首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The role of remote sensing in phenological studies is increasingly regarded as a key to understand large area seasonal phenomena. This paper describes the application of Moderate Resolution Imaging Spectroradiometer (MODIS) time series data for forest phenological patterns. The forest phenological phase of Northeast China (NE China) and its spatial characteristics were inferred using 1-km 10-day MODIS normalized difference vegetation index (NDVI) datasets of 2002. The threshold-based method was used to estimate three key forest phenological variables, which are the start of growing season (SOS), the end of growing season (EOS) and growing season length (GSL).Then the spatial patterns of forest phenological variables of NE China were mapped and analyzed. The derived phenological variables were validated by the field observed data from published papers in the same study area. Results indicate that forest phenological phase from MODIS data is comparable with the observed data. As the derived forest phenological pattern is related to forest type distribution, it is helpful to discriminate between forest types.  相似文献   

2.
With the global warming, crop phenological shifts in responses to climate change have become a hot research topic. Based on the long-term observed agro-meteorological phenological data(1981–2009) and meteorological data, we quantitatively analyzed temporal and spatial shifts in maize phenology and their sensitivities to key climate factors change using climate tendency rate and sensitivity analysis methods. Results indicated that the sowing date was significantly delayed and the delay tendency rate was 9.0 d·10a-1. But the stages from emergence to maturity occurred earlier(0.1 d·10a-1θ1.7 d·10a-1, θ is the change slope of maize phenology). The length of vegetative period(VPL)(from emergence to tasseling) was shortened by 0.9 d·10a-1, while the length of generative period(GPL)(from tasseling to maturity) was lengthened by 1.7 d·10a-1. The growing season length(GSL)(from emergence to maturity) was lengthened by 0.4 d·10a-1. Correlation analysis indicated that maize phenology was significantly correlated with average temperature, precipitation, sunshine duration and growing degree days(GDD)(p0.01). Average temperature had significant negative correlation relationship, while precipitation, sunshine duration and growing degree days had significant positive correlations with maize phenology. Sensitivity analysis indicated that maize phenology showed different responses to variations in key climate factors, especially at different sites. The conclusions of this research could provide scientific supports for agricultural adaptation to climate change to address the global food security issue.  相似文献   

3.
青藏高原植被覆盖变化与降水关系   总被引:15,自引:6,他引:9  
The temporal and spatial changes of NDVI on the Tibetan Plateau, as well as the relationship between NDVI and precipitation, were discussed in this paper, by using 8-km resolution multi-temporal NOAA AVHRR-NDVI data from 1982 to 1999. Monthly maximum NDVI and monthly rainfall were used to analyze the seasonal changes, and annual maximum NDVI, annual effective precipitation and growing season precipitation (from April to August) were used to discuss the interannual changes. The dynamic change of NDVI and the corre- lation coefficients between NDVI and rainfall were computed for each pixel. The results are as follows: (1) The NDVI reached the peak in growing season (from July to September) on the Tibetan Plateau. In the northern and western parts of the plateau, the growing season was very short (about two or three months); but in the southern, vegetation grew almost all the year round. The correlation of monthly maximum NDVI and monthly rainfall varied in different areas. It was weak in the western, northern and southern parts, but strong in the central and eastern parts. (2) The spatial distribution of NDVI interannual dynamic change was different too. The increase areas were mainly distributed in southern Tibet montane shrub-steppe zone, western part of western Sichuan-eastern Tibet montane coniferous forest zone, western part of northern slopes of Kunlun montane desert zone and southeastern part of southern slopes of Himalaya montane evergreen broad-leaved forest zone; the decrease areas were mainly distributed in the Qaidam montane desert zone, the western and northern parts of eastern Qinghai-Qilian montane steppe zone, southern Qinghai high cold meadow steppe zone and Ngari montane desert-steppe and desert zone. The spatial distribution of correlation coeffi- cient between annual effective rainfall and annual maximum NDVI was similar to the growing season rainfall and annual maximum NDVI, and there was good relationship between NDVI and rainfall in the meadow and grassland with medium vegetation cover, and the effect of rainfall on vegetation was small in the forest and desert area.  相似文献   

