years.  相似文献   

7.
The Koshi River Basin is in the middle of the Himalayas, a tributary of the Ganges River and a very important cross-border watershed. Across the basin there are large changes in altitude, habitat complexity, ecosystem integrity, land cover diversity and regional difference and this area is sensitive to global climate change. Based on Landsat TM images, vegetation mapping, field investigations and 3S technology, we compiled high-precision land cover data for the Koshi River Basin and analyzed current land cover characteristics. We found that from source to downstream, land cover in the Koshi River Basin in 2010 was composed of water body (glacier), bare land, sparse vegetation, grassland, wetland, shrubland, forest, cropland, water body (river or lake) and built-up areas. Among them, grassland, forest, bare land and cropland are the main types, accounting for 25.83%, 21.19%, 19.31% and 15.09% of the basin’s area respectively. The composition and structure of the Koshi River Basin land cover types are different between southern and northern slopes. The north slope is dominated by grassland, bare land and glacier; forest, bare land and glacier are mainly found on northern slopes. Northern slopes contain nearly seven times more grassland than southern slopes; while 97.13% of forest is located on southern slopes. Grassland area on northern slope is 6.67 times than on southern slope. The vertical distribution of major land cover types has obvious zonal characteristics. Land cover types from low to high altitudes are cropland, forest, Shrubland and mixed cropland, grassland, sparse vegetation, bare land and water bodies. These results provide a scientific basis for the study of land use and cover change in a critical region and will inform ecosystem protection, sustainability and management in this and other alpine transboundary basins.  相似文献   

8.
The Malnant River is a rapidly incising river with a French name that translates as “bad creek,” reflecting local opinion of the hazards from dramatic channel changes that have occurred in the last few centuries. Downcutting in the last three decades has created severe problems for farmers in this small watershed (16 km2) as bridges are undermined, streamside roads are threatened, and irrigation diversion structures are rendered unusable. The purpose of our study was to determine the extent and causes of downcutting. A detailed landcover map dated 1732 revealed that forest cover had been reduced by that time to 10% of the present-day cover. The Malnant was strongly affected by floods and debris torrents during the 18th and 19th centuries that delivered massive amounts of sediment. During the 20th century, reforestation reduced the sediment delivery from hillslopes. In addition, gravel extraction in the Malnant and in the Fier River (of which the Malnant is a tributary) has lowered the base level for the river. This initiated a knickpoint that moved upstream. Weirs placed in the Malnant in 1968 were used to measure rates of bed incision in the field. With a mean width of 4.0 m and degradation up to 36 cubic meters per meter channel length, the lower 4.5 km of the Malnant has experienced a net loss of approximately 163,000 m3 of bed material. Above the 4.5-km point on the Malnant, bedrock controls exist that have arrested the upstream-progressing degradation.  相似文献   

9.
程东亚  李旭东 《地理研究》2020,39(6):1427-1438
研究流域人口分布与地形的关系,有助于了解地理环境对人口分布的影响。以贵州省乌江流域为研究区,基于DEM数据和人口数据,提取海拔、坡度、起伏度等地形因子,研究人口分布与地形因子的关系。研究结论:① 人口数量在海拔800~1400 m的地区超过60%,人口密度在1000~1200 m的地区最高。② 人口数量与人口密度随着坡度上升总体呈下降趋势。③ 人口密度在起伏度小于50 m的地区超过1000人/km 2,人口密度随着起伏度上升总体呈下降趋势。  相似文献   

10.
Landslides in blanket peat on Cuilcagh Mountain, northwest Ireland   总被引:1,自引:0,他引:1  
The northern and eastern sides of the Cuilcagh Mountain upland, in northwest Ireland, are mantled with over 50 km2 of blanket bog that has experienced an unusually high spatial and temporal frequency of peat mass movements. In all, 29 peaty-debris slides, nine bog slides, two peat slides and five more peat landslides of uncertain type have been recorded within this study area. More than 27 km2 of this peatland has been afforded several levels of statutory protection as well as international recognition of its geo-environmental importance. Field and laboratory investigations of the peat at several of the more recent failure sites showed it to be typical of Irish and Pennine (northern England) blanket bogs in most physical and hydrological respects. Field geomorphological evidence and modelling of stability thresholds indicate that the particular susceptibility of the Cuilcagh Mountain blanket bog to failure arises from two local factors: (i) the attainment of threshold maximum peat depths on the East Cuilcagh plateau, and (ii) the unconformable deposition of thin layers of glacial till (in places) and blanket peat over the pre-existing topographic surface formed from the major shale formations that underlie the northern slopes. With two exceptions, there is no conclusive evidence that human activities and management strategies for the area have had any significant influence on the occurrence of the peat landslides. The high frequency of large rainfall events since 1961 that did not trigger landslides suggests that failures are unlikely to become more frequent in response to climate change effects because they are controlled by slowly changing internal thresholds.  相似文献   

