首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 429 毫秒
1.
Glaciers in the western USA contribute summer meltwater to regional hydrological systems. In the San Juan Mountains of Colorado, where glaciers do not exist, rock glaciers serve that function during the summer runoff period. Most rock glaciers in Colorado are located on northern slopes in mountainous areas; however, some rock glaciers in southwest Colorado have different aspects. In this study, we asked how slope aspect and rising air temperatures influence the hydrological processes of streams sourced from rock glaciers in the San Juan Mountains. We focused on three adjacent basins, Yankee Boy basin, Blue Lakes basin, and Mill Creek basin, which share a common peak, Gilpin Peak. Using HOBO® U20-001–04 water-level loggers, streamflow data were collected in each of these basins, below each rock glacier. Air temperature significantly influenced stream discharge below the rock glacier. Discharge and air temperature patterns indicate a possible air temperature threshold during late summer when rock glacier melt increases at a greater rate. The results also suggest that the aspect of rock glacier basins influences stream discharge, but that temperature and precipitation are likely larger components of melt regimes.  相似文献   

2.
Flow velocities of active rock glaciers in the Austrian Alps   总被引:1,自引:0,他引:1  
High surface flow velocities of up to 3 m a–1 were measured near the front of three active rock glaciers in the western Stubai Alps (Rei‐chenkar) and Ötztal Alps (Kaiserberg and Ölgrube) in Tyrol (Austria) using differential GPS technology. Flow velocities have increased since about 1990. The highest velocities were recorded in 2003 and 2004, but showed a slight decrease in 2005. At the Reichenkar rock glacier, flow rates are constant throughout the year, indicating that meltwater has no significant influence on the flow mechanism. At Ölgrube rock glacier, flow velocities vary seasonally with considerably higher velocities during the melt season. Meltwater is likely to influence the flow of Ölgrube rock glacier as evident by several springs near the base of the steep front. Because the high surface velocities cannot be explained by internal deformation alone on Reichenkar rock glacier, we assume that horizontal deformation must also occur along a well defined shear zone within a water‐saturated, fine‐grained layer at the base of the frozen body. The increased surface flow velocities since about 1990 are probably caused by slightly increased ice temperature and greater amounts of meltwater discharge during the summer, a product of global warming.  相似文献   

3.
The Sachette rock glacier is an active rock glacier located between 2660 and 2480 m a.s.l. in the Vanoise Massif, Northern French Alps (45° 29′ N, 6° 52′ E). In order to characterize its status as permafrost feature, shallow ground temperatures were monitored and the surface velocity measured by photogrammetry. The rock glacier exhibits near‐surface thermal regimes suggesting permafrost occurrence and also displays significant surface horizontal displacements (0.6–1.3 ± 0.6 m yr–1). In order to investigate its internal structure, a ground‐penetrating radar (GPR) survey was performed. Four constant‐offset GPR profiles were performed and analyzed to reconstruct the stratigraphy and model the radar wave velocity in two dimensions. Integration of the morphology, the velocity models and the stratigraphy revealed, in the upper half of the rock glacier, the good correspondence between widespread high radar wave velocities (>0.15–0.16 m ns–1) and strongly concave reflector structures. High radar wave velocity (0.165–0.170 m ns–1) is confirmed with the analysis of two punctual common mid‐point measurements in areas of exposed shallow pure ice. These evidences point towards the existence of a large buried body of ice in the upper part of the rock glacier. The rock glacier was interpreted to result from the former advance and decay of a glacier onto pre‐existing deposits, and from subsequent creep of the whole assemblage. Our study of the Sachette rock glacier thus highlights the rock glacier as a transitional landform involving the incorporation and preservation of glacier ice in permafrost environments with subsequent evolution arising from periglacial processes.  相似文献   

