首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
1960 年以来新疆地区蒸发皿蒸发与实际蒸发之间的关系   总被引:3,自引:0,他引:3  
刘波  马柱国  冯锦明  魏荣庆 《地理学报》2008,63(11):1131-1139
利用中国新疆地区1960-2005 年109 个设有蒸发皿蒸发观测的常规气象站资料, 并结 合不同驱动场和不同陆面模式的模拟结果, 对蒸发皿蒸发及模拟的实际蒸发的年、各个季节 的变化及其它们的相互联系进行了详细的分析和讨论。结果发现, 在过去的46 年里, 年蒸发 皿蒸发总体上都表现为明显的下降趋势, 而实际蒸发在总体上显著上升, 与蒸发皿蒸发的变 化趋势相反。在80 年代中后期, 蒸发皿蒸发、实际蒸发和降水的转折点(1986 年) 一致, 进 一步说就是无论在转折点的前后, 降水增加的转折性变化与模拟的实际蒸发的转折性增加变 化一致, 而与蒸发皿蒸发减小的转折性变化相反, 这表明, 在新疆地区, 蒸发皿蒸发和实际 蒸散之间具有相反的变化关系, 这支持Brutsaert and Parlange 提出的蒸发皿蒸发和实际蒸散 之间具有互补相关关系(变化趋势相反) 的理论。分析气温、降水、湿度、云量和日照时数等 环境变量的变化趋势发现: 降水、云量等表征大气中水分特征的变量表现为明显的上升趋势, 这也间接的证明了蒸发皿蒸发和实际蒸散之间存在相反的关系, 而与各个环境变量之间相关 系数的分析则表明, 气温日较差、风速、低云量和降水是与蒸发皿蒸发和实际蒸发关系最紧 密的环境因子, 它们的变化可能是导致蒸发皿蒸发和蒸散量变化的原因。  相似文献   

2.
应用常规气象观测资料估算塔里木盆地水面蒸发量   总被引:2,自引:3,他引:2  
根据阿克苏水平衡站1999年至2002年非冻结期(4月至10月)20m^2蒸发池的蒸发量及常规气象观测资料,采用斜率关联度分析法分析了各气象要素对水而蒸发的影响程度,建立了计算水而蒸发量的经验公式,结果表明:(1)气象要素对20m^2蒸发池月平均蒸发量的影响程度从大到小的排列顺序为饱和水汽压差、气温、水面温度、空气饱和差、风速、实际水汽压、大气压、相对湿度;(2)20m^2蒸发池蒸发量与饱和水汽压差、空气湿度饱和差、气温、水面温度、风速、水汽压成正比关系;而与气压、相对湿度成反比关系;(3)所有回归方程都达到极显著水平,可供塔里木盆地缺测资料地区选用。  相似文献   

3.
“蒸发悖论”在黄河流域的探讨   总被引:14,自引:1,他引:13  
利用黄河流域72个气象站点1960-2010年的气象资料,系统分析了过去51年间气温、降水量以及潜在蒸散量的变化趋势,研究了气温、降水量与潜在蒸散量之间的长期变化趋势关系,对影响潜在蒸散量下降的主要因子进行了探讨,重点对黄河流域是否存在“蒸发悖论”进行验证.研究结果表明:(1)过去51年间,黄河流域内气温增加显著、潜在蒸散量呈下降趋势,总体上存在“蒸发悖论”;(2)“蒸发悖论”具有空间上和时间上的不一致性,随着气温增加,春、夏、冬三季潜在蒸散量呈减少趋势,减少区域主要集中于山西、河南大部分区域以及甘肃、宁夏、内蒙古、陕西等少部分区域;时间上主要表现在1960-1979年潜在蒸散量变化趋势不明显,1980-2010年气温与潜在蒸散量变化趋势在空间分布上的逆向关系更加明显;(3)过去51年间,降水量无论是年际还是夏、秋季变化趋势都不明显,降水量与潜在蒸散量时空变化分布上大体呈现逆向变化关系;(4)从气象要素变化对潜在蒸散量变化的贡献率来看,近51年来风速的明显减小是导致黄河流域潜在蒸散量减少的主导因素.  相似文献   