4.
The vegetation coverage dynamics and its relationship with climate factors on different spatial and temporal scales in Inner Mongolia during 2001-2010 were analyzed based on MODIS-NDVI data and climate data.The results indicated that vegetation coverage in Inner Mongolia showed obvious longitudinal zonality,increasing from west to east across the region with a change rate of 0.2/10°N.During 2001-2010,the mean vegetation coverage was 0.57,0.4 and 0.16 in forest,grassland and desert biome,respectively,exhibiting evident spatial heterogeneities.Totally,vegetation coverage had a slight increasing trend during the study period.Across Inner Mongolia,the area of which the vegetation coverage showed extremely significant and significant increase accounted for 11.25% and 29.13% of the area of whole region,respectively,while the area of which the vegetation coverage showed extremely significant and significant decrease accounted for 7.65% and 26.61%,respectively.On inter-annual time scale,precipitation was the dominant driving force of vegetation coverage for the whole region.On inter-monthly scale,the change of vegetation coverage was consistent with both the change of temperature and precipitation,implying that the vegetation growth within a year is more sensitive to the combined effects of water and heat rather than either single climate factor.The vegetation coverage in forest biome was mainly driven by temperature on both inter-annual and inter-monthly scales,while that in desert biome was mainly influenced by precipitation on both the two temporal scales.In grassland biome,the yearly vegetation coverage had a better correlation with precipitation,while the monthly vegetation coverage was influenced by both temperature and precipitation.In grassland biome,the impacts of precipitation on monthly vegetation coverage showed time-delay effects.  相似文献   

5.
To reveal the characteristics of evapotranspiration and environmental control factors of typical underlying surfaces(alpine wetland and alpine meadow)on the Qinghai-Tibetan Plateau,a comprehensive study was performed via in situ observations and remote sensing data in the growing season and non-growing season.Evapotranspiration was positively correlated with precipitation,the decoupling coefficient,and the enhanced vegetation index,but was energy-limited and mainly controlled by the vapor pressure deficit and solar radiation at an annual scale and growing season scale,respectively.Compared with the non-growing season,monthly evapotranspiration,equilibrium evaporation,and decoupling coefficient were greater in the growing season due to lower vegetation resistance and considerable precipitation.However,these factors were restricted in the alpine meadow.The decoupling factor was more sensitive to changes of conductance in the alpine wetland.This study is of great significance for understanding hydro-meteorological processes on the Qinghai-Tibetan Plateau.  相似文献   

6.
Based on TIMESAT 3.2 platform, MODIS NDVI data(2000–2015) of Qaidam Basin are fitted, and three main phenological parameters are extracted with the method of dynamic threshold, including the start of growth season(SGS), the end of growth season(EGS) and the length of growth season(LGS). The spatial and temporal variation of vegetation phenology and its response to climate changes are analyzed respectively. The conclusions are as follows:(1) SGS is mainly delayed as a whole. Areas delayed are more than the advanced in EGS, and EGS is a little delayed as a whole. LGS is generally shortened.(2) With the altitude rising, SGS is delayed, EGS is advanced, and LGS is shortened and phenophase appears a big variation below 3000 m and above 5000 m.(3) From 2000 to 2015, the temperature appears a slight increase along with a big fluctuation, and the precipitation increases evidently.(4) Response of phenophase to precipitation is not obvious in the low elevation humid regions, where SGS arrives early and EGS delays; while, in the upper part of the mountain regions, SGS delays and EGS advances with temperature rising, SGS arrives early and EGS delays with precipitation increasing.  相似文献   

7.
This paper uses HJ-1 satellite multi-spectral and multi-temporal data to extract forest vegetation information in the Funiu Mountain region. The S-G filtering algorithm was employed to reconstruct the MODIS EVI(Enhanced Vegetation Index) time-series data for the period of 2000–2013, and these data were correlated with air temperature and precipitation data to explore the responses of forest vegetation to hydrothermal conditions. The results showed that:(1) the Funiu Mountain region has relatively high and increasing forest coverage with an average EVI of 0.48 over the study period, and the EVI first shows a decreasing trend with increased elevation below 200 m, then an increasing trend from 200–1700 m, and finally a decreasing trend above 1700 m. However, obvious differences could be identified in the responses of different forest vegetation types to climate change. Broad-leaf deciduous forest, being the dominant forest type in the region, had the most significant EVI increase.(2) Temperature in the region showed an increasing trend over the 14 years of the study with an anomaly increasing rate of 0.27℃/10a; a fluctuating yet increasing trend could be identified for the precipitation anomaly percentage.(3) Among all vegetation types, the evergreen broad-leaf forest has the closest EVI-temperature correlation, whereas the mixed evergreen and deciduous forest has the weakest. Almost all forest types showed a weak negative EVI-precipitation correlation, except the mixed evergreen and deciduous forest with a weak positive correlation.(4) There is a slight delay in forest vegetation responses to air temperature and precipitation, with half a month only for limited areas of the mixed evergreen and deciduous forest.  相似文献   