4.
Surface velocities have been regularly monitored at the rock glacier in Outer Hochebenkar, Ötztal Alps, Austria since the early 1950s. This study provides an update to previously published surface velocity time series, showing mean profile velocities of four cross profiles since the beginning of the measurements (1951,1954, 1997; depending on the profile), as well as single block displacements from 1998 to 2015. Profiles P1, P2 and P3 have moved between 42 and 90 m, at mean velocities between 0.70 and 1.48 m yr–1, since they were first established in the early 1950s (1951/54). Profile P0, established in 1997, has since moved 13 m or 0.75 m yr–1. An acceleration can be observed at all profiles since the late 1990s, with a particularly sharp velocity increase since 2010. All profiles reached a new maximum velocity in 2015, with 1.98 m yr–1 at the slowest profile (P0) and 6.37 m yr–1 at the fastest profile (P1). Year‐to‐year variations in profile velocities cannot be clearly attributed to inter‐annual variations of climatic parameters like mean annual air temperature, summer temperature, positive degree days, or precipitation. However, higher correlation is found between velocities and cumulative anomalies of air temperature (mean annual air temperature and positive degree days) and summer precipitation, suggesting that these parameters play a key role for the movement of the rock glacier. The lower profiles (P0, P1) show more pronounced year‐to‐year variations than the upper profiles (P2, P3). It is considered likely that processes other than climatic forcing (e.g. sliding, topography) contribute to the different velocity patterns at the four profiles.  相似文献   

5.
TemperaturedistributionofCollinsIceCap,KingGeorgeIsland,AntarcticaHanJiankang(韩建康)andJinHuijiun(金会军)(LanzhouInstituteofGlacio...  相似文献   

6.
李国平  肖杰 《地理科学》2007,27(1):63-67
根据1997年10月至1998年11月青藏高原西部改则和狮泉河两个自动气象站连续观测的大气、辐射和土壤资料,在分析高原西部地面反射率冬、夏季日变化特征的基础上,重点研究了地面反射率与土壤和大气若干重要因子(如土壤湿度、土壤温度、空气相对湿度、空气温度)的关系。研究结果有助于改进气候模式和卫星遥感中高原地面反射率的参数化方案。  相似文献   

7.
The semiarid southwestern United States is an area of rapid population growth. Urban development is encroaching upon many ecosystems, including riparian areas. Because most stream miles in the southwestern United States occur along ephemeral streams, recognizing how these ecosystems are affected by increasing urban land covers is imperative. In this study, we recorded air temperature at 30 cm above the ground surface within riparian ecosystems along nine ephemeral stream reaches in three levels of housing density: High Density (HD: >13 houses/hectare); Moderate Density (MD: 4–8 houses/hectare); Low Density (LD: <1 house/hectare) for two years in a rapidly growing city in southern Arizona. Annual and seasonal average diurnal 30-min air temperatures for each treatment show that HD air temperatures were consistently higher than LD and MD temperatures (∼0.5–1.5 °C) during the late-evening/early-morning and midday hours. Winter temperatures had the largest differences between HD and LD sites, as much as 1.4 °C. Because physiological activity in these riparian ecosystems is largely temperature-dependent, temperature shifts associated with increased housing density could result in major ecosystem changes in these semiarid areas.  相似文献   

8.
Groundwater in front of warm‐based glaciers is likely to become a more integrated part of the future proglacial hydrological system at high latitudes due to global warming. Here, we present the first monitoring results of shallow groundwater chemistry and geochemical fingerprinting of glacier meltwater in front of a warm‐based glacier in Southeast Greenland (Mittivakkat Gletscher, 65° 41′ N, 37° 48′ W). The groundwater temperature, electrical conductivity and pressure head were monitored from August 2009 to August 2011, and water samples were collected in 2009 and analyzed for major ions and water isotopes (δD, δ18O). The 2 yrs of monitoring revealed that major outbursts of glacier water during the ablation season flushed the proglacial aquifer and determined the groundwater quality for the next 2–8 weeks until stable chemical conditions were reached again. Water isotope composition shows that isotopic fractionation occurs in both groundwater and glacier meltwater, but fractionation due to evaporation from near‐surface soil moisture prior to infiltration has the most significant effect. This study shows that groundwater in Low Arctic Greenland is likely to possess a combined geochemical and isotopic composition, which is distinguishable from other water sources in the proglacial environment. However, the shallow groundwater composition at a given time is highly dependent on major outbursts of glacier water in the previous months.  相似文献   

