首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为研究煤炭深部开采区域内温度对煤体渗流以及孔裂隙结构变形的影响,应用CT三维重构技术,借助ANSYS软件对煤体微观孔裂隙结构分别进行共轭传热模拟和热变形模拟。共轭传热模拟结果显示,20℃的水经80℃的煤体壁面加热后以37.13℃流出,煤体温度沿壁面向流体中心逐渐降低,孔裂隙结构对于流动速度和温度的分布有重要的影响,沿流动方向截面连通孔隙率大,则流动速度慢,流体升温快,固体温度下降;反之,则流动速度快,流体升温变缓,固体温度回升。热变形模拟结果显示,骨架变形量与距约束面的距离成正比,约束面附近变形量小,变形方向指向孔裂隙空间,距约束面远的位置变形量大,变形方向向外发散,裂隙的存在会使变形量增加,且随温度载荷的增加,不同孔裂隙结构间的变形差异增加。  相似文献   

2.
作用在裂隙中的渗透力分析   总被引:14,自引:2,他引:14  
裂隙岩体中流体对岩体的作用力, 是研究岩体稳定性的重要问题。本文认为流体作用于裂隙壁面上的力包括两部分, 即垂直于裂隙壁面的流体静水压力 (导致裂隙垂向变形)和平行于裂隙壁面的拖曳力 (导致裂隙切向变形), 此拖曳力为面力。文中以单裂隙水流的立方定律为基础, 运用流体力学的动量方程, 推导出了单一平直光滑无充填裂隙、有充填的裂隙及水流和充填物一起运动情况下, 裂隙壁面承受的切向拖曳力公式。该公式对于分析流体对裂隙岩体变形性能及强度的影响具有重要价值。  相似文献   

3.
为了深刻揭示构造作用下煤中孔、裂隙结构演化特征与机理,采集淮北宿县矿区祁南矿原生结构煤煤样,开展煤的高温高压变形实验(围压50 MPa,温度100~200℃,应变速率1×10~(-3)~5×10~(-6)/s,应变量10%~20%)。通过对温度、应变速率和应变量对煤变形的影响和实验变形煤孔裂隙结构特征分析,结果表明:温度增高,煤的塑性增强,温度达到200℃时,煤变形发生脆-韧性转变;煤的强度随着应变速率降低而减小,从而更容易发生变形;应变量增大加剧了煤脆性或韧性变形程度。同时,温度、应变速率和应变量也影响着煤的孔裂隙发育。随着煤变形程度的增强,显微裂隙越发育且组合越复杂,总孔容呈波动式变化,微孔孔容和比表面积在脆性变形时不断增大,后在韧性变形初级阶段时有减小的趋势。  相似文献   

4.
为了研究瓦斯突出煤体的演化过程,采用煤化变质热模拟实验装置对煤样进行热模拟实验,分析不同实验温度条件下煤样的产气量、气体组分及加热前后煤体结构性能参数的变化规律。结果显示:在较高的实验温度下(450℃)产生的气体总量比较低温度(200℃)下大得多,前者的产气量几乎是后者的10倍,且相应的煤挥发分、坚固性系数和瓦斯放散初速度变化了5~7倍;350℃左右是低变质煤热解大量产生CH4和焦油的临界温度,且在此温度时,低变质煤的坚固性系数和瓦斯放散初速度值已经超过突出煤层鉴定指标。由此认为,温度能改变煤体化学结构并产生瓦斯气体,且大量瓦斯气体的生成改变了煤的物理结构,其综合作用表现为煤体更易破碎,其突出危险性增加。   相似文献   