11.
黄土模拟小流域降雨侵蚀中地面坡度的空间变异   总被引:12,自引:5,他引:7  
运用近景数字摄影测量方法,获得在不同人工降雨时段黄土模拟小流域高精度、高分辨率的DEM数据,并以地面坡度及其组合形态的变化为切入点,通过对比分析和理论验证探讨黄土小流域降雨侵蚀过程中地貌的发育特征。研究结果表明:1)在不同的侵蚀发育阶段,黄土地貌平均坡度及坡度组合持续变化。平均坡度在地貌发育幼年期呈加速增长趋势,到了壮年期增长幅度呈递减性变化;坡度组合以侵蚀临界角度为轴点呈持续逆转变化,侵蚀临界坡度单元所占面积基本保持稳定。2)黄土地貌地面坡度及其组合形态的变异不仅能有效表征黄土高原地貌形态的空间变异规律,也可以对黄土地貌侵蚀规律和它产生的时间规律进行高分辨率的地貌认识和划分。  相似文献   

12.
ABSTRACT. This paper critically appraises the evidence for a succession of ice-dammed lakes in the central Strait of Magellan ( c. 53°S) c. 17 000–12 250 cal. yr BP. The topographic configuration of islands and channels in the southern Strait of Magellan means that the presence of lakes provides compelling constraints on the position of former ice margins. Lake shorelines and glacio-lacustrine sediments have been dated by their association with a key tephra layer from Volcan Reclús (c. 15 510–14 350 cal. years bp ) and by 14C-dated peats. The timing of glacial lake formation and associated glacier readvances is at odds with the rapid and widespread glacier retreat of the Patagonian ice fields further north after c. 17 000 cal. yr bp , suggesting rather that the lakes were coeval with the Antarctic Cold Reversal and persisted to the Late-glacial/Holocene transition. This apparent asymmetrical latitudinal response in glacier behaviour may reflect overlapping spheres of northern hemisphere and Antarctic climatic influence in the Magellan region.  相似文献   

13.
The well preserved and undissected Columbia Mountain landslide, which is undergoing suburban development, was studied to estimate the timing and processes of emplacement. The landslide moved westward from a bedrock interfluve of the northern Swan Range in Montana, USA onto the deglaciated floor of the Flathead Valley. The landslide covers an area of about 2 km2, has a toe-to-crown height of 1100 m, a total length of 3430 m, a thickness of between 3 and 75 m, and an approximate volume of 40 million m3. Deposits and landforms define three portions of the landslide; from the toe to the head they are: (i) clast-rich diamictons made up of gravel-sized angular rock fragments with arcuate transverse ridges at the surface; (ii) silty and sandy deposits resting on diamictons in an internally drained depression behind the ridges; and (iii) diamictons containing angular and subangular pebble-to block-sized clasts (some of which are glacially striated) in an area of lumpy topography between the depression and the head of the landslide. Drilling data suggest the diamictons cover block-to-slab-sized bedrock clasts that resulted from an initial stage of the failure.The landslide moved along a surface that developed at a high angle to the NE-dipping, thinly bedded metasediments of the Proterozoic Belt Supergroup. The exposed slope of the main scarp dips 30–37°W. A hypothetical initial rotational failure of the lower part of a bedrock interfluve may have transported bedrock clasts into the valley. The morphology and deposits at the surface of the landslide indicate deposition by a rock avalanche (sturzstrom) derived from a second stage of failure along the upper part of the scarp.The toe of the Columbia Mountain landslide is convex-west in planview, except where it was deflected around areas now occupied by glacial kettles on the north and south margins. Landsliding, therefore, occurred during deglaciation of the valley while ice still filled the present-day kettles. Available chronostratigraphy suggests that the ˜1-km thick glacier in the region melted before 12,000 14C years BP—within 3000 years of the last glacial maximum. Deglaciation and hillslope failure are likely causally linked. Failure of the faceted interfluve was likely due tensile fracturing of bedrock along a bedding-normal joint set shortly after glacial retreat from the hillslope.Open surficial tension fractures and grabens in the Swan Range are limited to an area above the crown of the landslide. Movement across these features suggests that extensional flow of bedrock (sackung) is occurring in what remains of the ridge that failed in the Columbia Mountain landslide. The fractures and grabens likely were initiated during failure, but their morphologies suggest active extension across some grabens. Continued movement of bedrock above the crown may result in future mass movements from above the previous landslide scarp. Landslides sourced from bedrock above the scarp of the late-glacial Columbia Mountain landslide, which could potentially be triggered by earthquakes, are geologic hazards in the region.  相似文献   

