首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 156 毫秒
1.
基于MODIS的秦巴山地气温估算与山体效应分析   总被引:1,自引:0,他引:1  
秦巴山地作为横亘在中国南北过渡带的巨大山脉,其山体效应对中国中部植被和气候的非地带性分布产生了重要的影响,山体内外同海拔的温差是表征山体效应大小较为理想的指标。本研究结合MODIS地表温度(LST)数据、STRM-1 DEM数据和秦巴山地的118个气象站点的观测数据,分别采用普通线性回归(OLS)和地理加权回归(GWR)两种分析方法对秦巴山地的气温进行估算,在此基础上将秦巴山地各月气温转换为同海拔(1500 m,秦巴山地平均海拔)气温,对比分析秦巴山地的山体效应。结果表明:① 相比OLS分析,GWR分析方法的精度更高,各月回归模型的R 2均在0.89以上,均方根误差(RMSE)在0.68~0.98 ℃之间。② 利用GWR估算得到的同海拔气温,从东向西随海拔升高呈现了明显的升高的趋势,秦岭西部山地比东段升高约6 ℃和4.5 ℃;大巴山西部山地年均和7月份同海拔的气温较东段升高约8 ℃和5 ℃。③ 从南向北,以汉江为分界,秦岭与大巴山的同海拔的气温均呈现出由山体边缘向内部升高的趋势。④ 秦巴山地西部大起伏高山,秦岭大起伏高中山和大巴山大起伏中山,相比豫西汉中中山谷地,各月均同海拔气温分别升高了约3.85~9.28 ℃、1.49~3.34 ℃和0.43~3.05 ℃,平均温差约为3.50 ℃,说明秦巴山地大起伏中高山的山体效应十分明显。  相似文献   

2.
青藏高原气温空间分布规律及其生态意义   总被引:6,自引:1,他引:5  
姚永慧  张百平 《地理研究》2015,34(11):2084-2094
作为世界第三极的青藏高原,其巨大的块体产生了显著的夏季增温作用,对亚洲乃至全球气候都具有重大影响。但由于高原自然条件严酷,山区气象观测台站很少,气象资料极度匮乏;如果依靠台站数据进行空间插值获得高原气温的空间分布数据,会由于插值点过少而产生较大误差并可能掩盖一些空间信息,因而难以全面反映高原气温的空间分布规律。利用基于MODIS地表温度数据估算的青藏高原气温数据,详细分析各月气温及重要等温线的空间分布格局,并结合林线和雪线数据,初步探讨了高原气温空间分布格局对高原地理生态格局的重要影响。研究表明:① 等温线的海拔高度自高原东北部、东部边缘向内部逐渐升高,等温线在高原内部比东部边缘高500~2000 m,表明相同海拔高度上气温自边缘向高原内部逐渐升高。② 高原西北部的羌塘高原、可可西里为高原的寒冷区,全年有7个月的气温低于0 ℃,3~4个月的气温低于-10 ℃;青藏高原南部(喜马拉雅山北坡—冈底斯山南坡)和中部(冈底斯山北坡—唐古拉山南坡)是高原的温暖区,全年有5个月的气温能达到5~10 ℃,有3个月的气温能超过10 ℃,尤其是拉萨—林芝—左贡一带在3500~4000 m以下的地区最冷月均温也能高于0 ℃。③ 北半球最高雪线和林线分别分布于高原的西南部和东南部,表明高原气温空间分布特征对本地的地理生态格局具有重要影响。  相似文献   

3.
青藏高原增温效应对垂直带谱的影响   总被引:2,自引:0,他引:2  
青藏高原作为巨大的热源对亚洲气候、高原生态格局等产生重要的影响。但青藏高原的增温效应最初是20世纪50年代因其对亚洲气候的重大影响而被发现的,因此,大量的相关研究主要集中在高原夏季增温对气候的影响方面,而高原增温效应对高原地理生态格局的影响研究却非常少。利用收集到的气象台站观测数据、基于MODIS地表温度估算的青藏高原气温数据、林线数据和垂直带谱数据及DEM数据,通过对比分析高原内部与外围山区垂直带谱高度的变化及林线的分布规律,并以高原内部与边缘地区相同海拔高度上的气温差、最热月10℃等温线、15℃·月的温暖指数等温度指标来定量描述高原的增温效应及其对垂直带谱和林线的影响。研究结果表明:1由于青藏高原增温效应的影响,高原内部气温和生长季长度高于边缘地区,相同海拔高度上,高原内部各月气温比边缘地区高2~7℃;在4500 m高度上,高原内部各月气温比四川盆地高3.58℃(4月)到6.63℃(6月);最热月10℃等温线的海拔高度也从东部边缘(4000 m以下)向内部逐渐升高,在拉萨-改则一带则可出现在4600~5000 m的高度;15℃·月的温暖指数的海拔高度也从边缘向内部逐渐升高,在4500 m的海拔高度上,横断山区、高原南部和中部地区的温暖指数均能达到15℃·月以上,而其它边缘地区则都低于15℃·月。2青藏高原垂直带谱和林线的分布规律与增温效应的规律极其一致,即均从东部边缘向内部逐渐升高,表明增温效应抬升了高原内部垂直带谱的分布范围和高度:山地暗针叶林带的分布范围在高原内部比东部边缘地区高1000~1500 m;山地草甸带的分布范围在高原内部比东部边缘高出700~900 m;高原内部林线比外围地区高500~1000 m左右。最热月10℃等温线和15℃·月温暖指数的分布规律与林线分布规律一致,表明高原增温效应对垂直带谱的分布具有重要的影响。  相似文献   