4.
在干旱区,雨滴在云下降落易受到二次蒸发的影响,明确降水从云层底部降落到地面过程中稳定氢氧同位素的变化在同位素水文学研究中很有必要。基于新疆地面气象站逐小时的观测资料,采用改进后的Stewart模型,研究了新疆雨滴云下蒸发剩余比(从云下到近地面雨滴蒸发后剩余体积占原体积的百分率f)、雨滴中δD变化量(△δD)和过量氘变化量(△d)的时空特征,并分析了△d与气象要素的关系。结果表明:(1)新疆降水中△d和蒸发剩余比存在明显的空间差异。(2)当在气温低、相对湿度大、降水强度大、雨滴直径大的情况下,蒸发剩余比较大,△d接近于0,蒸发剩余比与△d间的线性关系明显,斜率较低。不同气象条件下,蒸发剩余比与△d的关系并不固定,利用这一线性关系反推蒸发剩余比应慎重。(3)敏感性分析可以得出,如果各气象站的气温升高2℃,△d降幅为0.26%~3.10%;如果相对湿度升高5%,△d升幅为1.23%~8.34%;如果雨强增大10%,△d升幅为0.06%~0.89%;如果雨滴直径增加0.2 mm,△d升幅为0.98%~8.16%,但雨滴直径增加量大于1.2 mm时,△d变化量趋于稳定。  相似文献   

5.
《干旱区地理》2021,44(4):971-982
本研究提出了1种选定特定区域可以代表气象因素影响的蒸发模型(公式)的实验方法,通过结合气象因子分析,将淡水的理论蒸发量与实际蒸发量进行对比,选定合理的蒸发模型,并结合对不同溶解性总固体(TDS)含盐废水蒸发实验的结果对蒸发模型进行了改进,使其适用于含盐废水蒸发量的计算,以此为企业在蒸发塘的建设阶段及运行、管理过程中提供理论依据。研究表明:在实验时段,蒸发与水面净辐射、气温呈正相关,与湿度呈负相关,与风速的相关性不显著;而从灰色关联度来看,气象因子对蒸发的影响程度为:水面净辐射气温风速湿度;实验时段童宏良公式计算的淡水理论蒸发量为205.76 mm,为最接近当地的实际蒸发量205.51 mm,最能代表当地气象因素对水面蒸发的影响;而相对蒸发率和反映溶液组成变化的TDS大致呈线性相关,R~2达0.95,在此基础上确定了适宜当地估算含盐废水蒸发量的公式。本研究还从气温影响及溶液成分的角度对相对蒸发率进行讨论,认为实验值与蒸发塘实际记录值的差距是由于气温引起溶液饱和度下降导致的,而理论值与实验值的差距则是由于在计算时将含盐废水原液作为理想溶液,并未考虑溶液中各组分分子间的相互作用力。因此,蒸发塘选址时应注意当地的气象因素,且在蒸发塘处理含盐废水时,应及时对蒸发塘内的析出物进行处理,避免蒸发过程中TDS增大对蒸发的影响。  相似文献   

6.
采用电子蒸散计(Lysimeter)逐日测定春小麦和玉米生育期的蒸散(地面蒸发和植物蒸腾)量, 结果表明, 作物的蒸散量随生育期的进程而变化, 并受供水条件所制约。春小麦全生育期的最大蒸发蒸腾虽约312mm, 最小蒸发蒸腾量245mm; 玉米全生育期的蒸发蒸腾量约468mm。春小麦套种玉米的增产节水效果显著, 其产量比单种春小麦和玉米的产量高约50%, 而蒸散耗水量比单种的低18%。本文就河西干旱区农业节约用水合理灌溉问题作了讨论。  相似文献   

