首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We studied geology and main rock assemblages of the Precambrian Kan, Arzybei, and Derba terranes of the Central Asian Fold Belt which border the Siberian craton in the southwest. The Precambrian terranes include three isotopic provinces (Paleoproterozoic, Mesoproterozoic, and Neoproterozoic) distinguished from the Sm-Nd isotope compositions of granitoids, felsic metavolcanics, and metasediments. The terranes formed in three stages of crustal evolution: 2.3–2.5, 0.9–1.1, and 0.8–0.9 Ga. Proterozoic juvenile crust was produced by subduction-related magmatism; it was originally of transitional composition and transformed into continental crust by potassic plutonism as late as the Late Vendian-Cambrian. Terrigenous sediments in the Arzybei and Derba terranes vary in T(DM) Nd model ages from 1.0 to 2.0 Ga. The Nd ages of the underlying metavolcanics and lowest T(DM) of metasediments indicate that terrigenous sedimentation started in the Neoproterozoic. It was maintained by erosion of Mesoproterozoic-Neoproterozoic crust and, to a lesser extent, of Early Precambrian rocks on the craton margin or in Paleoproterozoic terranes. Ar-Ar dating of amphiboles and biotites from metamorphic rocks and U-Pb dating of zircons from granitoids yielded 600–555 and 500–440 Ma, respectively, corresponding to the Vendian and Early Paleozoic stages of nearly synchronous metamorphism and plutonism. Accretion and collision events caused amalgamation of the Paleoproterozoic, Mesoproterozoic, and Neoproterozoic terranes in the Vendian and their collision with the Siberian craton. The lateral growth of the paleocontinent completed in the Late Ordovician.  相似文献   

2.
秦岭岩群被认为是出露于北秦岭地体内最古老的前寒武纪基底岩石,记录了北秦岭造山带的地壳形成和演化历史。本文报道丹凤-西峡地区五件秦岭岩群片麻岩锆石U-Pb年龄结果,限定其形成和变质时代,探讨北秦岭地体的构造归属。定年结果表明,岩浆成因锆石颗粒的年龄集中在1400~1600Ma左右和850~950Ma左右,记录两期主要岩浆活动。6粒锆石具有变质成因特征,低Th/U比值(0.03),206Pb/238U年龄变化在510~465Ma之间,加权平均值477±18Ma。这一古生代变质叠加时代与北秦岭地体南北缘高压变质作用时代基本一致,说明秦岭岩群遭受到北秦岭造山带俯冲-碰撞造山过程的变质作用。秦岭岩群主要形成于中元古代晚期至新元古代早期,基底岩石缺乏早元古代和太古代岩浆活动的记录。在岩浆作用时代上,北秦岭地体与广泛发育新元古代中-晚期岩浆作用的扬子陆块北缘有差别,也不同于晚太古代-早元古代的华北陆块南缘,可能是中-新元古代形成的独立微陆块。  相似文献   

3.
We investigate extension events in the southern Siberian craton between 1.8 and 0.7 Ga. Signature of Late Paleoproterozoic within-plate extension in the Northern Baikal region is found in 167  29 Ma dike swarms. A Mesoproterozoic extension event was associated with intrusion of the 1535 ± 14 Ma Chernaya Zima granitoids into the Urik-Iya graben deposits. Neoproterozoic extension recorded in the Sayan-Baikal dike belt (740-780 Ma dike complexes) was concurrent with the breakup of the Rodinia supercontinent and the initiation of the Paleoasian passive margin along the southern edge of the Siberian craton. The scale of rifting-related magmatism and the features of the coeval sedimentary complexes in the southern Siberian craton indicate that Late Paleoproterozoic and Early Mesoproterozoic extension did not cause ocean opening, and the Paleoasian Ocean opened as a result of Neoproterozoic rifting.  相似文献   