4.
基于Modis地表温度的横断山区气温估算及其时空规律分析   总被引:5,自引:1,他引:4  
姚永慧  张百平  韩芳 《地理学报》2011,66(7):917-927
横断山区气象观测站稀少且多分布在河谷之中,气温资料极度匮乏,严重影响山区地理与生态研究。随着遥感技术的发展,热红外遥感数据,结合地面观测数据,可以用来推测山区气温。本文通过对横断山区2001 年-2007 年间64 个气象台站的多年月平均气温数据(Ta) 与Modis地表温度多年月平均值(Ts) 进行了时序分析和回归分析,并取得如下研究结果:(1) Ts 与Ta 具有非常好的线性相关关系,89%的台站的决定系数高于0.5;95%的台站的标准误差都低于3 oC,84.4%的台站标准误差低于2.5 oC;12 个月份的Ts 与Ta 的决定系数R2在0.63~0.90 之间,标准误差在2.22~3.05 oC之间。(2) 研究区内月均气温的变化范围在-2.25~15.64 oC之间;生长季(5-9 月份) 的月均气温变化范围为:10.44~15.64 oC。(3) 等温线的海拔高度自山体外围向内部逐渐升高,与山体效应的增温效应相吻合;0 oC等温线自10 月份从海拔4700±500 m左右逐渐降低,至1月份降至最低点,约在3500±500 m左右,此后,逐渐回升,至次年5 月份再次达到4700±500 m左右,也就是说横断山区5200 m以下的广大山区全年至少有6~12 个月的气温在0 oC以上。研究表明:可以利用Modis月均地表温度结合地面观测台站的数据较精确的估算山区月均气温。  相似文献   

5.
气温是反映生态环境的重要参数之一,准确估算气温的时空分布对于气候变化研究具有重要意义。论文基于2011—2019年青海省气温实测数据、MODIS产品和SRTM DEM数据,在像元尺度分别开展了晴天条件和有云条件下瞬时空气温度的遥感估算研究,并评价了不同气温估算方法的精度差异,进而通过多元回归模型生成研究区高精度月空气温度产品,对青海省气温的时空分布格局进行分析。研究结果表明,在未使用气温实测数据进行校准的情况下,通过将MOD07_L2大气廓线产品反演的空气温度与MOD06_L2地表温度平均的方法,能够显著提高气温的估算精度。晴天条件下相关系数(r)为0.93,均方根误差(RMSE)为4.71 ℃;有云条件下r为0.89,RMSE为5.16 ℃。在使用气温观测值进行校准的情况下,通过引入高程参数,多元回归模型月尺度空气温度估算的决定系数(R2)和RMSE总体分别保持在0.8以上和2.5 ℃以下。将上述回归模型应用到栅格尺度,从而生成整个青海省高精度卫星过境时刻的逐月气温产品,进而分析其时空分布格局。具体来说,青海省月最高气温出现在7月,全省平均气温为13.59 ℃,最低气温出现在1月,全省平均气温为-9.44 ℃;气温的空间分布主要受海拔控制,全省平均气温直减率为4 ℃/km。上述研究表明MODIS大气廓线产品在全天气气温估算方面具有独特优势,特别是在地面气温实测数据的支持下能够有效降低遥感估算的系统性误差,实现大尺度复杂地形条件下气温的高精度估算。  相似文献   