7.
泾河上游流域实际蒸散量及其各组分的估算   总被引:7,自引:1,他引:6  
利用分布式生态水文模型SWIM,基于泾河上游(泾川测站以上) 植被、土壤、气象和水文数据对研究区进行了水文过程的模拟,从而估算了流域的实际蒸散量及其各组分。结果表明:SWIM模型能够较好的模拟泾河上游流域的水文过程,模拟的流域多年(1997-2003 年) 平均实际蒸散量为443 mm,其中土壤蒸发量为259 mm,植被蒸腾量为157 mm,冠层截持量为27 mm。石质山区的森林覆盖区和非森林地的年蒸散总量在整个流域分别具有最大值和最小值,为484 mm和418 mm;黄土区实际蒸散量介于二者之间,平均为447 mm。森林覆盖地区土壤蒸发明显小于其它区域,而蒸腾和冠层截留明显大于其它区域。年内蒸散量主要集中在5-8 月份,占全年总蒸散量的60%,且冠层蒸散比例较大达63%。整个流域湿润年份较干旱年份蒸散量增加了78 mm,其中土壤蒸发增加最多,其次是冠层蒸腾,冠层截留蒸发最小。  相似文献   

8.
饱和水汽压亏缺是一个非常重要的模拟水循环和植被生产力的参数。青藏高原上的气象站比较稀少,这限制了饱和水汽压亏缺的精确估计。中分辨率成像光谱仪提供了蒸散数据,这为模拟饱和水汽压亏缺提供了可能。尽管如此,在青藏高原上,还没有研究利用中分辨率成像光谱仪的蒸散数据模拟饱和水汽压亏缺。因此,本研究利用中分辨率成像光谱仪的潜在蒸散数据模拟了高寒草甸、高寒草原、农田、森林和灌木2000-2012年四季的饱和水汽压亏缺。春季的均方根误差和平均绝对误差分别是0.95–2.34 hPa和0.72–1.54 hPa,夏季的的均方根误差和平均绝对误差分别是1.39–2.60 hPa和0.89–1.96 hPa,秋季的均方根误差和平均绝对误差分别是0.78–1.93 hPa和0.56–1.36 hPa,冬季的均方根误差和平均绝对误差分别是0.48–1.40 hPa和0.36–0.98 hPa。高寒草原的均方根误差和平均绝对误差分别是0.48–1.39 hPa和0.36–1.00 hPa,高寒草甸的均方根误差和平均绝对误差分别是0.58–1.39 hPa和0.44–0.90 hPa,农田的均方根误差和平均绝对误差分别是1.10–2.55 hPa和0.82–1.74 hPa,灌木的均方根误差和平均绝对误差分别是0.98–1.90 hPa和0.78–1.37 hPa,森林的分别是1.40–2.60 hPa和0.98–1.96 hPa。因此,中分辨率成像光谱仪的潜在蒸散数据可以用来模拟青藏高原的饱和水汽压亏缺,且需要考虑整合植被类型和季节。  相似文献   

9.
分析陕甘宁黄土高原区地表蒸散变化特征及其影响因素,可以为区域水资源规划、生态环境改善提供依据。本文利用MOD16蒸散数据,统计分析了陕甘宁黄土高原区2000-2012年地表实际蒸散量的时空变化特征,并结合国家气象站点观测数据和基于像元的相关分析法探讨了其影响因素。结果表明:(1) 2000-2002年蒸散量迅速上升,在2003年达到最高值378.6 mm, 2003-2006年蒸散量呈下降趋势,2006年之后蒸散量呈现缓慢上升趋势。(2) 近13年来,陕甘宁黄土高原区多年平均蒸散量具有明显的空间差异,蒸散量自西北至东南递增,最南部的六盘山、子午岭、黄龙山地是3个主要的高值区;年蒸散量以夏季最多,其次是春季,秋季和冬季最少,且季节蒸散的分布与年蒸散的空间分布格局基本一致。(3) 陕甘宁黄土高原区蒸散量草地和耕地的贡献率最高,密灌丛、疏灌丛次之,常绿针叶林、森林草原贡献率则较小。(4) 陕甘宁黄土高原区动力因素对地表蒸散量影响以正相关为主,风速对该区影响较大;热力因素对地表蒸散量影响以负相关为主,其中气温与蒸散在空间上呈负相关的区域较大,日照时数与蒸散在空间上的负相关区域的面积次之;水分条件(降水量、相对湿度)对蒸散的影响也以正相关为主。  相似文献   