8.
This study is focused on the northwestern part of Gansu Province, namely the Hexi Corridor. The aim is to address the question of whether any trend in the annual and monthly series of temperature and precipitation during the period 1955-2011 appears at the scale of this region. The temperature and precipitation variation and abrupt change were examined by means of linear regression, five-year moving average, non-parameter Mann-Kendall test, accumulated variance analysis and Pettitt test method. Conclusions provide evidence of warming and wetting across the Hexi Corridor. The mean annual temperature in Hexi Corridor increased significantly in recent 57 years, and the increasing rate was 0.27℃/10a. The abrupt change phenomenon of the annual temperature was detected mainly in 1986. The seasonal average temperature in this region exhibited an evident upward trend and the uptrend rate for the standard value of winter temperature indicated the largerst of four seasons. The annual precipitation in the Hexi Corridor area displayed an obviously increasing trend and the uptrend rate was 3.95 mm/10a. However, the annual precipitation in each basin of the Hexi Corridor area did not passed the significance test. The rainy season precipitation fluctuating as same as the annual one presented insignificant uptrend. No consistent abrupt change was detected in precipitation in this study area, but the rainy season precipitation abrupt change was mainly observed in 1968.  相似文献   

9.
Though many studies have focused on the causes of shifts in trend of temperature, whether the response of vegetation growth to temperature has changed is still not very clear. In this study, we analyzed the spatial features of the trend changes of temperature during the growing season and the response of vegetation growth in China based on observed climatic data and the normalized difference vegetation index(NDVI) from 1984 to 2011. An obvious warming to cooling shift during growing season from the period 1984–1997 to the period 1998–2011 was identified in the northern and northeastern regions of China, whereas a totally converse shift was observed in the southern and western regions, suggesting large spatial heterogeneity of changes of the trend of growing season temperature throughout China. China as a whole, a significant positive relationship between vegetation growth and temperature during 1984 to 1997 has been greatly weakened during 1998–2011. This change of response of vegetation growth to temperature has also been confirmed by Granger causality test. On regional scales, obvious shifts in relationship between vegetation growth and temperature were identified in temperate desert region and rainforest region. Furthermore, by comprehensively analyzing of the relationship between NDVI and climate variables, an overall reduction of impacts of climate factors on vegetation growth was identified over China during recent years, indicating enhanced influences from human associated activities.  相似文献   

10.
The Three-River Headwaters Region(TRHR), which is the source area of the Yangtze River, Yellow River, and Lancang River, is of key importance to the ecological security of China. Because of climate changes and human activities, ecological degradation occurred in this region. Therefore, "The nature reserve of Three-River Source Regions" was established, and "The project of ecological protection and construction for the Three-River Headwaters Nature Reserve" was implemented by the Chinese government. This study, based on MODIS-NDVI and climate data, aims to analyze the spatiotemporal changes in vegetation coverage and its driving factors in the TRHR between 2000 and 2011, from three dimensions. Linear regression, Hurst index analysis, and partial correlation analysis were employed. The results showed the following:(1) In the past 12 years(2000–2011), the NDVI of the study area increased, with a linear tendency being 1.2%/10a, of which the Yangtze and Yellow River source regions presented an increasing trend, while the Lancang River source region showed a decreasing trend.(2) Vegetation coverage presented an obvious spatial difference in the TRHR, and the NDVI frequency was featured by a bimodal structure.(3) The area with improved vegetation coverage was larger than the degraded area, being 64.06% and 35.94%, respectively during the study period, and presented an increasing trend in the north and a decreasing trend in the south.(4) The reverse characteristics of vegetation coverage change are significant. In the future, degradation trends will be mainly found in the Yangtze River Basin and to the north of the Yellow River, while areas with improving trends are mainly distributed in the Lancang River Basin.(5) The response of vegetation coverage to precipitation and potential evapotranspiration has a time lag, while there is no such lag in the case of temperature.(6) The increased vegetation coverage is mainly attributed to the warm-wet climate change and the implementation of the ecological protection project.  相似文献   