4.
塔里木盆地东南缘的阿尔金山被认为是塔里木克拉通变质基底的主要出露地区之一。 本文通过阿尔金山北坡不整合在太古代-古元古代变质基底之上的安南坝群中的碎屑岩和中南阿尔金中深变质岩石(原定为阿尔金岩群)的锆石U-Pb年代学研究,来确定塔里木盆地东南缘变质基底的性质及所经历的多期构造热历史。研究结果显示,塔里木盆地东南缘的安南坝群中含砾砂岩的碎屑锆石年龄集中在1.92Ga左右,少量在2.0~2.4Ga,表明其碎屑物质主要来源于下伏的太古代-早元古代米兰岩群和相关的深成侵入体。在中阿尔金地块和南阿尔金俯冲碰撞杂岩带的深变质岩石中,锆石U-Pb年代学数据表明其记录有新元古代早期(920~940Ma)、新元古代晚期(760Ma左右)和早古生代(450~500Ma)三期构造热事件,新元古代早期的构造热事件与塔里木(或晋宁)造山作用有关,它普遍存在于塔里木盆地周缘的和南中国地块(扬子克拉通)的变质基底岩石中,与Rodinia超级大陆汇聚相关;新元古代晚期的构造热事件也同样广泛存在于塔里木盆地周缘和扬子克拉通之中,被认为与Rodinia超大陆的裂解作用有关。因此,在新元古代时期,阿尔金的地质演化历史与扬子克拉通非常相似,而与华北则有很大的不同,锆石U-Pb测定还表明中南阿尔金的深变质岩石普遍遭受了早古生代的变质作用的改造,显示它们普遍卷入了早古生代的碰撞造山事件之中,成为早古生代碰撞造山带的组成部分。  相似文献   

5.
The east margin of the Siberian craton is a typical passive margin with a thick succession of sedimentary rocks ranging in age from Mesoproterozoic to Tertiary. Several zones with distinct structural styles are recognized and reflect an eastward-migrating depocenter. Mesozoic orogeny was preceded by several Mesoproterozoic to Paleozoic tectonic events. In the South Verkhoyansk, the most intense pre-Mesozoic event, 1000–950 Ma rifting, affected the margin of the Siberian craton and formed half-graben basins, bounded by listric normal faults. Neoproterozoic compressional structures occurred locally, whereas extensional structures, related to latest Neoproterozoic–early Paleozoic rifting events, have yet to be identified. Devonian rifting is recognized throughout the eastern margin of the Siberian craton and is represented by numerous normal faults and local half-graben basins.Estimated shortening associated with Mesozoic compression shows that the inner parts of ancient rifts are now hidden beneath late Paleozoic–Mesozoic siliciclastics of the Verkhoyansk Complex and that only the outer parts are exposed in frontal ranges of the Verkhoyansk thrust-and-fold belt. Mesoproterozoic to Paleozoic structures had various impacts on the Mesozoic compressional structures. Rifting at 1000–950 Ma formed extensional detachment and normal faults that were reactivated as thrusts characteristic of the Verkhoyansk foreland. Younger Neoproterozoic compressional structures do not display any evidence for Mesozoic reactivation. Several initially east-dipping Late Devonian normal faults were passively rotated during Mesozoic orogenesis and are now recognized as west-dipping thrusts, but without significant reactivation displacement along fault surfaces.  相似文献   

6.
The Baoshan block of the Tethyan Yunnan, southwestern China, is considered as northern part of the Sibumasu microcontinent. Basement of this block that comprises presumably greenschist-facies Neoproterozoic metamorphic rocks is covered by Paleozoic to Mesozoic low-grade metamorphic sedimentary rocks. This study presents zircon ages and Nd–Hf isotopic composition of granites generated from crustal reworking to reveal geochemical feature of the underlying basement. Dating results obtained using the single zircon U–Pb isotopic dilution method show that granites exposed in the study area formed in early Paleozoic (about 470 Ma; Pingdajie granite) and in late Yanshanian (about 78–61 Ma, Late Cretaceous to Early Tertiary; Huataolin granite). The early Paleozoic granite contains Archean to Mesoproterozoic inherited zircons and the late Yanshanian granite contains late Proterozoic to early Paleozoic zircon cores. Both granites have similar geochemical and Nd–Hf isotopic charateristics, indicating similar magma sources. They have whole-rock T DM(Nd) values of around 2,000 Ma and zircon T DM(Hf) values clustering around 1,900–1,800 and 1,600–1,400 Ma. The Nd–Hf isotopic data imply Paleoproterozoic to Mesoproterozoic crustal material as the major components of the underlying basement, being consistent with a derivation from Archean and Paleoproterozoic terrains of India or NW Australia. Both granites formed in two different tectonic events similarly originated from intra-crustal reworking. Temporally, the late Yanshanian magmatism is probably related to the closure of the Neotethys ocean. The early Paleozoic magmatism traced in the Baoshan block indicates a comparable history of the basements during early Paleozoic between the SE Asia and the western Tethyan belt, such as the basement outcrops in the Alpine belt and probably in the European Variscides that are considered as continental blocks drifting from Gondwana prior to or simultaneously with those of the SE Asia.  相似文献   