10.
中国西北地区蒸发散量计算的遥感研究   总被引:49,自引:0,他引:49  
自然陆面区域蒸发散的教育处是一个复杂的问题,在利用遥感资料求取地表特征参数的基础上,首先建立了2种极端条件下(裸露地表和全植被覆盖)的裸土蒸发和全植被覆盖蒸散计算模型,然后结合植被覆盖度给出非均匀陆面条件下的区域蒸发散计算方法,实测资料验算表明该模型具有较高的计算精度,最后利用该模型对我国西北5省区的蒸发散量进行了计算,并对该研究区蒸发散的特点进行了分析。  相似文献   

11.
降水中稳定同位素值会因雨滴降落过程中受到云下二次蒸发的影响而发生变化,研究雨滴云下二次蒸发对利用降水氢氧稳定同位素解释水循环过程具有重要意义。本文利用2017年6月—8月甘肃74个地面气象站逐小时观测资料与10个高空气象站定时观测资料,基于改进的Stewart模型(分层假设)深入研究了甘肃夏季降水同位素的云下二次蒸发。结果表明:(1)甘肃各分区的云下二次蒸发存在明显的时间变化,从月尺度看,Δd(d-excess变化量)均值在陇南山地和甘南高原均为7月最小,在陇中黄土高原和河西地区均为6月最小;从小时尺度看,Δd值在2:00~15:00这一时间段较小,且甘南高原的Δd均值变化幅度最大。(2)从空间来看,陇中黄土高原、甘南高原(除舟曲)、陇南山地(除文县)和河西地区(除马鬃山、酒泉和武威)Δd均值分别-15‰,而陇中黄土高原的Δd均值最高。(3)不同分区蒸发剩余比(f)和Δd的线性关系的斜率均超过1‰/%,这可能与甘肃的气候有关。(4)当气温较高,降水量、相对湿度和雨滴直径较小时,云下二次蒸发效应明显。  相似文献   

12.
《干旱区地理》2021,44(4):914-922
选取吐鲁番新旧站2017年逐小时气温、风速对比观测资料计算小时差值并进行分级;同时选择1988—2018年逐月平均气温、风速做t检验。结果表明:(1)吐鲁番新旧站气温和风速差值均为偏态分布,多数为正且差值分布较分散,仅40.7%的气温差值在-1℃△T1℃之间,32.1%的气温差值在±2℃之外;46%的风速差值在-1 m·s~(-1)△S1 m·s~(-1)之间,21.4%的风速差值在±2 m·s~(-1)之外。(2)气温负差值多发生在白天11:00—18:00,冷季10月—次年5月负差值略大,平均负差值最低可达-1.5℃。气温正差值多发生在18:00—次日11:00之间,差值较大值(△T≥2℃)主要发生在暖季4—11月,逐时平均气温差值最高可达5℃;正是因为暖季夜晚新旧站气温差值较大,造成2016年吐鲁番迁站时春、夏、秋季3—11月月平均气温出现断点(通过P0.01的显著性t检验)。(3)与同处干旱区的阿克苏站比较发现,下垫面及其观测环境对气温的影响是导致这种结果的根本原因。风速正差值△S≥1 m·s~(-1)多发生在暖季3—9月;风速差值较小值(-1 m·s~(-1)△S1 m·s~(-1))在冷季(10—12月和1—3月)比例较多。t检验显示(P0.01),2016年迁站各月平均风速均出现了断点。  相似文献   

