首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
Quartz-topaz rocks from the New England district, New South Wales, have mineralogical, textural and field relationships suggesting a magmatic origin. These rocks (called topazites) occur as dykes and sills intruding a biotite granite and sediments in a roof pendant. Where they have intruded into sediments, the topazites have a narrow aureole of induration or hornfels. One type of primary solid inclusion, thought to be silicate glass, has a composition ranging from that of the topazite towards that of nearby granite. Primary fluid inclusions contain an aqueous solution of alkali chlorides with concentrations of total salts to 57 wt%. These fluid inclusions indicate crystallization temperatures in the range 570–620° C, close to the experimentally determined solidus of a vapour-saturated, topaz-normative melt. The presence of primary fluid inclusions indicates crystallization of topazite following saturation of a granitic magma with water and the formation of immiscible silicate and aqueous phases. Partitioning of alkali metals into the aqueous phase left a silicate melt that could only crystallize quartz and topaz.  相似文献   

2.
The Mangabeira deposit is the only known Brazilian tin mineralization with indium. It is hosted in the Paleo- to Mesoproterozoic Mangabeira within-plate granitic massif, which has geochemical characteristics of NYF fertile granites. The granitic massif is hosted in Archean to Paleoproterozoic metasedimentary rocks (Ticunzal formation), Paleoproterozoic peraluminous granites (Aurumina suite) and a granite–gneiss complex. The mineralized area comprises evolved Li-siderophyllite granite, topaz–albite granite, Li–F-rich mica greisens and a quartz–topaz rock, similar to topazite. Two types of greisens are recognized in the mineralized area: zinnwaldite greisen and Li-rich muscovite greisen, formed by metasomatism of topaz–albite granite and Li-siderophyllite granite, respectively. Cassiterite occurs in the quartz–topaz rock and in the greisens. Indium minerals, such as roquesite (CuInS2), yanomamite (InAsO4·2H2O) and dzhalindite (In(OH3)), and In-rich cassiterite, sphalerite, stannite group minerals and scorodite are more abundant in the quartz–topaz rock, and are also recognized in albitized biotite granite and in Li-rich muscovite greisen. The host rocks and mineralized zones were subsequently overprinted by the Brasiliano orogenic event.Primary widespread two-phase aqueous and rare coeval aqueous-carbonic fluid inclusions are preserved in quartz from the topaz–albite granite, in quartz and topaz from the quartz–topaz rock and in cassiterite from the Li-rich muscovite greisen. Eutectic temperatures are − 25 °C to − 23 °C, allowing modeling of the aqueous fluids in the system H2O–NaCl(–KCl). Rare three-phase H2O–NaCl fluid inclusions (45–50 wt.% NaCl equiv.) are restricted to the topaz–albite granite. Salinities and homogenization temperatures of the aqueous and aqueous-carbonic fluid inclusions decrease from the topaz–albite granite (15–20 wt.% NaCl equiv.; 400 °C–450 °C), to the quartz–topaz rock (10–15 wt.% NaCl equiv.; 250 °C–350 °C) and to the greisen (0–5 wt.% NaCl equiv.; 200 °C–250 °C). Secondary fluid inclusions have the same range of salinities as the primary fluid inclusions, and homogenize between 150 and 210 °C.The estimated equilibrium temperatures based on δ18O of quartz–mica pairs are 610–680 °C for the topaz–albite granite and 285–370 °C for the Li-rich muscovite greisens. These data are coherent with measured fluid inclusion homogenization temperatures. Temperatures estimated using arsenopyrite geothermometry yield crystallization temperatures of 490–530 °C for the quartz–topaz rock and 415–505 °C for the zinnwaldite greisens. The fluids in equilibrium with the topaz–albite granite have calculated δ18O and δD values of 5.6–7.5‰ and − 67 to − 58‰, respectively. Estimated δ18O and δD values are mainly 4.8–7.9‰ and − 60 to − 30‰, respectively, for the fluids in equilibrium with the quartz–topaz rock and zinnwaldite greisen; and 3.4–3.9‰ and − 25 to − 17‰, respectively, for the Li-rich muscovite greisen fluid. δ34S data on arsenopyrite from the quartz–topaz rock vary from − 1.74 to − 0.74‰, consistent with a magmatic origin for the sulfur. The integration of fluid inclusion with oxygen isotopic data allows for estimation of the minimum crystallization pressure at ca. 770 bar for the host topaz–albite granite, which is consistent with its evolved signature.Based on petrological, fluid inclusion and isotope data it is proposed that the greisens and related Mangabeira Sn–In mineralization had a similar hydrothermal genesis, which involved exsolution of F-rich, Sn–In-bearing magmatic fluids from the topaz–albite granite, early formation of the quartz–topaz rock and zinnwaldite greisen, progressive cooling and Li-rich muscovite greisen formation due to interaction with meteoric water. The quartz–topaz rock is considered to have formed in the magmatic-hydrothermal transition. The mineralizing saline and CO2-bearing fluids are interpreted to be of magmatic origin, based on the isotopic data and paragenesis, which has been documented as characteristic of the tin mineralization genetically related to Proterozoic within-plate granitic magmatism in the Goias Tin Province, Central Brazil.  相似文献   

3.