6.
青藏高原和阿尔卑斯山山体效应的对比研究   总被引:1,自引:0,他引:1  
索南东主  姚永慧  张百平 《地理研究》2020,39(11):2568-2580
山体效应不仅对气候产生重大影响,也对区域地理生态格局有深远影响,尤其是它对山地垂直带分布和结构类型等的影响已经为地理学家和地植物学家所认识。目前相关研究主要集中在山体效应定量化方面,缺少不同山地山体效应的对比研究,因此对山体效应的区域差异性了解不足。本文选择欧亚大陆上具有明显山体效应的两个山地青藏高原和阿尔卑斯山为研究对象,利用收集到的气象台站观测数据、林线和DEM数据以及基于MODIS地表温度估算的青藏高原和阿尔卑斯山气温数据等,通过对比分析青藏高原与阿尔卑斯山相同海拔高度上的气温以及林线分布高度等来探讨两个山地的山体效应差异性。分析结果表明青藏高原的山体效应比阿尔卑斯山更为强烈,表现为:① 由于山体效应影响,在相同海拔高度上(4500 m),青藏高原内部气温远高于阿尔卑斯山的气温,尤其是在最热月高原内部气温比阿尔卑斯山内部气温高10~15℃,在最冷月高原内部气温比阿尔卑斯山内部气温高5~10℃。② 由于山体效应影响,青藏高原内部林线也远高于阿尔卑斯山内部林线,约高2000~3000 m。本研究将为山体效应的影响因素分析奠定基础,同时对于揭示欧亚大陆山地生态系统格局具有一定的科学意义。  相似文献   

7.
气温(Ta)是描述陆地气候环境的一个重要参数,其异常变化直接影响人类的生存环境,因此如何高精度地估算气温成为当前研究的热点。MODIS数据因其分辨率较低不能提供精细的地表信息,为此,本文以更高分辨率的Landsat8影像为数据源,结合自动气象站的气温数据,耦合经纬度、归一化植被指数、归一化建筑指数和改进的归一化水体指数等多种因子,建立了多窗口线性回归模型(Multi-Window Linear Regression Model,MWLR)。最后以浙江北部为研究区,使用MWLR模型对该地区冬季气温进行了估算,模型预测的RMSE在1.458~1.551℃之间,R~2在0.835~0.842之间,当窗口大小为3×3时取最优精度(RMSE=1.458℃,R~2=0.835),优于一般的空间内插方法。研究结果验证了利用MWLR模型和Landsat8影像进行气温估算的有效性,并提供了一种基于遥感数据在局部地区开展高精度和高分辨率气温估算的模型。  相似文献   

8.
利用ASTER资料估算黑河中游沙漠和绿洲地区夏季地表温度   总被引:1,自引:0,他引:1  
利用美国宇航局地球观测系统EOS-Terra卫星所搭载高级空基热发射反射辐射计(ASTER)5个热红外通道遥感资料,并结合三种地表温度反演算法和可见近红外信息,估算2003年夏季黑河中游地区沙漠和绿洲景观下地表温度空间分布。分析发现三种方法估算的地表温度比较接近,且反演值与地面观测值较为一致,能够作为陆面过程研究输入数据。其中,估算的水体温度主要介于19.0~21.0℃,绿洲内农田温度分布于27.0~29.0℃,荒漠戈壁地表温度分布于40.0~60.0℃;在绿洲内,由植被覆盖度参数化比辐射率方法(Pv方法)所估算地表温度值最低,Alpha导出比辐射率方法(ADE方法)估算值最高,由温度比辐射率分离方法(TES方法)估算值介于二者之间;荒漠戈壁区域Pv方法地表温度估算值最高,ADE方法估算值最低,TES方法估算值仍然介于前两者之间;绿洲和荒漠戈壁均具有较大地表温度空间变率。利用有关比辐射率光谱库地物观测数据拟合出一个经验公式以获取地物宽通道比辐射率。分析计算表明,地物目标在较大地表环境温度变化范围内,利用地物宽通道比辐射率计算地表长波辐射最大绝对误差不超过8.0 W·m-2。  相似文献   

9.
准确获取青藏高原地表反照率的季节变化特征对高原地表能水循环研究具有重要意义。本文利用青藏高原多年冻土区西大滩和唐古拉2007年的气象及辐射数据,运用相关分析方法研究了太阳高度角、积雪及活动层冻融过程对地表反照率变化的影响。结果显示:冷暖季降雪过程中地表反照率的变化差异较明显;地表无积雪覆盖期间,地表反照率与气温和表层土壤含水量呈反相关关系。利用多元回归分析法构建了以积雪日数和气温为影响因子的月均地表反照率计算回归方程,经检验与观测值对比平均相对误差为7.1%,可用于青藏高原北部地表反照率的估算。  相似文献   