7.
青藏高原南部拉萨地体的变质作用与动力学   总被引:3,自引:0,他引:3  
董昕  张泽明  向华  贺振宇 《地球学报》2013,34(3):257-262
拉萨地体位于欧亚板块的最南缘,它在新生代与印度大陆的碰撞形成了青藏高原和喜马拉雅造山带。因此,拉萨地体是揭示青藏高原形成与演化历史的关键之一。拉萨地体中的中、高级变质岩以前被认为是拉萨地体的前寒武纪变质基底。但新近的研究表明,拉萨地体经历了多期和不同类型的变质作用,包括在洋壳俯冲构造体制下发生的新元古代和晚古生代高压变质作用,在陆-陆碰撞环境下发生的早古生代和早中生代中压型变质作用,在洋中脊俯冲过程中发生的晚白垩纪高温/中压变质作用,以及在大陆俯冲带上盘加厚大陆地壳深部发生的两期新生代中压型变质作用。这些变质作用和伴生的岩浆作用表明,拉萨地体经历了从新元古代至新生代的复杂演化过程。(1)北拉萨地体的结晶基底包括新元古代的洋壳岩石,它们很可能是在Rodinia超大陆裂解过程中形成的莫桑比克洋的残余。(2)随着莫桑比克洋的俯冲和东、西冈瓦纳大陆的汇聚,拉萨地体洋壳基底经历了晚新元古代的(~650Ma)的高压变质作用和早古代的(~485Ma)中压型变质作用。这很可能表明北拉萨地体起源于东非造山带的北端。(3)在古特提斯洋向冈瓦纳大陆北缘的俯冲过程中,拉萨地体和羌塘地体经历了中古生代的(~360Ma)岩浆作用。(4)古特提斯洋盆的闭合和南、北拉萨地体的碰撞,导致了晚二叠纪(~260Ma)高压变质带和三叠纪(~220Ma)中压变质带的形成。(5)在新特提斯洋中脊向北的俯冲过程中,拉萨地体经历了晚白垩纪(~90Ma)安第斯型造山作用,形成了高温/中压型变质带和高温的紫苏花岗岩。(6)在早新生代(55~45Ma),印度与欧亚板块的碰撞,导致拉萨地体地壳加厚,形成了中压角闪岩相变质作用和同碰撞岩浆作用。(7)在晚始新世(40~30Ma),随着大陆的继续汇聚,南拉萨地体经历了另一期角闪岩相至麻粒岩相变质作用和深熔作用。拉萨地体的构造演化过程是研究汇聚板块边缘变质作用与动力学的最佳实例。  相似文献   

8.
The Central Asian Orogenic Belt (CAOB) was produced as a consequence of the successive closure of the Paleoasian Ocean and the accretion of structures formed within it (island arcs, oceanic islands, and backarc basins) to the Siberian continent. The belt started developing in the latest Late Neoproterozoic, and this process terminated in the latest Permian in response to the collision of the Siberian and North China continents that resulted in closure of the Paleoasian ocean (Metcalfe, 2006; Li et al., 2014; Liu et al., 2009; Xiao et al., 2010; Didenko et al., 2010). Throughout the whole evolutionary history of this Orogenic Belt, a leading role in its evolution was played by convergent processes. Along with these processes, an important contribution to the evolution of the composition and structure of the crust in the belt was made by deep geodynamic processes related to the activity of mantle plumes.Indicator complexes of the activity of mantle plumes are identified, and their major distribution patterns in CAOB structures are determined. A number of epochs and areas of intraplate magmatism are distinguished, including the Neoproterozoic one (Rodinia breakup and the origin of alkaline rock belt in the marginal part of the Siberian craton); Neoproterozoic–Early Cambrian (origin of oceanic islands in the Paleoasian Ocean); Late Cambrian–Early Ordovician (origin of LIP within the region of Early Caledonian structures in CAOB); Middle Paleozoic (origin of LIP in the Altai–Sayan rift system); Late Paleozoic–Early Mesozoic (origin of the Tarim flood-basalt province, Central Asian rift system, and a number of related zonal magmatic areas); Late Mesozoic–Cenozoic (origin of continental volcanic areas in Central Asia).Geochemical and isotopic characteristics are determined for magmatic complexes that are indicator complexes for areas of intraplate magmatism of various age, and their major evolutionary trends are discussed. Available data indicate that mantle plumes practically did not cease to affect crustal growth and transformations in CAOB in relation to the migration of the Siberian continent throughout the whole time span when the belt was formed above a cluster of hotspots, which is compared with the African superplume.  相似文献   