5.
项彦勇  任鹏 《岩土力学》2014,35(10):2845-2854
核废物地质处置、地热开发、石油开采等工程领域都可能涉及稀疏裂隙岩体中的水流-传热过程。现有的裂隙岩体水流-传热理论模型和计算方法基本上都是以平行光滑壁面裂隙模型为基础的,没有考虑裂隙的壁面局部接触对水流、水-岩热交换以及岩体传热的影响。针对粗糙壁面裂隙水流过程,阐述了基于Stokes方程的Reynolds润滑方程及Hele-Shaw裂隙模型,采用MATLAB软件中的PDE工具求解,并与Walsh的等效水力开度公式进行对比;分析壁面局部接触裂隙水流-传热与填充裂隙水流-传热的相似性,提出了瞬时局部热平衡假设的适用条件,并在裂隙局部接触体传热满足Biot数条件的前提下,计算分析裂隙局部接触体与水流之间的局部热平衡时间及其影响因素;在裂隙局部接触体与水流之间满足瞬时热平衡假设的前提下,利用填充裂隙水流-传热的解析解,计算了壁面局部接触裂隙水及两侧岩石的温度分布,并分析了裂隙局部接触面积率、裂隙开度、裂隙水平均流速对岩石温度和裂隙水温度的影响特征,结果表明:(1)在设定条件下,由于裂隙局部接触体与裂隙水流之间的热交换,裂隙水流对其两侧岩石温度的影响范围随接触面积率的增大而减小,裂隙两侧岩石对裂隙水流温度的影响程度随接触面积率的增大而增大;(2)裂隙开度和裂隙水流速对岩石温度和裂隙水温度的影响方式的影响是一致的,即由于裂隙水流量随裂隙开度和裂隙水流速的增大而增大,裂隙水流对其两侧岩石温度的影响范围随裂隙开度和裂隙水流速的增大而增大,裂隙两侧岩石对裂隙水流温度的影响程度随裂隙开度和裂隙水流速的增大而减小。  相似文献   

6.
王春  胡慢谷  王成 《岩土力学》2023,(3):741-756
基于深层地热能开采时储能区井筒围岩所处的工程环境,采用高温加热、不同温度水浸泡、加热-循环次数及径向冲击加载的方法模拟井筒围岩经历的高温、遇水、循环采热及热冲击等造成的动力扰动等物理力学条件。同时,以不同内孔直径的同心圆孔岩样模拟深层地热井,采用分离式霍普金森压杆试验系统开展热-水-力作用下圆孔花岗岩的动态力学试验,并结合VIC-3D非接触应变测量及数值模拟分析技术监测冲击过程中圆孔岩样裂隙萌发、形成的历程和表面应变演化的规律,揭示热-水-力作用下圆孔岩样的动态损伤破坏机制。研究结果表明:径向冲击荷载作用下圆孔花岗岩先后经历弹性变形、塑性变形、结构失稳破坏3个典型阶段;内孔直径、加热温度、浸水温度、加热-浸水循环次数4因素都弱化了圆孔花岗岩抗外界荷载的能力,但未改变其整体的变形演化规律;圆孔花岗岩的破坏模式是动态拉伸破坏,先沿冲击方向由内孔壁向岩样外壁,再垂直冲击方向由岩样外壁向内孔壁萌发、贯通裂纹,形成近垂直的两组破裂面。最后,基于圆孔花岗岩的损伤变形特征及历程,在一定假设基础上,建立动态损伤结构模型,推演了结构方程,并结合试验结果确定了方程参数,通过对比分析发现,理论拟合曲线与试验...  相似文献   

7.
数字岩石物理技术既可实现煤体孔隙的三维空间表征及重构,又可模拟孔裂隙系统中流体的流动和绝对渗透率的计算。以伯方矿3号煤层为研究对象,基于微米焦点CT扫描与图像处理技术相结合,建立了真实的三维数字岩心模型;应用MATLAB编程及AVIZO软件内含的多种形态学算法,进行了数字岩心孔隙结构量化和表征,建立了等价孔隙网络模型;将AVIZO与COMSOL完美对接,实现了孔隙尺度的渗流模拟、绝对渗透率计算,并探讨了流体运移过程中的压力场及速度场的分布。研究方法丰富了现有数字岩石物理研究手段,为微观尺度上的煤体孔隙结构及流体运移研究提供了一种新的途径。   相似文献   

8.
为探究煤体在不同水力荷载路径下的微观渗流特征,通过CT三维重建技术,建立了基于煤体微观结构的双介质渗流模型,并设计了恒定速度加载(LP1)、常规脉动加载(LP2)和强加载缓卸载加载(LP3)3种水力荷载路径,进行了在不同循环荷载路径下的煤体注水渗流数值模拟试验。另外利用自行搭建的煤体注水装置,探究了3种荷载路径下的宏观损伤情况。结果表明:联通裂隙占孔裂隙结构的73.49%,是影响煤体渗流的主要因素,而孔径为9~23μm的孔隙是孤立孔隙中的主要部分,数量和体积占比均超过了50%;煤体内部孔裂隙结构和荷载路径对渗流速度和压力的分布特征具有重要影响。LP1沿注入方向平均渗流速度的波动较大,LP3则抑制效果明显,且LP3路径较LP1和LP2随时间有较大跨度。LP3的荷载路径相对于LP1具有脉动荷载的疲劳损伤效果,并且造成的损伤程度强于LP2。该研究可为煤体微观结构研究和煤层注水技术参数优化提供方向。  相似文献   