10.
念青唐古拉山南坡气温分布及其垂直梯度   总被引:4,自引:0,他引:4  
利用架设在念青唐古拉山南坡9个海拔高度(4 300~5 500 m)的自动气象站1 a(2006年8月1日至2007年7月31日)的实测数据,对山坡1.5 m高度的近地面气温随海拔梯度和时间的分布进行了分析。表明念青南坡4 300~4 950 m冷季(10~4月)存在逆温。利用高山各观测高度的温度与当雄气象站气温具有良好相关,推算出多年平均情况下念青唐古拉山南坡各观测高度的年平均气温和各月平均气温。并由此推测念青唐古拉山南坡海拔5 100 m以上存在高山多年冻土,此多年冻土下界高度比《中国冻土》指出的高度高约200 m。  相似文献   

11.
MODIS-based estimation of air temperature of the Tibetan Plateau   总被引:1,自引:0,他引:1  
The immense and towering Tibetan Plateau acts as a heating source and, thus, deeply shapes the climate of the Eurasian continent and even the whole world. However, due to the scarcity of meteorological observation stations and very limited climatic data, little is quantitatively known about the heating effect and temperature pattern of the Tibetan Plateau. This paper collected time series of MODIS land surface temperature (LST) data, together with meteorological data of 137 stations and ASTER GDEM data for 2001-2007, to estimate and map the spatial distribution of monthly mean air temperatures in the Tibetan Plateau and its neighboring areas. Time series analysis and both ordinary linear regression (OLS) and geographical weighted regression (GWR) of monthly mean air temperature (Ta) with monthly mean land surface temperature (Ts) were conducted. Regression analysis shows that recorded Ta is rather closely related to Ts, and that the GWR estimation with MODIS Ts and altitude as independent variables, has a much better result with adjusted R 2 〉 0.91 and RMSE = 1.13-1.53℃ than OLS estimation. For more than 80% of the stations, the Ta thus retrieved from Ts has residuals lower than 2℃. Analysis of the spatio-temporal pattern of retrieved Ta data showed that the mean temperature in July (the warmest month) at altitudes of 4500 m can reach 10℃. This may help explain why the highest timberline in the Northern Hemisphere is on the Tibetan Plateau.  相似文献   

12.
Climatic conditions are difficult to obtain in high mountain regions due to few meteorological stations and, if any, their poorly representative location designed for convenient operation. Fortunately, it has been shown that remote sensing data could be used to estimate near-surface air temperature (Ta) and other climatic conditions. This paper makes use of recorded meteorological data and MODIS data on land surface temperature (Ts) to estimate monthly mean air temperatures in the southeastern Tibetan Plateau and its neighboring areas. A total of 72 weather stations and 84 MODIS images for seven years (2001 to 2007) are used for analysis. Regression analysis and spatio-temporal analysis of monthly mean Ts vs. monthly mean Ta are carried out, showing that recorded Ta is closely related to MODIS Ts in the study region. The regression analysis of monthly mean Ts vs. Ta for every month of all stations shows that monthly mean Ts can be rather accurately used to estimate monthly mean Ta (R2 ranging from 0.62 to 0.90 and standard error between 2.25℃ and 3.23℃). Thirdly, the retrieved monthly mean Ta for the whole study area varies between 1.62℃ (in January, the coldest month) and 17.29 ℃ (in July, the warmest month), and for the warm season (May-September), it is from 13.1℃ to 17.29℃. Finally, the elevation of isotherms is higher in the central mountain ranges than in the outer margins; the 0℃ isotherm occurs at elevation of about 4500±500 m in October, dropping to 3500±500 m in January, and ascending back to 4500±500 m in May next year. This clearly shows that MODIS Ts data combining with observed data could be used to rather accurately estimate air temperature in mountain regions.  相似文献   

13.
Climatic conditions are difficult to obtain in high mountain regions due to few meteorological stations and, if any, their poorly representative location designed for convenient operation. Fortunately, it has been shown that remote sensing data could be used to estimate near-surface air temperature (Ta) and other climatic conditions. This paper makes use of recorded meteorological data and MODIS data on land surface temperature (Ts) to estimate monthly mean air temperatures in the southeastern Tibetan Plateau and its neighboring areas. A total of 72 weather stations and 84 MODIS images for seven years (2001 to 2007) are used for analysis. Regression analysis and spatio-temporal analysis of monthly mean Ts vs. monthly mean Ta are carried out, showing that recorded Ta is closely related to MODIS Ts in the study region. The regression analysis of monthly mean Ts vs. Ta for every month of all stations shows that monthly mean Ts can be rather accurately used to estimate monthly mean Ta (R2 ranging from 0.62 to 0.90 and standard error between 2.25℃ and 3.23℃). Thirdly, the retrieved monthly mean Ta for the whole study area varies between 1.62℃ (in January, the coldest month) and 17.29℃ (in July, the warmest month), and for the warm season (May-September), it is from 13.1℃ to 17.29℃. Finally, the elevation of isotherms is higher in the central mountain ranges than in the outer margins; the 0℃ isotherm occurs at elevation of about 4500±500 m in October, dropping to 3500±500 m in January, and ascending back to 4500±500 m in May next year. This clearly shows that MODIS Ts data combining with observed data could be used to rather accurately estimate air temperature in mountain regions.  相似文献   