13.
文献所给计算蒸发力E_0的М·И·Будыко公式为:E_0=ρD(q_s-q'_a),(1)其中,ρ为空气密度,D为外扩散系数,q_s为与蒸发面温度T_s相应的饱和比湿,q'_a为空气的实际比湿.由方程R_0-Q=L_ρD(q_s-q'_a)+(4δσT_a~3+ρC_pD)(T_s-T_a)(2)解得.其中,R_0表示据气温算出有效辐射时所得的蒸发面湿润状况下的辐射平衡值,Q表示蒸发面与其下层土壤间的热交换量,δ是灰体辐射系数,σ是史蒂芬-波尔兹曼常数,  相似文献   

14.
利用2001—2014年MOD16蒸散产品数据、MOD13植被[WTBX]NDVI[WTBZ]数据以及常规气象资料,基于植被指数、地表净辐射、气温优化改进混合型线性双源遥感蒸散模型,拟合地表蒸散分析实际蒸散(ET)、潜在蒸散(PET)时空动态变化特征,结合气象站实测蒸发皿数据验证MOD16数据在绿洲地区的适用性。进一步定义蒸散干旱指数(EDI)并计算△EDI进行研究区干旱特征分析,为大面积特殊地形蒸散估算研究和干旱监测提供一定依据。结果表明:(1) MOD16产品数据与研究区实测蒸发皿数据的相关性很好,通过0.01显著性检验,基于MOD16数据估算南疆绿洲地区蒸散量检验可行。(2) 2001—2014年均蒸散量总体变化不大,四季差异明显,ET与PET空间变化趋势相反;ET、PET年均差值较大,绿洲地区地表缺水情况严重。(3) EDI指数绿洲地区年均值总体偏大,△EDI对旱情的反映和干旱程度的判断比较可靠。  相似文献   

15.
近36年新疆天山山区气候暖湿变化及其特征分析   总被引:23,自引:5,他引:18  
根据天山山区10个气象台站1971-2006年的历史气候资料,采用线性回归、最大熵谱、Mann-Kendall和自然正交分解(EOF)等方法,对近36年的年平均气温、降水量、最大可能蒸散量和下垫面湿润指数等气候要素的基本变化特征进行了分析,结果表明:(1) 近36年天山山区年平均气温呈升高趋势,降水量呈增多趋势,年最大可能蒸散量呈减少趋势,下垫面湿润指数呈增大趋势.受其综合影响,近36年天山山区气候呈较明显的暖湿化变化趋势. (2) 突变检测表明,天山山区年平均气温在1976年发生了突变性的升高,降水量和湿润指数在1986年发生了突变性的增大,而最大可能蒸散量在1986年发生了突变性的减小.(3) 36年里,降水量和湿润指数的变化不存在<36年的显著周期,而温度变化具有>36年、9年、4年和2.4年的显著周期,最大可能蒸散量变化具有>36年、5.1年和2.4年的显著周期.(4) 10站的年平均气温、降水量、最大可能蒸散量和湿润指数等四要素的最主要空间分布特征均是同向变化.  相似文献   

16.
农田蒸散,土壤蒸发与水分有效利用   总被引:38,自引:0,他引:38  
王会肖  刘昌明 《地理学报》1997,52(5):447-454
本文通过试验研究和模型模拟,对作物生长期间的水分条件,作物蒸散规律,土壤蒸发占蒸散的比例,覆盖的节水效应和灌溉对作物生长的影响进行了研究,对如何科学合理有效地利用水分提供依据。  相似文献   