11.
Global warming has led to significant vegetation changes in recent years. It is necessary to investigate the effects of climatic variations(temperature and precipitation) on vegetation changes for a better understanding of acclimation to climatic change. In this paper, we focused on the integration and application of multi-methods and spatial analysis techniques in GIS to study the spatio-temporal variation of vegetation dynamics and to explore the vegetation change mechanism. The correlations between EVI and climate factors at different time scales were calculated for each pixel including monthly, seasonal and annual scales respectively in Qinghai Lake Basin from the year of 2001 to 2012. The primary objectives of this study are to reveal when, where and why the vegetation change so as to support better understanding of terrestrial response to global change as well as the useful information and techniques for wise regional ecosystem management practices. The main conclusions are as follows:(1) Overall vegetation EVI in the region increased 6% during recent 12 years. The EVI value in growing seasons(i.e. spring and summer) exhibited very significant improving trend, accounted for 12.8% and 9.3% respectively. The spatial pattern of EVI showed obvious spatial heterogeneity which was consistent with hydrothermal condition. In general, the vegetation coverage improved in most parts of the area since nearly 78% pixel of the whole basin showed increasing trend, while degraded slightly in a small part of the area only.(2) The EVI change was positively correlated with average temperature and precipitation. Generally speaking, in Qinghai Lake Basin, precipitation was the dominant driving factor for vegetation growth; however, at different time scale its weight to vegetation has differences.(3) Based on geo-statistical analysis, the autumn precipitation has a strong correlation with the next spring EVI values in the whole region. This findings explore the autumn precipitation is an important indicator  相似文献   

12.
华北平原降水的长期趋势分析(英文)   总被引:4,自引:1,他引:3  
The North China Plain (NCP) is the most important food grain producing area in China and has suffered from serious water shortages. To capture variation water availability, it is necessary to have an analysis of changing trends in precipitation. This study, based on daily precipitation data from 47 representative stations in NCP records passed the homogeneity test, analyzed the trend and amplitude of variation in monthly, seasonal and annual precipitation, annual maximum continuous no-rain days, annual rain days, rainfall intensity, and rainfall extremes from 1960 to 2007, using the MannKendall (M-K) test and Sen’s slope estimator. It was found that monthly precipitation in winter had a significant increasing trend in most parts, while monthly precipitation in July to September showed a decreasing trend in some parts of NCP. No significant changing trend was found for the annual, dry and wet season precipitation and rainfall extremes in the majority of NCP.A significant decreasing trend was detected for the maximum no-rain duration and annual rain days in the major part of NCP. It was concluded that the changing trend of precipitation in NCP had an apparent seasonal and regional pattern, i.e., precipitation showed an obvious increasing trend in winter, but a decreasing trend in the rainy season (July to September), and the changing trend was more apparent in the northern part than in the southern and middle parts. This implies that with global warming, seasonal variation of precipitation in NCP tends to decline with an increasing of precipitation in winter season, and a decreasing in rainy season, particularly in the sub-humid northern part.  相似文献   