9.
The Heihe River Basin is the second largest inland river basin in Northwest China and it is also a hotspot in arid hydrology, water resources and other aspects of researches in cold regions. In addition, the Heihe River Basin has complete landscape, moderate watershed size, and typical social ecological environmental problems. So far, there has been no detailed assessment of glaciers change information of the whole river basin. 1:50,000 topographic map data, Landsat TM/ETM+ remote sensing images and digital elevation model data were used in this research. Through integrated computer automatic interpretation and visual interpretation methods, the object-oriented image feature extraction method was applied to extract glacier outline information. Glaciers change data were derived from analysis, and the glacier variation and its response to climate change in the period 1956/1963–2007/ 2011 were also analyzed. The results show that:(1) In the period 1956/1963–2007/2011, the Heihe River Basin's glaciers had an evident retreat trend, the total area of glaciers decreased from 361.69 km2 to 231.17 km~2; shrinking at a rate of 36.08%, with average single glacier area decrease 0.14 km~2; the total number of the glaciers decreased from 967 to 800.(2) Glaciers in this basin are mainly distributed at elevations of 4300–4400 m, 4400–4500 m and 4500–4600 m; and there are significant regional differences in glaciers distribution and glaciers change.(3) Compared with other western mountain glaciers, glaciers retreat in the Heihe River Basin has a higher rate.(4) Analysis of the six meteorological stations' annual average temperature and precipitation data from 1960 to 2010 suggests that the mean annual temperature increased significantly and the annual precipitation also showed an increasing trend. It is concluded that glacier shrinkage is closely related with temperature rising, besides, glacier melting caused by rising temperatures greater than glacier mass supply by increased precipitation to  相似文献   

10.
冰川跃动是冰川周期性地快速运动,给下游生命财产安全带来巨大威胁。对已经发现的跃动冰川进行监测不仅有助于提高对冰川跃动机理的认识,而且对冰川跃动灾害预警预报和风险评估都具有重要的意义。在中国第二次冰川编目中发现,1963-2009年东帕米尔高原昆盖山的5Y663L0023冰川末端发生大幅前进。本文利用Landsat影像、ASTER立体像对等数据对该冰川前进过程进行监测研究。结果表明:该冰川于1990-1992年和2007-2013年分别前进81±30 m和811±30 m,其中2007-2013年的前进属于跃动引发的前进。其中跃动最高峰在2007年8月21日-2008年10月26日,期间32.7×106 m3的冰体发生卸载,导致末端前进了704±30 m,面积扩张了0.34 km2。针对东帕米尔地区跃动冰川周期研究的空白,本文认为该冰川跃动周期中跃动期为4 a,平静期最短为15 a左右。该冰川属于多温型冰川,跃动受热力学机制影响的可能性较大,但液态降水、冰雪融水的增加也是影响因素。  相似文献   

11.
Glaciological investigations of the Upper Fremont Glacier in the Wind River Range of Wyoming were conducted during 1990–1991. The glaciological data will provide baseline information for monitoring future changes to the glacier and support ongoing research utilizing glacial-ice-core composition to reconstruct paleoenvironmental records. Ice thickness, determined by radio-echo sounding, ranged from 60 to 172 m in the upper half of the glacier. Radio-echo sounding of ice thickness at one point was confirmed by drilling 159.7 m to bedrock. The difference between radio-echo sounding depth and measured drilling depth was about 4 m. Annual ablation (including snow, firn, and ice) measured for the 1990–1991 period averaged about 0.93 m/a. Densification proceeds rapidly on Upper Fremont Glacier. Measured densities in the near-surface parts of the glacier ranged from 4.4 x 105 g/m3 at the surface to larger than 8.5 x 105 g/m3 at depths exceeding 14 m. Surface ice velocity and direction were monitored from July 1990 to August 1991. Ice velocity decreased in a downslope direction. The largest measured velocity was about 3.1 m/a and the smallest was 0.8 m/a. The yearly mean air temperature of the study site during the period from July 11, 1990 to July 10, 1991 was -6.9°. Borehole temperatures from 10-m depths are 0 ± 0.4°. The warmer borehole temperatures relative to the yearly mean air temperature may be caused by the latent heat of freezing, as meltwater from the surface percolates into the glacier and refreezes. [Key words: glaciers, Wyoming, Wind River Range, ice thickness, ablation rates.]  相似文献   