17.
沙漠人工植被区土壤蒸发测定   总被引:22,自引:7,他引:15  
在2003年生长季,应用自制的微型蒸渗仪(Micro Lysimeter)、大型称重式蒸渗仪(Lysimeter)和TDR对比测定沙漠油蒿(Artemisia ordosica)和柠条(Caragana korshinskii)人工植被区与裸沙土壤蒸发,结果表明:在沙漠人工植被区由于植被比较稀疏,土壤蒸发不受植株的遮阴的影响,但不同样地的蒸发量是有差异的,而样地和位置间的互作不显著。为提高蒸发测定精度,建议微型蒸渗仪勤于换土,尤其是在大降水发生之后;将横插式 TDR探头改为竖插式能探测到小降水后的蒸发量。在沙漠区有很大比例的蒸发发生在紧接降水之后。以微型蒸渗仪的测定结果为主,结合大型称重式蒸渗仪的测定结果推算出整个试验期间的裸沙、油蒿和柠条样地的蒸发量为 111.6mm、93.8 mm和99.3 mm,油蒿和柠条样地的蒸发量分别占同期蒸散量的45.1%和43.6%;油蒿和柠条样地均以8月份日蒸发量0.93 mm·d-1和1.10 mm·d-1最高,5月份日蒸发量0.30 mm·d-1和0.28 mm·d-1最低。  相似文献   

18.
中国西部局地蒸发水汽贡献率探讨   总被引:7,自引:0,他引:7  
利用降水、湖水同位素数据并结合相关模型,对我国西部地区的二次蒸发效应以及不同类型水汽对区域降水的贡献率进行了定量的讨论,研究得到以下结论:①夏季风期间,天山-阿勒泰地区所受到的二次蒸发效应较为明显;而青藏高原地区,水体蒸发水汽的向上补给则是影响该区域在全年任何时段下氢氧同位素值发生变化的主要因素.②天山-阿勒泰地区在全年任何时段下均存在二次蒸发效应,且夏季风时的作用程度明显强烈,蒸发比值介于13%~20%,均值为16.7%,远远大于冬季风时的均值4.3%.③青藏高原地区不论是在夏季风还是冬季风期间,上风向水汽对区域降水的贡献率最大,所占比重基本大于50%,贡献率最小的是水体蒸发产生的水汽,其值普遍小于10%;而蒸腾作用产生水汽的贡献率介于两者之间.  相似文献   

19.
雪是春季径流和土壤水的主要来源。目前计算雪面蒸发最常用库兹明、康斯坦丁和库兹涅佐夫所提出的方法。库兹明计算雪面蒸发的公式是: E=(0.18+0.10μ_(10))(e_v-e_2)(1)式中E为蒸发量,毫米/日;μ_(10)为风向标风速,米/秒;e_v为最大水汽压,毫巴,由雪面温度计算,e_2为高度2米处的水汽压,毫巴。用这个公式计算要花费大量时间。另外,因雪面温度测量不准(特别是在晴天),计算误差较大。  相似文献   

20.
青藏高原念青唐古拉峰地区气候特征初步分析   总被引:7,自引:1,他引:7  
利用青藏高原念青唐古拉峰地区扎当冰川垭口(30°28.07′N,90°39.03′E,5 800 m a.s.l.)、南坡(30°22.87′N,90°40.36′E,5 100 m a.s.l.)和北坡(30°29.06′N,90°37.46′E,5 400 m a.s.l.)三台自动气象站一年的近地层观测资料,分析了该地区温度、湿度、风速风向和辐射等气象要素的季节变化特征,探讨了南、北坡局地气候差异形成的原因。结果表明:垭口、南坡、北坡年平均气温分别为-6.9℃、-1.1℃和-3.4℃;北坡(扎当冰川)消融期气温直减率大,年平均值为0.87℃/100 m;海拔越高,气温日较差、气温直减率波动越大;垭口相对湿度最大,饱和水汽压最小;该地区相对湿度与海拔呈正向关系,而饱和水汽压与之呈反向关系;该地区局地环流特征明显;总辐射5月出现最大值,南坡辐射比北坡小,与大气所含水汽、天空云量、下垫面性质差异等因素有关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号