9.
Mafic rocks are widespread on the Liaodong Peninsula and adjacent regions of the North China Craton. The majority of this magmatism was originally thought to have occurred during the Pre-Sinian, although the precise geochronological framework of this magmatism was unclear. Here, we present the results of more than 60 U–Pb analyses of samples performed over the past decade, with the aim of determining the spatial and temporal distribution of mafic magmatism in this area. These data indicate that Paleoproterozoic–Mesoproterozoic mafic rocks are not as widely distributed as previously thought. The combined geochronological data enabled the subdivision of the mafic magmatism into six episodes that occurred during the middle Paleoproterozoic, the late Paleoproterozoic, the Mesoproterozoic, the Late Triassic, the Middle Jurassic, and the Early Cretaceous. The middle Paleoproterozoic (2.1–2.2 Ga) mafic rocks formed in a subduction-related setting and were subsequently metamorphosed during a ca. 1.9 Ga arc–continent collision event. The late Paleoproterozoic (ca. 1.87–1.82 Ga) bimodal igneous rocks mark the end of a Paleoproterozoic tectono-thermal event, whereas Mesoproterozoic mafic dike swarms record global-scale Mesoproterozoic rifting associated with the final breakup of the Columbia supercontinent. The Late Triassic mafic magmatism is part of a Late Triassic magmatic belt that was generated by post-collisional extension. The Middle Jurassic mafic dikes formed in a compressive tectonic setting, and the Early Cretaceous bimodal igneous rocks formed in an extensional setting similar to a back-arc basin. These latter two periods of magmatism were possibly related to subduction of the Paleo-Pacific plate.  相似文献   

10.
Geological data on the Precambrian basic complexes of the Siberian Craton and their isotopic age are considered. The three main episodes of Precambrian basic magmatism of Siberia correspond to certain stages of the geodynamic evolution of the craton and the Earth as a whole. In the Late Paleoproterozoic, largely in the south and the north of the craton, the basic rocks were emplaced against the background of post-collision extension, which followed the preceding collision-accretion stage responsible for the formation of the craton. In the Mesoproterozoic, primarily in the north of the craton, basic magmatism was controlled by dispersed within-plate extension apparently caused by the impact of a mantle plume. Neoproterozoic basic magmatism widespread in the southern and southeastern parts of the craton was caused by rifting, which accompanied breakdown of the Rodinia supercontinent and opening of the Paleoasian ocean along the southern margin of the Siberian Craton.  相似文献   

11.
Packages of Late Paleozoic tectonic nappes and associated major NE-trending strike-slip faults are widely developed in the Altai–Sayan folded area. Fragments of early deformational phases are preserved within the Late Paleozoic allochthons and autochthons. Caledonian fold-nappe and strike-slip structures, as well as accompanying metamorphism and granitization in the region, are typical of the EW-trending suture-shear zone separating the composite Kazakhstan–Baikal continent and Siberia. In the Gorny Altai region, the Late Paleozoic nappes envelop the autochthon, which contains a fragment of the Vendian–Cambrian Kuznetsk–Altai island arc with accretionary wedges of the Biya–Katun’ and Kurai zones. The fold-nappe deformations within the latter zones occurred during the Late Cambrian (Salairian) and can thus be considered Salairian orogenic phases. The Salairian fold-nappe structure is stratigraphically overlain by a thick (up to 15 km) well-stratified rock unit of the Anyui–Chuya zone, which is composed of Middle Cambrian–Early Ordovician fore-arc basin rocks unconformably overlain by Ordovician–Early Devonian carbonate-terrigenous passive-margin sequences. These rocks are crosscut by intrusions and overlain by a volcanosedimentary unit of the Devonian active margin. The top of the section is marked by Famennian–Visean molasse deposits onlapping onto Devonian rocks. The molasse deposits accumulated above a major unconformity reflects a major Late Paleozoic phase of folding, which is most pronounced in deformations at the edges of the autochthon, nearby the Kaim, Charysh–Terekta, and Teletskoe–Kurai fault nappe zones. Upper Carboniferous coal-bearing molasse deposits are preserved as tectonic wedges within the Charysh–Terekta and Teletskoe–Kurai fault nappe zones.Detrital zircon ages from Middle Cambrian–Early Ordovician rocks of the Anyui–Chuya fore-arc zone indicate that they were primarily derived from Upper Neoproterozoic–Cambrian igneous rocks of the Kuznetsk–Altai island arc or, to a lesser extent, from an Ordovician–Early Devonian passive margin. A minor age population is represented by Paleoproterozoic grains, which was probably sourced from the Siberian craton. Zircons from the Late Carboniferous molasse deposits have much wider age spectra, ranging from Middle Devonian–Early Carboniferous to Late Ordovician–Early Silurian, Cambrian–Early Ordovician, Mesoproterozoic, Early–Middle Proterozoic, and early Paleoproterozoic. These ages are consistent with the ages of igneous and metamorphic rocks of the composite Kazakhstan–Baikal continent, which includes the Tuva-Mongolian island arc with accreted Gondwanan blocks, and a Caledonian suture-shear zone in the north. Our results suggest that the Altai–Sayan region is represented by a complex aggregate of units of different geodynamic affinity. On the one hand, these are continental margin rocks of western Siberia, containing only remnants of oceanic crust embedded in accretionary structures. On the other hand, they are represented by the Kazakhstan–Baikal continent composed of fragments of Gondwanan continental blocks. In the Early–Middle Paleozoic, they were separated by the Ob’–Zaisan oceanic basin, whose fragments are preserved in the Caledonian suture-shear zone. The movements during the Late Paleozoic occurred along older, reactivated structures and produced the large intracontinental Central Asian orogen, which is interpreted to be a far-field effect of the colliding East European, Siberian, and Kazakhstan–Baikal continents.  相似文献   