40Ar‐39Ar age spectra on minerals from granitic, metamorphic and hydrothermal rocks confirm that the Early Proterozoic Tennant Creek Block was affected by two thermal events during its evolution. Although extensive alteration of biotite and feldspar within the granites precludes the direct determination of their cooling history, 40Ar‐39Ar analyses for hydrothermal muscovite from several nearby gold‐copper deposits indicate that regional cooling to below ~ 300°C was not prolonged. Flat, uniform muscovite age spectra were obtained from gold deposits east of the Tennant Creek town site and indicate a minimum age of 1825–1830 Ma for their formation. These ages are within error of those for the felsic volcanism of the Flynn Subgroup, and a genetic relationship between the two may exist. Samples from gold deposits elsewhere in the area indicate disturbance of the K‐Ar isotope system. The second thermal event to affect the region occurred at around 1700 Ma, and is confirmed by the 40Ar‐39Ar muscovite ages for the ‘Warrego’ granite (1677 ± 4 Ma) and for the metamorphism of the Wundirgi Formation (1696 ± 4 Ma).  相似文献   

4.
江西凤凰岽含锡黄英岩脉特征及成因   总被引:1,自引:0,他引:1  
江西会昌县岩背火山盆地密坑山含黄玉花岗岩体的北侧外接触带,产有数条含锡黄英岩脉。据野外产状、岩石结构构造等表明岩脉属岩浆成因。稀土元素研究表明,凤凰岽黄英岩REE含量极低,∑REE及配分曲线与脉侧黄玉石英化蚀变岩有着明显的区别。富氟花岗岩浆结晶晚期衍生的富Si,Al,F含少量K,Na的残余熔浆沿断裂上侵因压力降低产生二次沸腾,使K,Na分离进入含水相,这是富Si,Al,F;极贫K,Na的黄英岩形成的决定因素。  相似文献   

5.
Most rare-metal granites in South China host major W deposits with few or without Ta–Nb mineralization. However, the Yashan granitic pluton, located in the Yichun area of western Jiangxi province, South China, hosts a major Nb–Ta deposit with minor W mineralization. It is thus important for understanding the diversity of W and Nb–Ta mineralization associated with rare-metal granites. The Yashan pluton consists of multi-stage intrusive units, including the protolithionite (-muscovite) granite, Li-mica granite and topaz–lepidolite granite from the early to late stages. Bulk-rock REE contents and La/Yb ratios decrease from protolithionite granite to Li-mica granite to topaz–lepidolite granite, suggesting the dominant plagioclase fractionation. This variation, together with increasing Li, Rb, Cs and Ta but decreasing Nb/Ta and Zr/Hf ratios, is consistent with the magmatic evolution. In the Yashan pluton, micas are protolithionite, muscovite, Li-mica and lepidolite, and zircons show wide concentration ranges of ZrO2, HfO2, UO2, ThO2, Y2O3 and P2O5. Compositional variations of minerals, such as increasing F, Rb and Li in mica and increasing Hf, U and P in zircon are also in concert with the magmatic evolution from protolithionite granite to Li-mica granite to topaz–lepidolite granite. The most evolved topaz–lepidolite granite has the highest bulk-rock Li, Rb, Cs, F and P contents, consistent with the highest contents of these elements and the lowest Nb/Ta ratio in mica and the lowest Zr/Hf ratio in zircon. Ta–Nb enrichment was closely related to the enrichment of volatile elements (i.e. Li, F and P) in the melt during magmatic evolution, which raised the proportion of non-bridging oxygens (NBOs) in the melt. The rims of zoned micas in the Li-mica and topaz–lepidolite granites contain lower Rb, Cs, Nb and Ta and much lower F and W than the cores and/or mantles, indicating an exotic aqueous fluid during hydrothermal evolution. Some columbite-group minerals may have formed from exotic aqueous fluids which were originally depleted in F, Rb, Cs, Nb, Ta and W, but such fluids were not responsible for Ta–Nb enrichment in the Yashan granite. The interaction of hydrothermal fluids with previously existing micas may have played an important role in leaching, concentrating and transporting W, Fe and Ti. Ta–Nb enrichment was associated with highly evolved magmas, but W mineralization is closely related to hydrothermal fluid. Thus these magmatic and hydrothermal processes explain the diversity of W and Ta–Nb mineralizations in the rare-metal granites.  相似文献   