9.
《岩土力学》2015,(12):3439-3446
气体运移引起煤体变形是研究煤层气抽采、预防瓦斯突出与温室气体的地质封存的核心问题。一般认为,有效应力变化是控制岩土类材料骨架变形的关键因素。但大量测试结果表明,煤的渗透率与有效应力(或者孔隙压力)表现出非线性关系。为此,应实时观测在静孔隙压力与三轴应力状态下氦气流动导致原煤变形演化全过程。在静孔隙压力状态下煤体积经历从收缩到回弹过程。注气压力越大,煤的收缩与回弹量越大,且收缩量总是大于回弹量。在三轴应力状态下注气初期煤样迅速膨胀。随着注气达到平衡状态,煤变形过程与约束条件表现出紧密相关性,即在应力约束下煤的膨胀率相比注气初期明显减缓;在位移约束下煤由膨胀转向收缩。上述试验结果表明,仅有孔隙压力作用下,煤基质与裂隙之间孔隙压力差可以压缩煤体,随着气体扩散的进行,可恢复煤的部分压缩变形量。在三轴应力状态下,煤的总体变形是裂隙与基质两者变形共同作用的结果。在应力约束下煤基质与裂隙可以自由膨胀。而煤体在位移约束下,因气体扩散导致煤基质膨胀只能挤压裂隙。根据上述实测结果探讨注气导致煤骨架变形演化机制,为深入理解煤裂隙与基质相互作用对煤渗透率演化提供试验依据。  相似文献   

10.
有效防止水平井段孔眼坍塌是煤层气多分支水平井钻井成功率的有利保障之一,而煤体结构和地应力是影响成孔的两大主要因素。基于目前多分支水平井井身结构和煤体孔裂隙系统特征及弹性力学理论,分别建立了Ⅰ、Ⅱ类煤相关切向应力模型。根据该模型,分析了Ⅰ、Ⅱ类煤中垂直地应力与水平地应力不同大小、与主支和侧支钻进方向不同情况下的受力情况。结果表明:Ⅰ类煤中沿水平最小主应力钻进成孔最难,沿水平最大主应力方向成孔最容易;Ⅱ类煤中钻进方向由外生主裂隙与水平最大主应力夹角决定。   相似文献   

11.
为研究煤内自然对流流动和换热的实质,在重力场中由高温壁面对煤内自然对流的驱动力进行了进一步分析。以高温壁面煤内自然对流为研究对象,采用整场求解法分析了高温壁面内煤的温度场和流场随Rayleigh数的变化。数值研究结果表明:强化传热时宜使高密度流体在上部,低密度流体在下部;削弱传热时宜使低密度流体在上部,高密度流体在下部;随着Ra增加,煤内对流增强且对流强度分布愈来愈不均匀;高温热源的不均匀性是影响对流形成的主要因素之一;当Ra很小时,当煤内对流作用较弱时,热的传输主要依靠传导作用,随着Ra数逐渐增大,对流作用增强,它成为热传输的主要动力。这为煤自然对流传热控制提供了一定的理论依据。  相似文献   

12.
在房山岩体南侧下马岭组构造片岩中发现红柱石横截面上发育一组共扼裂隙和“环带状”构造,环带形状与红柱石变斑晶横截面的形状相似,均压扁为长方形,红柱石的变形是同构造递进变形的结果。裂隙及环带均被流体包裹体所充填,流体包裹体的热爆温度为604~685℃,利用黑云母-石榴子石温度计得出变质温度为592℃。计算出变质发生深度为2.69~3.11km。  相似文献   