12.
In this study mass balance, accumulation, ablation, runoff and temperature lapse rate for the East Rathong glacier are estimated for the time period 1963–2011 using remote sensing methods and climate data. A mass balance model is proposed for the glacier that computes mass balance as difference of volumes of consecutive years. Volume estimates of glacier are based on application of volume–area scaling law to glacier area computed from satellite images. It is observed that the glacier is summer‐accumulation type. Time series analysis is applied to the annual mass balance series. The annual mass balance of the glacier is showing a statistically significant negative trend. It is also showing a statistically significant shift in the year 1985. Change in the mean of mass balance before and after the shift year is 0.19 m w.e. Cumulative mass balance suggests that the glacier has lost ~11 m w.e. or 0.047 km3 during the last 48 years.  相似文献   

13.
This paper presents a simple analytical model for estimating rock glacier age by coupling the ratio of frontal advance to total rock glacier length and the ratio of debris volume in the rock glacier to present debris flux in the talus cone–rock glacier transition zone. The model was applied to two rock glaciers at Prins Karls Forland, Svalbard. By assuming volumetric debris contents in the deforming layer of the rock glacier of between 0.3 and 0.4, we obtained age estimates for the rock glaciers of between 12 ka and 24 ka. The corresponding average rockwall retreat rates are between 0.30 and 0.62 mm a‐1. Considering the limitations of the model, we suggest a minimum age of 13 ka for the initiation of rock glacier development. Using this age, rockwall retreat rates for the seven rock glaciers investigated at Prins Karls Forland are between 0.13 and 0.64 m ka‐1 (assuming the volumetric debris content for the whole rock glacier/talus cone is 0.35). The model requires further testing on other datasets, better field estimates of the debris content and depth of the deforming layer, and could also benefit from the inclusion of an unsteady debris supply function in order to refine age estimates.  相似文献   

14.
A study of radiosonde observations for temperature at 850 hPa over Delhi for a period of 35 years was conducted. The influence of atmospheric oscillations and geophysical events like El Niño‐Southern Oscillation (ENSO) on tropospheric temperature variability showed indicative trends for changing urban climate in Delhi. The inter‐annual variation in surface temperature and its relationship with land use changes and land cover changes (LULCC) was also examined. LULCC and urban expansion into peripheral areas of Delhi (towards the West, North, North‐West and South) at the cost of agricultural and wasteland was found to be extensive. The upper range of the surface temperature has shifted by ~6°C. The post‐monsoon and winter months from November to February have experienced a considerable increase in the average temperature in the period examined. The monsoon months from June to September have undergone cooling of ~0.5°C–1°C at 850 hPa. An inverse relationship exists between the Southern Oscillation Index (SOI) and the monthly averaged temperature. The temperature of the atmosphere over Delhi at 850 hPa has increased only marginally (~ 0.3°C) for the time period 1980–2015. Bi‐modal peaks were the most peculiar features observed in mean monthly temperature variation during 2000–2009.  相似文献   