12.
分布在华北克拉通北缘中段崇礼—赤城地区的红旗营子(岩)群主要由变质表壳岩、晚古生代的闪长质—石英闪长质片麻岩和古元古代—新太古代的变质岩残片或残块组成。利用SHRIMP和LA-ICPMS法对红旗营子(岩)群变质表壳岩的锆石同位素年代学研究表明,变质表壳岩样品中除大量古元古代—新太古代的锆石年龄信息外,还有许多中元古代—晚古生代的锆石,且均有晚古生代甚至早中生代的多阶段变质作用的记录。这些证据表明红旗营子(岩)群并非早前寒武纪岩石建造,而是一套晚古生代的变质杂岩。红旗营子(岩)群周围侵入体的锆石U-Pb测年表明岩浆作用与变质作用具有较好的相关性,它们与中亚造山带多阶段的俯冲、碰撞造山和后造山伸展事件相关。由于红旗营子杂岩中含有晚古生代退变榴辉岩和变质方辉橄榄岩,这可能意味着华北克拉通北缘的冀北地块在晚古生代早期曾经从华北克拉通上裂开,在中亚造山带古亚洲洋板块俯冲作用的影响下又重新拼合,红旗营子杂岩代表华北克拉通北缘的冀北地块与华北克拉通在晚古生代重新拼合的俯冲碰撞拼贴带。  相似文献   