13.
变质流体地球化学:从静态定性“流”向动态定量   总被引:10,自引:3,他引:7  
郑永飞  傅斌 《岩石学报》1999,15(4):564-575
对变质岩的矿物学演化研究使岩石学家和地球化学家认识到,流体流动在变质作用过程中发挥着重要的作用。根据变质矿物共生组合、化学和同位素数据能够鉴别流体在变质体中所流经的区域,确定流体的数量、相对于温度和压力梯度以及岩石接触带的流体流动方向,并确定流体活动的时代。仅在特殊的矿物组合、流体成分、温度和压力条件下,流体可能沿矿物颗粒缝隙的网状交叉的显微通道流动。变质流体流动对于研究地壳的热和质量传输及变形机制和速率有着重要的作用。在各种地壳环境中都存在大量的含水流体,区域和接触变质岩石具有的时间积分流量远远大于紧邻岩石脱水所提供的数量。支持高水流量的证据包括不同学科种类,例如岩石学、矿物学、结构和显微构造以及稳定同位素。渗透率增大可能是促使流体流量变大的主要机制。通过同位素地球化学家与构造地质学家和岩石学家们之间的密切合作,直接对变质岩渗透率增大机制进行实验测定和理论模拟,并在野外检验渗透率增大模型,将有助于理解变质作用的热和流体循环与变形作用之间的关系。  相似文献   

14.
为能精确计算地铁隧道围岩内的传热量,模拟了地铁隧道围岩内的热传导,研究了地铁围岩内的温度分布规律,并通过试验结果对土体热导率进行反算。分析表明:同一时刻,距隧道壁面不同距离处的温度以指数形式进行变化,距离越远,温度越小;时间越久,隧道内流体的温度影响范围越大。除隧道外壁面外,距隧道壁某距离处的温度,随时间的增长而逐渐增长,距隧道壁较近处土体温度较高,温度增长速率随时间的增长而逐渐减小;距隧道壁面距离较远处温度较低,其增长速率随时间的增长而逐渐增大。传热时间超过某一值后,围岩内温度增长率逐渐平稳趋于一定值。根据模型试验结果能较精确得到土样的热导率数值。  相似文献   

15.
裂隙是油气储层主要的储集空间及流体渗流通道,影响油气的运移规律,是油气勘探开发的重要指标。以冀中坳陷任丘油田任10井为例,运用数值模拟方法研究了裂隙开展宽度和裂隙面粗糙度对岩石渗流特性的影响规律。研究结果表明,(1)裂隙开展宽度较小时,孔隙内流体压力仅在入口处小范围内呈扇形分布,裂隙中压力分布曲线呈正切函数型,流体流速在裂隙和孔隙中都较小;随着裂缝开展宽度的增加,孔隙内流体压力逐渐增大,裂隙中压力分布曲线逐渐向直线型转变,流体流速在入口处先减小后稳定,在裂隙中先增加后稳定;(2)裂隙面粗糙度对裂隙岩石渗流特性的影响与裂隙开展宽度有关,在裂隙开展宽度较大时,裂隙面粗糙度对流体压力的分布影响较大;随着裂隙面粗糙度增大,孔隙内流速逐渐增大,而裂隙中流速逐渐减小;(3)随着裂隙开展宽度的增大,影响裂隙流体流动的主控因素逐渐由裂隙开展宽度转变为裂隙面粗糙度。  相似文献   

16.
王春光  陈连军  王长盛 《岩土力学》2014,35(4):1015-1024
开展原煤在热-力作用下煤热膨胀与吸附瓦斯解吸研究对于深入理解深部煤岩失稳破坏机制有重要意义。通过对四川白皎矿和徐州张双楼矿的原煤施加不同温度-应力条件,获取煤的热变形、解吸气体运移以及煤的力学性质的热响应。试验结果表明:白皎煤在低于35℃条件下表现为膨胀变形;在高于35℃恒温环境下,煤体变形表现为先膨胀后收缩趋势。张双楼煤在低于60℃条件下表现为先膨胀后会出现收缩;在高于60℃恒温环境下,煤样趋向整体膨胀。其结果说明,煤岩在热环境中的变形行为取决于煤基质的热膨胀与解吸收缩之间的竞争结果。煤吸热升温后孔隙中解吸气体数量增多,煤样在受载压缩变形过程中显现出复杂解吸气体排放特征,包括煤中原生孔隙裂隙压缩闭合排出气体,煤体内不均匀变形导致气体流动,煤体开裂导致气体回流。力学测试结果表明,煤样的单轴抗压强度以及弹性模量随着环境温度上升均表现出下降趋势。其结果为深入理解深部煤层在热-力耦合下渗透率与强度变化机制提供试验依据。  相似文献   