14.
Accurate quantification of aboveground biomass of grasslands in alpine regions plays an important role in accurate quantification of global carbon cycling. The monthly normalized difference vegetation index (NDVI), enhanced vegetation index (EVI), mean air temperature (Ta), ≥5℃ accumulated air temperature (AccT), total precipitation (TP), and the ratio of TP to AccT (TP/AccT) were used to model aboveground biomass (AGB) in grasslands on the Tibetan Plateau. Three stepwise multiple regression methods, including stepwise multiple regression of AGB with NDVI and EVI, stepwise multiple regression of AGB with Ta, AccT, TP and TP/AccT, and stepwise multiple regression of AGB with NDVI, EVI, Ta, AccT, TP and TP/AccT were compared. The mean absolute error (MAE) and root mean squared error (RMSE) values between estimated AGB by the NDVI and measured AGB were 31.05 g m-2 and 44.12 g m-2, and 95.43 g m-2 and 131.58 g m-2 in the meadow and steppe, respectively. The MAE and RMSE values between estimated AGB by the AccT and measured AGB were 33.61g m-2 and 48.04 g m-2 in the steppe, respectively. The MAE and RMSE values between estimated AGB by the vegetation index and climatic data and measured AGB were 28.09 g m-2 and 42.71 g m-2, and 35.86 g m-2 and 47.94 g m-2, in the meadow and steppe, respectively. The study finds that a combination of vegetation index and climatic data can improve the accuracy of estimates of AGB that are arrived at using the vegetation index or climatic data. The accuracy of estimates varied depending on the type of grassland.  相似文献   

15.
青藏高原植被NDVI对气候因子响应的格兰杰效应分析   总被引:3,自引:1,他引:3  
多变的气候和复杂的地理环境使得青藏高原植被对气候变化响应敏感,因此分析高原植被与气候因子之间的动态关系对气候变化研究和生态系统管理具有重要意义。论文基于1982—2012年青藏高原气象数据(气温、降水)以及GIMMS NDVI3g遥感数据,在像素级别上运用格兰杰因果关系检验方法,在月尺度和季节尺度上分析了高原植被NDVI(主要是草原)与平均气温、降水量之间的响应情况及因果关系。研究表明:① 月尺度上NDVI与平均气温之间、NDVI与降水量之间的时序平稳性比例高于季节尺度,月尺度下达到平稳性的植被区域分别占99.13%和98.68%,季节尺度下分别占64.01%和71.97%;② 月尺度下高原平均气温和降水量对NDVI影响的滞后期都集中在第12~13个月,荒漠草原、典型草原和草甸3种植被类型的滞后期一致,季节尺度下平均气温和降水量对NDVI影响的滞后期主要分布在第3~4和第6个季度,3种植被类型的滞后期差异性较大;③ 月尺度下,青藏高原约98.95%的植被覆被区的平均气温是引起NDVI变化的格兰杰原因,反之,大部分地区(约89.05%,除高原东南区域)内NDVI也是引起平均气温变化的格兰杰原因;季节尺度下,青藏高原中部以外植被区域(约92.03%)内的平均气温是引起NDVI变化的格兰杰原因,而在东部和西部部分地区(约50.55%)中NDVI也是引起平均气温变化的格兰杰原因;④ 月尺度下,高原东北和西北地区(约72.05%)内的降水量是引起NDVI变化的格兰杰原因,大部分地区(约94.86%,除东南部少量区域)中NDVI是引起降水量变化的格兰杰原因;季节尺度下,高原东南部(约61.43%)地区内的降水量是引起NDVI变化的格兰杰原因,高原中东部地区(约48.98%)中NDVI是引起降水量变化的格兰杰原因。总之,高原植被NDVI与气温、降水的相互作用显著,彼此均可构成格兰杰因果效应,但总体上气候因子的影响程度大于植被的反馈作用,月尺度的效应区域大于季节尺度的效应区域。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号