15.
Six rock glaciers in the Southern Carpathians have been investigated by means of geoelectrical soundings in order to detect their internal stratigraphy and the existence of frozen sediments. In the case of three relict rock glaciers, the electrical resistivity measurements indicated a typical internal structure. Low resistivity values (<10 kΩm) which are typical of unfrozen fine‐grained materials were obtained, but high resistivity values (25–240 kΩm) measured in the Pietroasa, Ie?u and Pietrele rock glaciers denote the presence of sediments cemented by interstitial ice and ice lenses. Based on the moderate resistivity values, the ice content is probably low to medium in the upper portion of these rock glaciers, that is, above 2040 m. At two sites (Pietroasa and V?iuga rock glaciers), ground surface temperature (GST) evolution was monitored using digital dataloggers. Mean annual ground surface temperature and GST regime throughout the winter were extracted from the recordings and confirmed the probability of permafrost occurrence in Pietroasa rock glacier. In the Ie?u and Pietrele rock glaciers, measurements of bottom temperatures of the winter snow cover were performed in March 2012. Considering the thick active layer, the reduced ice content and the presence of scarce vegetation on their surface it could be assumed that the permafrost exists in marginal conditions in the Southern Carpathians. The ground ice in permafrost is produced by the groundwater freezing or by snow banks buried by coarse angular boulders following large rockfalls.  相似文献   

16.
Long‐term observations of partly debris‐covered glaciers have allowed us to assess the impact of supra‐glacial debris on volumetric changes. In this paper, the behaviour of the partially debris‐covered, 3.6 km2 tongue of Pasterze Glacier (47°05′N, 12°44′E) was studied in the context of ongoing climate changes. The right part of the glacier tongue is covered by a continuous supra‐glacial debris mantle with variable thicknesses (a few centimetres to about 1 m). For the period 1964–2000 three digital elevation models (1964, 1981, 2000) and related debris‐cover distributions were analysed. These datasets were compared with long‐term series of glaciological field data (displacement, elevation change, glacier terminus behaviour) from the 1960s to 2006. Differences between the debriscovered and the clean ice parts were emphasised. Results show that volumetric losses increased by 2.3 times between the periods 1964–1981 and 1981–2000 with significant regional variations at the glacier tongue. Such variations are controlled by the glacier emergence velocity pattern, existence and thickness of supra‐glacial debris, direct solar radiation, counter‐radiation from the valley sides and their changes over time. The downward‐increasing debris thickness is counteracting to a compensational stage against the common decrease of ablation with elevation. A continuous debris cover not less than 15 cm in thickness reduces ablation rates by 30–35%. No relationship exists between glacier retreat rates and summer air temperatures. Substantial and varying differences of the two different terminus parts occurred. Our findings clearly underline the importance of supra‐glacial debris on mass balance and glacier tongue morphology.  相似文献   

17.
The origin and mobilization of the extensive debris cover associated with the glaciers of the Nanga Parbat Himalaya is complex. In this paper we propose a mechanism by which glaciers can form rock glaciers through inefficiency of sediment transfer from glacier ice to meltwater. Inefficient transfer is caused by various processes that promote plentiful sediment supply and decrease sediment transfer potential. Most debris‐covered glaciers on Nanga Parbat with higher velocities of movement and/ or efficient debris transfer mechanisms do not form rock glaciers, perhaps because debris is mobilized quickly and removed from such glacier systems. Those whose ice movement activity is lower and those where inefficient sediment transfer mechanisms allow plentiful debris to accumulate, can form classic rock glaciers. We document here with maps, satellite images, and field observations the probable evolution of part of a slow and inefficient ice glacier into a rock glacier at the margins of Sachen Glacier in c. 50 years, as well as several other examples that formed in a longer period of time. Sachen Glacier receives all of its nourishment from ice and snow avalanches from surrounding areas of high relief, but has low ice velocities and no efficient system of debris removal. Consequently it has a pronounced digitate terminus with four lobes that have moved outward from the lateral moraines as rock glaciers with prounced transverse ridges and furrows and steep fronts at the angle of repose. Raikot Glacier has a velocity five times higher than Sachen Glacier and a thick cover of rock debris at its terminus that is efficienctly removed. During the advance stage of the glacier since 1994, ice cliffs were exposed at the terminus, and an outbreak flood swept away much debris from its margins and terminus. Like the Sachen Glacier that it resembles, Shaigiri Glacier receives all its nourishment from ice and snow avalanches and has an extensive debris cover with steep margins close to the angle of repose. It has a high velocity similar to Raikot Glacier and catastrophic breakout floods have removed debris from its terminus twice in the recent past. In addition, the Shaigiri terminus blocked the Rupal River during the Little Ice Age and is presently being undercut and steepened by the river. With higher velocities and more efficient sediment transfer systems, neither the Raikot nor the Shaigiri form classic rock‐glacier morphologies.  相似文献   