14.
Understanding continental-slope morphological evolution is essential for predicting basin deposition. However, separating the imprints and chronology of different seafloor shaping processes is difficult. This study explores the utility of bathymetric spectral decomposition for separating and characterizing the variety of interleaved seafloor imprints of mass wasting, and clarifying their role in the morphological evolution of the southeastern Mediterranean Sea passive-margin slope. Bathymetric spectral decomposition, integrated with interpretation of seismic profiles, highlights the long-term shape of the slope and separates the observed mass transport elements into several genetic groups: (1) a series of ~25 km wide, now-buried slide scars and lobes; (2) slope-parallel bathymetric scarps representing shallow faults; (3) slope-perpendicular, open slope slide scars; (4) bathymetric roughness representing debris lobes; (5) slope-confined gullies. Our results provide a multi-scale view of the interplay between sediment transport, mass transport and shallow faulting in the evolution of the slope morphology. The base of the slope and focused disturbances are controlled by ~1 km deep salt retreat, and mimic the Messinian base of slope. The top of the open-slope is delimited by faults, accommodating internal collapse of the margin. The now-buried slides were slope-confined and presumably cohesive, and mostly nucleated along the upper-slope faults. Sediment accumulations, infilling the now-buried scars, generated more recent open-slope slides. These latter slides transported ~10 km3 of sediments, depositing a significant fraction (~3 m in average) of the sediments along the base of the studied slope during the past < 50 ka. South to north decrease in the volume of the open-slope slides highlight their role in counterbalancing the northwards diminishing sediment supply and helping to maintain a long-term steady-state bathymetric profile. The latest phase slope-confined gullies were presumably created by channelling of bottom currents into slide-scar depressions, possibly establishing incipient canyon headword erosion.  相似文献   

15.
Primary topographic attributes play a critical role in determining watershed hydrologic characteristics for water resources modeling with raster-based digital elevation models (DEM). The effects of DEM resolution on a set of important topographic derivatives are examined in this study, including slope, upslope contributing area, flow length and watershed area. The focus of the study is on how sensitive each of the attributes is to the resolution uncertainty by considering the effects of overall terrain gradient and bias from resampling. Two case study watersheds of different gradient patterns are used with their 10 m USGS DEMs. A series of DEMs up to 200 m grid size are produced from the base DEMs using three commonly used resampling methods. All the terrain variables tested vary with the grid size change. It is found that slope angles decrease and contributing area values increase constantly as DEMs are aggregated progressively to coarser resolutions. No systematic trend is observed for corresponding changes of flow path and watershed area. The analysis also suggests that gradient profile of the watershed presents an important factor for the examined sensitivities to DEM resolution.  相似文献   

16.
基于GIS的澜沧江下游区滑坡灾害危险性分析   总被引:9,自引:6,他引:3  
闫满存  王光谦 《地理科学》2007,27(3):365-370
澜沧江流域是中国西南地区滑坡灾害较为严重的地区。对澜沧江下游区滑坡灾害及其控制因素分析,建立基于G IS的滑坡灾害危险性评价模型,实现澜沧江下游区滑坡危险性区划,为该区滑坡灾害防治和生态环境保护等提供重要决策依据。  相似文献   

17.
Proxy data from a total of 30 sediment cores and information from a seismic survey show that the sedimentological and limnological history of Lago di Tovel (1178 m a.s.l.) has been significantly influenced by slope dynamics of its mountainous catchment. The lake represents a dead-ice lake with pro-glacial deposits at the base of its sedimentary record. A prominent lake level rise in 1597/1598 that increased maximum water depth from ∼20 to 39 m caused slope instabilities, leading to the deposition of mass-flow sediments with a maximum thickness of 2.5 m in the northern part of the lake and less than 50 cm in the southern part, resulting in a total volume of more than 113,000 m3. Consequently, a rough lake bottom morphology was produced, which led to distinct differences in sedimentation rates of 0.07 cm yr−1 on sills and 0.18 cm yr−1 within depressions. The age of the top of the mass-flow deposits was used to validate the ages of the younger, laminated sediments, which were dated by 210Pb and 137Cs. Lithological investigations showed that the sediments below the mass-flow deposits are also laminated and that they were not bioturbated. The long-term meromixis of Lago di Tovel is therefore mainly due to a combination of its topographic setting and the 5-month period of ice cover. Both prevent effective mixing of the lake by strong winds during spring and autumn. Distinct spatial differences in sediment distribution within the lake show that it is risky to interpret proxy data from only one coring site, even if the lake is very small. This is especially true in mountainous areas, where rock falls, mass movements, and slope instabilities of a significant size may have considerable effects on lakes.  相似文献   