13.
《Gondwana Research》2014,25(1):170-189
The Lhasa terrane in southern Tibet is composed of Precambrian crystalline basement, Paleozoic to Mesozoic sedimentary strata and Paleozoic to Cenozoic magmatic rocks. This terrane has long been accepted as the last crustal block to be accreted with Eurasia prior to its collision with the northward drifting Indian continent in the Cenozoic. Thus, the Lhasa terrane is the key for revealing the origin and evolutionary history of the Himalayan–Tibetan orogen. Although previous models on the tectonic development of the orogen have much evidence from the Lhasa terrane, the metamorphic history of this terrane was rarely considered. This paper provides an overview of the temporal and spatial characteristics of metamorphism in the Lhasa terrane based mostly on the recent results from our group, and evaluates the geodynamic settings and tectonic significance. The Lhasa terrane experienced multistage metamorphism, including the Neoproterozoic and Late Paleozoic HP metamorphism in the oceanic subduction realm, the Early Paleozoic and Early Mesozoic MP metamorphism in the continent–continent collisional zone, the Late Cretaceous HT/MP metamorphism in the mid-oceanic ridge subduction zone, and two stages of Cenozoic MP metamorphism in the thickened crust above the continental subduction zone. These metamorphic and associated magmatic events reveal that the Lhasa terrane experienced a complex tectonic evolution from the Neoproterozoic to Cenozoic. The main conclusions arising from our synthesis are as follows: (1) The Lhasa block consists of the North and South Lhasa terranes, separated by the Paleo-Tethys Ocean and the subsequent Late Paleozoic suture zone. (2) The crystalline basement of the North Lhasa terrane includes Neoproterozoic oceanic crustal rocks, representing probably the remnants of the Mozambique Ocean derived from the break-up of the Rodinia supercontinent. (3) The oceanic crustal basement of North Lhasa witnessed a Late Cryogenian (~ 650 Ma) HP metamorphism and an Early Paleozoic (~ 485 Ma) MP metamorphism in the subduction realm associated with the closure of the Mozambique Ocean and the final amalgamation of Eastern and Western Gondwana, suggesting that the North Lhasa terrane might have been partly derived from the northern segment of the East African Orogen. (4) The northern margin of Indian continent, including the North and South Lhasa, and Qiangtang terranes, experienced Early Paleozoic magmatism, indicating an Andean-type orogeny that resulted from the subduction of the Proto-Tethys Ocean after the final amalgamation of Gondwana. (5) The Lhasa and Qiangtang terranes witnessed Middle Paleozoic (~ 360 Ma) magmatism, suggesting an Andean-type orogeny derived from the subduction of the Paleo-Tethys Ocean. (6) The closure of Paleo-Tethys Ocean between the North and South Lhasa terranes and subsequent terrane collision resulted in the formation of Late Permian (~ 260 Ma) HP metamorphic belt and Triassic (220 Ma) MP metamorphic belt. (7) The South Lhasa terrane experienced Late Cretaceous (~ 90 Ma) Andean-type orogeny, characterized by the regional HT/MP metamorphism and coeval intrusion of the voluminous Gangdese batholith during the northward subduction of the Neo-Tethyan Ocean. (8) During the Early Cenozoic (55–45 Ma), the continent–continent collisional orogeny has led to the thickened crust of the South Lhasa terrane experiencing MP amphibolite-facies metamorphism and syn-collisional magmatism. (9) Following the continuous continent convergence, the South Lhasa terrane also experienced MP metamorphism during Late Eocene (40–30 Ma). (10) During Mesozoic and Cenozoic, two different stages of paired metamorphic belts were formed in the oceanic or continental subduction zones and the middle and lower crust of the hanging wall of the subduction zone. The tectonic imprints from the Lhasa terrane provide excellent examples for understanding metamorphic processes and geodynamics at convergent plate boundaries.  相似文献   

14.
兴蒙造山带的基底属性与构造演化过程   总被引:5,自引:0,他引:5       下载免费PDF全文
许文良  孙晨阳  唐杰  栾金鹏  王枫 《地球科学》2019,44(5):1620-1646
为了解兴蒙造山带基底属性和多个构造体系演化与叠加历史,系统总结了近年来在基础地质研究中取得的新成果,并利用这些成果讨论了兴蒙造山带的基底属性与演化历史.兴蒙造山带是指我国东北地区古生代构造作用影响的地区,这些地区也遭受了中生代构造作用的叠加与改造.兴蒙造山带主要由微陆块和其间的造山带组成.虽然传统上认为属于前寒武纪结晶基底的地质体主要已解体为古生代和早中生代,但随着新太古代和古元古代地质体的相继发现,以及新生代玄武岩中幔源古元古代橄榄岩包体的发现,可以判定兴蒙造山带内微陆块应具有古老的前寒武纪基底,并且壳幔是耦合的.微陆块内部地壳增生以垂向增生为主,且主要发生在新元古代和中元古代,以及次要的新太古代和古生代.相反,陆块间造山带或岛弧地体的陆壳则以侧向增生为主,且主要发生在新元古代和古生代.额尔古纳地块与兴安地块的拼合发生在早古生代早期;兴安地块与松嫩地块的拼合发生在早石炭世晚期;松嫩地块与佳木斯地块的拼合发生在早古生代晚期,中生代早期又经历了裂解与再闭合的构造演化过程;华北克拉通北缘增生杂岩带与北方微陆块群的最终拼合发生在晚二叠世-中三叠世,古亚洲洋的最终闭合发生在中三叠世,且为剪刀式闭合.晚古生代晚期蒙古-鄂霍茨克大洋板块南向俯冲作用的发生以及早中生代(三叠纪-早侏罗世)的持续南向俯冲,控制了大兴安岭-冀北-辽西地区的岩浆活动,蒙古-鄂霍茨克大洋的闭合发生在中侏罗世,晚侏罗世-早白垩世主要表现为闭合后的伸展环境.古太平洋板块中生代的俯冲起始时间为早侏罗世,晚侏罗世-早白垩世早期东北亚陆缘主要表现为走滑的构造属性和陆缘地体从低纬度到高纬度的构造就位过程,早白垩世晚期-古近纪岩浆作用的向东收缩揭示了古太平洋板块的持续俯冲和俯冲板片的后撤过程,古近纪晚期日本海的打开标志着东北亚陆缘从活动陆缘已经转变为沟-弧-盆体系,并且标志着东亚大地幔楔的形成.  相似文献   