13.
30年来呼伦贝尔地区草地植被对气候变化的响应(英文)   总被引:8,自引:3,他引:5  
Global warming has led to significant vegetation changes especially in the past 20 years. Hulun Buir Grassland in Inner Mongolia, one of the world’s three prairies, is undergoing a process of prominent warming and drying. It is essential to investigate the effects of climatic change (temperature and precipitation) on vegetation dynamics for a better understanding of climatic change. NDVI (Normalized Difference Vegetation Index), reflecting characteristics of plant growth, vegetation coverage and biomass, is used as an indicator to monitor vegetation changes. GIMMS NDVI from 1981 to 2006 and MODIS NDVI from 2000 to 2009 were adopted and integrated in this study to extract the time series characteristics of vegetation changes in Hulun Buir Grassland. The responses of vegetation coverage to climatic change on the yearly, seasonal and monthly scales were analyzed combined with temperature and precipitation data of seven meteorological sites. In the past 30 years, vegetation coverage was more correlated with climatic factors, and the correlations were dependent on the time scales. On an inter-annual scale, vegetation change was better correlated with precipitation, suggesting that rainfall was the main factor for driving vegetation changes. On a seasonal-interannual scale, correlations between vegetation coverage change and climatic factors showed that the sensitivity of vegetation growth to the aqueous and thermal condition changes was different in different seasons. The sensitivity of vegetation growth to temperature in summers was higher than in the other seasons, while its sensitivity to rainfall in both summers and autumns was higher, especially in summers. On a monthly-interannual scale, correlations between vegetation coverage change and climatic factors during growth seasons showed that the response of vegetation changes to temperature in both April and May was stronger. This indicates that the temperature effect occurs in the early stage of vegetation growth. Correlations between vegetation growth and precipitation of the month before the current month, were better from May to August, showing a hysteresis response of vegetation growth to rainfall. Grasses get green and begin to grow in April, and the impacts of temperature on grass growth are obvious. The increase of NDVI in April may be due to climatic warming that leads to an advanced growth season. In summary, relationships between monthly-interannual variations of vegetation coverage and climatic factors represent the temporal rhythm controls of temperature and precipitation on grass growth largely.  相似文献   

14.
In this study, the spatial distribution and changing trends of agricultural heat and precipitation resources in Northeast China were analyzed to explore the impacts of future climate changes on agroclimatic resources in the region. This research is based on the output meteorological data from the regional climate model system for Northeast China from 2005 to 2099, under low and high radiative forcing scenarios RCP4.5(low emission scenario) and RCP8.5(high emission scenario) as proposed in IPCC AR5. Model outputs under the baseline scenario, and RCP4.5 and RCP8.5 scenarios were assimilated with observed data from 91 meteorological stations in Northeast China from 1961 to 2010 to perform the analyses. The results indicate that:(1) The spatial distribution of temperature decreases from south to north, and the temperature is projected to increase in all regions, especially under a high emission scenario. The average annual temperature under the baseline scenario is 7.70°C, and the average annual temperatures under RCP4.5 and RCP8.5 are 9.67°C and 10.66°C, respectively. Other agricultural heat resources change in accordance with temperature changes. Specifically, the first day with temperatures ≥10°C arrives 3 to 4 d earlier, the first frost date is delayed by 2 to 6 d, and the duration of the growing season is lengthened by 4 to 10 d, and the accumulated temperature increases by 400 to 700°C·d. Water resources exhibit slight but not significant increases.(2) While the historical temperature increase rate is 0.35°C/10 a, the rate of future temperature increase is the highest under the RCP8.5 scenario at 0.48°C/10 a, compared to 0.19°C/10 a under the RCP4.5 scenario. In the later part of this century, the trend of temperature increase is significantly faster under the RCP8.5 scenario than under the RCP4.5 scenario, with faster increases in the northern region. Other agricultural heat resources exhibit similar trends as temperature, but with different specific spatial distributions. Precipitation in the growing season generally shows an increasing but insignificant trend in the future, with relatively large yearly fluctuations. Precipitation in the eastern region is projected to increase, while a decrease is expected in the western region. The future climate in Northeast China will change towards higher temperature and humidity. The heat resource will increase globally, however its disparity with the change in precipitation may negatively affect agricultural activities.  相似文献   