17.
研究地热储层裂隙岩体中的渗流传热过程对干热岩地热资源的开采具有重要的意义。本文以干热岩地热工程为背景,采用COMSOL Multiphysics数值模拟软件对地热储层单裂隙岩体中渗流传热机理进行了研究,并分析了流体注入速度和温度对岩体温度场的影响及其对干热岩地热工程的影响。研究发现流体参数对岩体温度场的影响主要体现在两个方面:一方面是对岩体温度场受扰动区域以及幅度的影响,另一方面是对岩体温度场达到稳态所需要时间的影响。流体注入速度的提升会降低系统的寿命和寿命期的出口法向总热量值,当考虑出口法向总热通量时,存在最佳流体注入速度,本研究中最佳流体注入速度为0.011m/s。流体注入温度的提升会增加系统的寿命和系统的出口法向总热通量和总热量。研究为干热岩自热资源的开发与利用提供了理论依据,为工程运行参数的设计提供了参考依据。  相似文献   

18.
多尺度观察和综合分析是煤体变形研究的基本要求。从煤层、手标本和显微尺度上分析了中梁山南矿煤体变形特征。结果表明,区域褶皱作用是控制井田内煤层厚度变化的主要因素,逆断层作用造成局部煤层厚度增大;在宏观和显微尺度上构造煤具有相似的变形特征,表现为随着构造变形程度增强,煤中裂隙的密度加大,粒度变小,煤体强度降低;碎裂煤裂隙表面独特的条纹结构可能是煤体静态剪切破裂的结果,而鳞片煤中大量的摩擦面则是煤体动态剪切变形的产物。   相似文献   

19.
裂隙岩体流-热耦合传热的三维数值模拟分析   总被引:1,自引:0,他引:1  
通过对潘西煤矿水文地质条件的分析,基于裂隙岩体的流-热耦合数学模型,描述了裂隙岩体渗流场分布和水流及岩体的温度场分布,并结合边界条件及计算参数对裂隙岩体的流-热耦合传热进行了数值模拟和分析。数值模拟结果表明,岩体内裂隙水流所引发的热量迁移,对裂隙岩体的温度场分布有重要影响。断裂带及地下水流的存在改变了岩体的原有温度场分布。在渗流初期,温度梯度矢量沿渗流方向向两侧岩体方向流动,由于两侧岩体的渗透性系数低于断裂带处的渗透性系数,右侧等温线及温度梯度矢量方向逐渐向渗流方向移动,改变了两侧岩体的温度场分布。通过对断裂带内裂隙水流渗透性系数的折减,分析渗透性系数发生变化时对岩体温度场分布的影响,渗透性系数越大,伴随的热量迁移增大,对岩体的温度场分布的影响也越大。  相似文献   

20.
为提高煤层静态致裂井下作业效率,优化致裂布孔参数,以中煤华晋王家岭矿12316综采工作面胶带巷为实验背景,结合煤层变形破坏方程、瓦斯扩散渗流方程和煤层渗透率演化方程,构建煤层破坏及渗透率演化模型;采用FlAC3D-COMSOL Multiphysics对煤体静态致裂增透过程及影响因素进行数值模拟,揭示静态致裂作用下煤层应力分布、塑性扩展与瓦斯压力传递演化规律。通过优化选取致裂工艺参数开展现场试验,定量分析不同孔距下静态致裂过程中煤层瓦斯抽采量的变化特征。结果表明:静态致裂过程中膨胀应力在煤体内部沿致裂孔半径方向向四周均匀传递,单孔致裂过程中形成圆环状应力圈和塑性区;在双孔致裂条件下,两致裂孔内膨胀应力的水平叠加效果优于竖直叠加效果,使煤体水平方向破坏效果较竖直方向显著,且两致裂孔中间区域的煤层先于其他区域破坏。受静态致裂作用范围的限制,增透促抽后煤层内瓦斯压力大小与孔距呈正相关关系,煤层渗透率与孔距间呈负相关关系;现场试验表明,将孔距设为1.6 m以内进行静态致裂增透,在抽采负压为20 kPa条件下抽采30 d,测得致裂后瓦斯抽采纯量提升1倍左右,说明静态致裂对瓦...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号