18.
J. McKean  J. Roering 《Geomorphology》2004,57(3-4):331-351
A map of extant slope failures is the most basic element of any landslide assessment. Without an accurate inventory of slope instability, it is not possible to analyze the controls on the spatial and temporal patterns of mass movement or the environmental, human, or geomorphic consequences of slides. Landslide inventory maps are tedious to compile, difficult to make in vegetated terrain using conventional techniques, and tend to be subjective. In addition, most landslide inventories simply outline landslide boundaries and do not offer information about landslide mechanics as manifested by internal deformation features. In an alternative approach, we constructed accurate, high-resolution DEMs from airborne laser altimetry (LIDAR) data to characterize a large landslide complex and surrounding terrain near Christchurch, New Zealand. One-dimensional, circular (2-D) and spherical (3-D) statistics are used to map the local topographic roughness in the DEMs over a spatial scale of 1.5 to 10 m. The bedrock landslide is rougher than adjacent unfailed terrain and any of the statistics can be employed to automatically detect and map the overall slide complex. Furthermore, statistics that include a measure of the local variability of aspect successfully delineate four kinematic units within the gently sloping lower half of the slide. Features with a minimum size of surface folds that have a wavelength of about 11 to 12 m and amplitude of about 1 m are readily mapped. Two adjacent earthflows within the landslide complex are distinguished by a contrast in median roughness, and texture and continuity of roughness elements. The less active of the earthflows has a surface morphology that presumably has been smoothed by surface processes. The Laplacian operator also accurately maps the kinematic units and the folds and longitudinal levees within and at the margins of the units. Finally, two-dimensional power spectra analyses are used to quantify how roughness varies with length scale. These results indicate that no dominant length scale of roughness exists for smooth, unfailed terrain. In contrast, zones with different styles of landslide deformation exhibit distinctive spectral peaks that correspond to the scale of deformation features, such as the compression folds. The topographic-based analyses described here may be used to objectively delineate landslide features, generate mechanical inferences about landslide behavior, and evaluate relatively the recent activity of slides.  相似文献   

19.
黄土丘陵区燕沟流域土地利用变化与优化调控   总被引:47,自引:2,他引:47  
徐勇  Roy C.Sidle 《地理学报》2001,56(6):657-666
采用GIS空间分析技术,分析和概括了1966-2000年期间燕沟流域土地利用变化时空过程及其基本特征:解析了土地利用变化的主要成因;总结了1997年以来土地利用结构优化调控的主要特点;评价了土地利用结构优化调控后的生态环境效益、经济效益及其可持续发展性。籍此希望揭示出黄土丘陵区土地利用变化与优化调控所具有的一些共性特点和规律。  相似文献   

20.
Three hundred and sixty three landslides in three watersheds that totaled 382 km2 were identified from air photographs, beginning at a date that preceded logging to the present. The three watersheds all lie on Vancouver Island; however, they have different precipitation regimes, topography, and amounts logged. Landslide areas in the watersheds varied in size from 200 m2 to more than 1 ha. Nearly 80% of the landslides were debris slides; 15% were debris flows, and the remainder primarily rock falls. Following logging, the number of landslides increased substantially in all watersheds although the amount of increase was variable: approximately 11, 3, and 16 times in Macktush Creek, Artlish River, and Nahwitti River, respectively. Other analyses of changes in landslide density also produced highly variable results, with the number of landslides increasing between 2.4 and 24 times. Further, 2–12 times more landslides reached streams following logging activities. Densities for landslides impacting streams increased for the period of record from 1.5 to 10 times following logging activities. The densities were substantially greater where only landslides that reached streams since development began in a watershed were considered. Roads had the greatest spatial impact in the watersheds (compared to their total area), with frequencies determined to have increased by 27, 12, and 94 times for Macktush, Artlish, and Nahwitti, respectively. The results highlight the relative impact of roads and their role in slope stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号