15.
The Tianshan range could have been built by both late Early Paleozoic accretion and Late Paleozoic collision events. The late Early Paleozoic Aqqikkudug-Weiya suture is marked by Ordovician ophiolitic melange and a Silurian flysch sequence, high-pressure metamorphic relics, and mylonitized rocks. The Central Tianshan belt could principally be an Ordovician volcanic arc; whereas the South Tianshan belt, a back-arc basin. Macro- and microstructures, along with unconformities, provide some kinematic and chronological constraints on 2-phase ductile deformation. The earlier ductile deformation occurring at ca. 400 Ma was marked by north-verging ductile shearing, yielding granulite-bearing ophiolitic melange blocks and garnet-pyroxene-facies ductile deformation, and the later deformation, a dextral strike-slip tectonic process, occurred during the Late Carboniferous-Early Permian. Early Carboniferous molasses were deposited unconformably on pre-Carboniferous metamorphic and ductilely sheared rocks, implying t  相似文献   

16.
The Phanerozoic history of mafic magmatism in the southern Siberian craton included three major events. The earliest event (~500 Ma) recorded in dolerite dikes occurred during accretion and collision at the early stage of the Central Asian orogen. Injection of mafic melts into the upper crust was possible in zones of diffuse extension within the southern Siberian craton which acted as an indenter. The Late Paleozoic event (~275 Ma) produced dikes that intruded in a setting of subduction-related extension at the back of the active continental margin of Siberia during closure of the Mongolia–Okhotsk ocean, as well as slightly older volcanics (290 Ma) in the Transbaikalian segment of the Central Asian orogen. Early Mesozoic magmatism in the southern Siberian craton resulted in numerous 240–250 Ma mafic intrusions in the Angara–Taseeva basin. The intrusions (Siberian traps) appeared as the subducting slab of the Mongolia–Okhotsk ocean interacted with a lower mantle plume. The post-Late Paleozoic ages of flood basalts (290–275 Ma) correspond to progressive northwestward (in present coordinates) motion of the slab beneath the southern craton margin which likely ceased after the slab had reached the zone of the Siberian superplume. Since its consolidation after the Early Mesozoic activity, the crust in the area has no longer experienced extension favorable for intrusion of basaltic magma.  相似文献   

17.
A mosaic of terranes or blocks and associated Late Paleozoic to Mesozoic sutures are characteristics of the north Sanjiang orogenic belt (NSOB). A detailed field study and sampling across the three magmatic belts in north Sanjiang orogenic belt, which are the Jomda–Weixi magmatic belt, the Yidun magmatic belt and the Northeast Lhasa magmatic belt, yield abundant data that demonstrate multiphase magmatism took place during the late Paleozoic to early Mesozoic. 9 new zircon LA–ICP–MS U–Pb ages and 160 published geochronological data have identified five continuous episodes of magma activities in the NSOB from the Late Paleozoic to Mesozoic: the Late Permian to Early Triassic (c. 261–230 Ma); the Middle to Late Triassic (c. 229–210 Ma); the Early to Middle Jurassic (c. 206–165 Ma); the Early Cretaceous (c. 138–110 Ma) and the Late Cretaceous (c. 103–75 Ma). 105 new and 830 published geochemical data reveal that the intrusive rocks in different episodes have distinct geochemical compositions. The Late Permian to Early Triassic intrusive rocks are all distributed in the Jomda–Weixi magmatic belt, showing arc–like characteristics; the Middle to Late Triassic intrusive rocks widely distributed in both Jomda–Weixi and Yidun magmatic belts, also demonstrating volcanic–arc granite features; the Early to Middle Jurassic intrusive rocks are mostly exposed in the easternmost Yidun magmatic belt and scattered in the westernmost Yangtza Block along the Garzê–Litang suture, showing the properties of syn–collisional granite; nearly all the Early Cretaceous intrusive rocks distributed in the NE Lhasa magmatic belt along Bangong suture, exhibiting both arc–like and syn–collision–like characteristics; and the Late Cretaceous intrusive rocks mainly exposed in the westernmost Yidun magmatic belt, with A–type granite features. These suggest that the co–collision related magmatism in Indosinian period developed in the central and eastern parts of NSOB while the Yanshan period co–collision related magmatism mainly occurred in the west area. In detail, the earliest magmatism developed in late Permian to Triassic and formed the Jomda–Wei magmatic belt, then magmatic activity migrated eastwards and westwards, forming the Yidun magmatic bellt, the magmatism weakend at the end of late Triassic, until the explosure of the magmatic activity occurred in early Cretaceous in the west NSOB, forming the NE Lhasa magmatic belt. Then the magmatism migrated eastwards and made an impact on the within–plate magmatism in Yidun magmatic belt in late Cretaceous.  相似文献   