15.
Daily average temperature data from 48 meteorological stations in Chinese oases that are within the distribution area of Populus euphratica were analyzed to determine the spatiotemporal responses of this tree to climate change. Specifically, the start and end date as well as the number of days that comprised the growing season were analyzed with a multi-year trend line and using the Mann-Kendall mutation test, inverse distance weighted interpolation(IDW) in the software Arc GIS, a Morlet wavelet power spectrum, and correlation analysis. The results of this study show that, over the last 56 years, the start date of the P. euphratica growing season has advanced, while the end date has been postponed, and the number of days that comprise the growing season have gradually increased. The changing trend rates recovered in this analysis for these three time slices are –1.34 d/10 a, 1.33 d/10 a, and 2.66 d/10 a(α≥ 0.001), respectively. Data show that while spatial disparity is extremely significant, it is nevertheless the case that along a southwest-to-northeast transect of Chinese oases, the later the start date of the P. euphratica season, the sooner the end data and the shorter the growing season. Mutations points in start and end date, as well as for the growing season overall were observed in 2001, 1989, and 1996, respectively, and the data presented in this paper show that, in particular, the date of this end of this period is most sensitive to climate warming. Growing season cycles for P. euphratica are between 3.56 years and 7.14 years, consistent with the periodicity of El Ni?o events, while a start date cycle between 3.56 years and 4.28 years is consistent with atmospheric circulation cyclicity. The causal analysis presented in this paper shows that the Asian polar vortex area index(APVAI), the Qinghai-Tibet Plateau index(TPI), the westerly circulation index(WCI), and carbon dioxide emissions(CDE) are the main factors influencing spatiotemporal changes in the growth of P. euphratica, the effect of latitude during the growing season is more significant than altitude, and the start date of the growing season is more significantly influenced by these factors than end date. In addition, data show that the start date, end date, and length of the growing season are all significantly correlated with their average corresponding monthly temperature(corre-lation coefficients are –0.875, 0.770, and 0.897; α≥0.001). Thus, if the average temperature in March increases by 1℃, the start date of the growing season will advance by 2.21 days, while if the average temperature in October increases by the same margin then the seasonal end date will be delayed by 2.76 days. Similarly, if the average temperature between March and October increases by 1℃, the growing season will be extended by 7.78 days. The results of this study corroborate the fact that changes in the P. euphratica growing are sensitive to regional warming and are thus of considerable theoretical significance to our understanding of the responses of Chinese vegetation to climate change as well as to ecological restoration.  相似文献   

16.
Based on phenological records extracted from Chinese historical dairies, spring phenological series in the Yangtze River Delta (YRD) of China since 1834 is reconstructed. Together with temperature and phenological observation data, the indicating significance of spring phenological series to temperature changes is also analyzed. The results are shown as follows. (1) From 1834 to 1893, spring phenodate in the YRD was fluctuated and gradually delayed, but, advanced greatly at the end of the 19th century. From 1900 to 1990, although the decadal variations were found, no clear multi-decadal trend was detected. From 1990 to 2010, spring phenodate showed significantly advance again. Compared with the mean value for 1977-1996, the latest phenodate occurred in 1893 with 27 days delayed while the earliest phenodate occurred in 2007 with 17 days advanced. (2) The correlation coefficients between spring phenodates and temperatures from December to March and from January to March exceeded -0.75 and -0.80, respectively, indicating that our phenodate series well presents the long-term changes of winter and early spring (especially from January to March) tem-peratures. These results provide important basic data for the long-term integrated tempera-ture reconstruction over China in the future work.  相似文献   

17.
Study on hydroclimatological changes in the mountainous river basins has attracted great interest in recent years. Changes in temperature, precipitation and river discharge pattern could be considered as indicators of hydroclimatological changes of the river basins. In this study, the temperatures (maximum and minimum), precipitation, and discharge data from 1980 to 2009 were used to detect the hydroclimatological changes in the Bagmati River Basin, Nepal. Simple linear regression and Mann-Kendall test statistic were used to examine the significant trend of temperature, precipitation, and discharge. Increasing trend of temperature was found in all seasons, although the change rate was different in different seasons for both minimum and maximum temperatures. However, stronger warming trend was found in maximum temperature in comparison to the minimum in the whole basin. Both precipitation and discharge trend were increasing in the pre-monsoon season, but decreasing in the post-monsoon season. The significant trend of precipitation could not be observed in winter, although discharge trend was decreasing. Furthermore, the intensity of peak discharge was increasing, though there was not an obvious change in the intensity of maximum precipitation events. It is expected that all these changes have effects on agriculture, hydropower plant, and natural biodiversity in the mountainous river basin of Nepal.  相似文献   