18.
A tongue‐like, boulder‐dominated deposit in Tverrbytnede, upper Visdalen, Jotunheimen, southern Norway, is interpreted as the product of a rock avalanche (landslide) due to its angular to subangular boulders, surface morphology with longitudinal ridges, down‐feature coarsening, and cross‐cutting relationship to ‘Little Ice Age’ moraines. The rock avalanche fell onto glacier ice, probably channelled along a furrow between two glaciers, and stopped on the glacier foreland, resulting in its elongated shape and long runout distance. Its distal margin may have become remobilized as a rock glacier, but a rock glacier origin for the entire landform is discounted due to lack of source debris, presence of matrix, lack of transverse ridges, and sparcity of melt‐out collapse pits. Lichenometric dating of the deposit indicates an approximate emplacement age of ad 1900. Analysis highlights the interaction of rock‐slope failures and glaciers during deglacierization in a neoparaglacial setting, with reduced slope stability due to debuttressing and permafrost degradation, and enhanced landslide mobility due to flow over a glacier and topographic channelling. Implications for the differentiation of relict landslides, moraines and rock glaciers are discussed and interrelationships between these landforms are considered in terms of an ice‐debris process continuum.  相似文献   

19.
Abstract The results of this dendrogeomorphological study provide evidence of the active movement of Hilda rock glacier, a tongue‐shaped rock glacier in the Columbia Icefield region of Banff National Park. Cross‐sectional samples were cut from 44 detrital subalpine fir (Abies Iasiocarpa (Hook.) Nutt.) and Engelmann spruce (Picea engelmannii Parry) boles killed and buried by debris spilling off the steep distal slope of the rock glacier. The samples were crossdated using locally and regionally developed tree‐ring chronologies, and were shown to have been killed between 1576 and 1999. Our results show that Hilda rock glacier has advanced at an average rate of 1.6 cm/year since the late 1790s, with limited evidence of similar rates of activity extending back to the mid‐1570s. This rock glacier activity is believed to be linked to persistent periglacial processes that appear to be independent of the climatic forcing mechanisms known to influence glacier mass balances over the same interval.  相似文献   

20.
Smaller glaciers (<0.5 km2) react quickly to environmental changes and typically show a large scatter in their individual response. Accounting for these ice bodies is essential for assessing regional glacier change, given their high number and contribution to the total loss of glacier area in mountain regions. However, studying small glaciers using traditional techniques may be difficult or not feasible, and assessing their current activity and dynamics may be problematic. In this paper, we present an integrated approach for characterizing the current behaviour of a small, avalanche‐fed glacier at low altitude in the Italian Alps, combining geomorphological, geophysical and high‐resolution geodetic surveying with a terrestrial laser scanner. The glacier is still active and shows a detectable mass transfer from the accumulation area to the lower ablation area, which is covered by a thick debris mantle. The glacier owes its existence to the local topo‐climatic conditions, ensured by high rock walls which enhance accumulation by delivering avalanche snow and reduce ablation by providing topographic shading and regulating the debris budget of the glacier catchment. In the last several years the glacier has displayed peculiar behaviour compared with most glaciers of the European Alps, being close to equilibrium conditions in spite of warm ablation seasons. Proportionally small relative changes have also occurred since the Little Ice Age maximum. Compared with the majority of other Alpine glaciers, we infer for this glacier a lower sensitivity to air temperature and a higher sensitivity to precipitation, associated with important feedback from increasing debris cover during unfavourable periods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号