18.
http://www.sciencedirect.com/science/article/pii/S1674987111001095   总被引:11,自引:2,他引:9  
During the Late Mesozoic Middle Jurassic-Late Cretaceous,basin and range tectonics and associated magmatism representative of an extensional tectonic setting was widespread in southeastern China as a r...  相似文献   

19.
在青藏高原东北缘的祁连-阿尔金-昆仑早古生代造山系中,夹杂有一些前寒武纪大陆块体,这些地块的组成、性质和演化既蕴含有超大陆聚散的重要信息,也对原特提斯体系的洋陆格局、造山类型和造山机制有重要启示意义。本文综合近年来这些前寒武纪微陆块的研究进展,结合我们所获得的新的研究资料,梳理了这些前寒武纪微陆块变质基底的岩石组成、构造热事件及年代格架,得出以下主要认识:(1)这些前寒武纪微陆块普遍遭受早古生代造山事件的改造并发生再活化。它们或者作为早古生代原特提斯洋的活动大陆边缘,被洋壳俯冲有关的弧岩浆和变质作用改造,以早古生代大陆弧的形式存在;或者被早古生代碰撞造山过程中的陆内变形、增厚地壳及相关的区域变质作用、深熔作用和碰撞型花岗岩所改造。(2)在这些前寒武纪微陆块中,仅仅欧龙布鲁克地块保存有早前寒武纪的变质基底,具有克拉通性质。中元古代以前,欧龙布鲁克地块的变质基底与华北克拉通(特别是阿拉善地块)和塔里木克拉通具有相似的岩石组成和年代格架;而晚中元古代到新元古代,所有的前寒武纪微陆块与华南陆块和塔里木陆块的亲缘性更强。(3)青藏高原北缘早古生代造山系中的大部分前寒武纪微陆块可能在罗迪尼亚超大陆解体时已从冈瓦纳大陆北部分离,而柴达木地块记录了泛非期造山作用的构造热事件,可能在泛非造山期(530Ma)以后才从冈瓦纳大陆分开;在青藏高原东北部,晚新元古代-早古生代并不存在统一的原特提斯洋,原特提斯洋的打开是穿时的。  相似文献   

20.
Geological, geochemical, and isotopic data (U-Pb for zircon and Sm-Nd for whole-rock samples) are summarized for Proterozoic and Early Paleozoic geological complexes known from various regions of East Antarctica. The main events of tectonothermal and magmatic activity are outlined and correlated in space and time. The Paleoproterozoic is characterized as a period of rifting in Archean blocks, their partial mobilization, and formation of a new crustal material over a vast area occupied by present-day East Antarctica. In most areas, this material was repeatedly reworked at the subsequent stages of evolution (1800–1700, 1100–1000, 550–500 Ma). Complexes of Mesoproterozoic juvenile rocks (1500, 1400–1200, 1150–1100 Ma) arising in convergent suprasubduction geodynamic settings are established in some areas (basalt-andesite and tonalite-granodiorite associations with characteristic geochemical signatures). The evolution of the Proterozoic regions in East Antarctica may be interpreted as a Wilson cycle with the destruction of the Archean megacontinent 2250 Ma ago and the ultimate closure of the secondary oceanic basins by 1000 Ma ago. The Mesoproterozoic regions make up a marginal volcanic-plutonic belt that combines three provinces of different ages corresponding to consecutive accretion of terranes 1500–1150, 1400–950, and 1150–1050 Ma ago. The Neoproterozoic and Early Paleozoic tectonomagmatic activity developed nonuniformly. In some regions, it is expressed in ductile deformation, granulite-facies metamorphism, and postcollision magmatism; in other regions, a weak thermal effect and anorogenic magmatism are noted. The evolution of metamorphic complexes in the regime of isothermal decompression and the intraplate character of granitoids testify to the collision nature of the Early Paleozoic tectonomagmatic activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号