18.
江河源区NDVI时空变化及其与气候因子的关系(英文)   总被引:5,自引:3,他引:2  
The source regions of the Yangtze and Yellow rivers are important water conservation areas of China. In recent years, ecological deterioration trend of the source regions caused by global climate change and unreasonable resource development increased gradually. In this paper, the spatial distribution and dynamic change of vegetation cover in the source regions of the Yangtze and Yellow rivers are analyzed in recent 10 years based on 1-km resolution multitemporal SPOTVGT-DN data from 1998 to 2007. Meanwhile, the correlation relationships between air temperature, precipitation, shallow ground temperature and NDVI, which is 3×3 pixel at the center of Wudaoliang, Tuotuohe, Qumalai, Maduo, and Dari meteorological stations were analyzed. The results show that the NDVI values in these two source regions are increasing in recent 10 years. Spatial distribution of NDVI which was consistent with hydrothermal condition decreased from southeast to northwest of the source regions. NDVI with a value over 0.54 was mainly distributed in the southeastern source region of the Yellow River, and most NDVI values in the northwestern source region of the Yangtze River were less than 0.22. Spatial changing trend of NDVI has great difference and most parts in the source regions of the Yangtze and Yellow rivers witnessed indistinct change. The regions with marked increasing trend were mainly distributed on the south side of the Tongtian River, some part of Keqianqu, Tongtian, Chumaer, and Tuotuo rivers in the source region of the Yangtze River and Xingsuhai, and southern Dari county in the source region of the Yellow River. The regions with very marked increasing tendency were mainly distributed on the south side of Tongtian Rriver and sporadically distributed in hinterland of the source region of the Yangtze River. The north side of Tangula Range in the source region of the Yangtze River and Dari and Maduo counties in the source region of the Yellow River were areas in which NDVI changed with marked decreasing tendency. The NDVI change was980 Journal of Geographical Sciences positively correlated with average temperature, precipitation and shallow ground temperature. Shallow ground temperature had the greatest effect on NDVI change, and the second greatest factor influencing NDVI was average temperature. The correlation between NDVI and shallow ground temperature in the source regions of the Yangtze and Yellow rivers increased significantly with the depth of soil layer.  相似文献   

19.
To understand the variations in vegetation and their correlation with climate factors in the upper catchments of the Yellow River, China, Normalized Difference Vegetation Index(NDVI) time series data from 2000 to 2010 were collected based on the MOD13Q1 product. The coefficient of variation, Theil–Sen median trend analysis and the Mann–Kendall test were combined to investigate the volatility characteristic and trend characteristic of the vegetation. Climate data sets were then used to analyze the correlation between variations in vegetation and climate change. In terms of the temporal variations, the vegetation in this study area improved slightly from 2000 to 2010, although the volatility characteristic was larger in 2000–2005 than in 2006–2010. In terms of the spatial variation, vegetation which is relatively stable and has a significantly increasing trend accounts for the largest part of the study area. Its spatial distribution is highly correlated with altitude, which ranges from about 2000 to 3000 m in this area. Highly fluctuating vegetation and vegetation which showed a significantly decreasing trend were mostly distributed around the reservoirs and in the reaches of the river with hydropower developments. Vegetation with a relatively stable and significantly decreasing trend and vegetation with a highly fluctuating and significantly increasing trend are widely dispersed. With respect to the response of vegetation to climate change, about 20–30% of the vegetation has a significant correlation with climatic factors and the correlations in most areas are positive: regions with precipitation as the key influencing factor account for more than 10% of the area; regions with temperature as the key influencing factor account for less than 10% of the area; and regions with precipitation and temperature as the key influencing factors together account for about 5% of the total area. More than 70% of the vegetation has an insignificant correlation with climatic factors.  相似文献   

20.
1981-2010年气候变化对青藏高原实际蒸散的影响(英文)   总被引:1,自引:0,他引:1  
From 1981 to 2010,the effects of climate change on evapotranspiration of the alpine ecosystem and the regional difference of effects in the Tibetan Plateau(TP) were studied based on the Lund-Potsdam-Jena dynamic vegetation model and data from 80 meteorological stations.Changes in actual evapotranspiration(AET) and water balance in TP were analyzed.Over the last 30 years,climate change in TP was characterized by significantly increased temperature,slightly increased precipitation,and decreased potential evapotranspiration(PET),which was significant before 2000.AET exhibited increasing trends in most parts of TP.The difference between precipitation and AET decreased in the southeastern plateau and increased in the northwestern plateau.A decrease in atmospheric water demand will lead to a decreased trend in AET.However,AET in most regions increased because of increased precipitation.Increased precipitation was observed in 86% of the areas with increased AET,whereas decreased precipitation was observed in 73% of the areas with decreased AET.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号