6.
Two distinct series of Variscan granitic rocks have been distinguished in the Gravanho-Gouveia area of Portugal, based on field work, variation diagrams for major and trace elements, rare earth patterns and δ18O versus total FeO diagram of rocks, anorthite content of plagioclase, BaO and P2O5 contents of feldspars and AlVI versus Fe2+ diagram for magmatic muscovite. One series consists of a late-orogenic porphyritic biotite > muscovite granite (G1), less evolved beryl-columbite pegmatites and more evolved beryl-columbite pegmatites showing gradational contacts. The other series consists of post-orogenic porphyritic muscovite > biotite granodiorite to granite (G2), slightly porphyritic muscovite > biotite granite (G3) and lepidolite pegmatites. In each series, pegmatites are derived from the parent granite magma by fractional crystallization of quartz, plagioclase, K-feldspar, biotite and ilmenite. Some metasomatic effects occur like muscovite replacing feldspars, chlorite in pegmatites of the first series and a late muscovite in pegmatites of the second series, probably due to hydrothermal fluids. The lepidolite pegmatites contain cassiterite and two generations of rutile. The first magmatic generation consists of homogeneous crystals and the second generation occurs as heterogeneous zoned crystals derived from hydrothermal fluids. The beryl-columbite pegmatites and lepidolite pegmatites also contain the first magmatic generation and the late hydrothermal generation of zoned columbite-group minerals. More evolved beryl-columbite pegmatites were converted into episyenite by intense hydrothermal alteration and regional circulation of fluids in the granitic rocks.  相似文献   

7.
The Sn-W deposits of SW England and SE Asia are associated with crustally derived granitic rocks with late volatile-enriched (F, Li, B, P) differentiates. In peninsular Thailand, primary ores are principally pegmatitic, and hydrothermal vein systems are only locally important. In SW England, wolframite and cassiterite mainly occur in hydrothermal vein systems, and are associated with greisening and tourmalinisation; mineralised pegmatites are rare. These two styles of mineralisation are thought to arise because of differences in the character of late magmatic processes. In peninsular Thailand, late-stage tourmaline-bearing granitic rocks are enriched in B, but not Li and F, compared to earlier biotite granites. Similar late-stage granitic rocks occur also in SW England, but a later topaz granite, enriched in F, Li and P, also occurs. The Thai pegmatitic Sn-W deposits are thought to have formed by late magmatic crystallisation from an aqueous phase enriched in metals and derived by exsolution from a B and metal-rich magma, whereas the SW England mineralisation involved essentially post-magmatic hydrothermal processes. Complexing agents (especially F) and metals may have been derived from granitic or country rocks during hydrothermal circulation at the current level of emplacement.  相似文献   

8.
The Sisson Brook W–Mo–Cu deposit was formed by hydrothermal fluids likely related to the Nashwaak Granites (muscovite–biotite granite, Group I; and biotite granite, Group II) and related dykes (biotite granitic dykes, Group III; and a feldspar–biotite–quartz porphyry dyke, Group IV). Chemical data obtained using EPMA and LA-ICP-MS data of primary magmatic biotites were used to investigate magmatic processes and associated hydrothermal fluids.Trace element features of biotite in the Group I two-mica granite suggest other magmatic processes along with a simple fractional crystallization. The K/Rb ratios and compatible elements (Cr, Ti, Co, V, and Ba) in biotite from Groups II, III, and IV decrease, whereas incompatible elements including Ta, Tl, Ga, Cs, Li, and Sn increase with magma fractionation. No correlation of Cu, W and Mo with K/Rb ratios is evident, suggesting that partitioning of Cu, W, and Mo into biotite may not be entirely controlled by magma fractionation.Halogen fugacity of the parental magma of the Nashwaak Granites and related dykes, calculated from zircon saturation temperature shows that Group I has high fHF/fCl ratios (broadly higher than 0), similar to the plutons at the Henderson porphyry Mo deposit. The fHF/fCl ratios of the other groups are generally lower than 0, comparable to the Santa Rita porphyry Cu deposit. The fH2O/fHCl and fH2O/fHF ratios inferred from biotite in the Nashwaak Granites and related dykes range from 3 to 5 and from 4 to 5, respectively. The inferred oxygen fugacity shows that the dyke phases (Groups III and IV) have the oxygen fugacity around the nickel–nickel oxide buffer. The plutonic phases (Groups I and II) have the oxygen fugacity around the quartz–fayalite–magnetite (QFM) buffer at high temperatures and oxidized to nickel–nickel oxide buffer at lower temperatures. This oxidation process in the plutonic phases (Groups I and II) could be caused by H2 release at or near H2O vapor saturation at high H2O/Fe2 +. The magma associated with the biotite dykes (Group III) is more likely the source of the hydrothermal fluids at the Sisson Brook deposit since it has the highest differentiation degree and seems to have formed in an oxidized setting, necessary for Mo to concentrate in the late stage fluids.  相似文献   

9.
浙江洋滨黄玉花岗质斑岩的包裹体研究   总被引:1,自引:1,他引:1  
浙江洋滨黄玉花岗质斑岩的石英斑晶中含有大量原生包裹体,作者对其进行了大量的均一温度、盐度、化学成分等方面的测试工作,在此基础上,将这些包裹体划分为熔融包裹体、羟基化硅酸盐熔体—流体包裹体、不均一捕获多相包裹体、液相包裹体(包括高盐度液相包裹体和低盐度液相包裹体)、气相包裹体等五大类型。并按岩浆阶段、岩浆解聚阶段、岩浆/流体不混溶阶段、热液为主阶段探讨了本区包裹体的形成机制,为本区黄玉花岗质斑岩的岩浆成因解释提供了有力的依据  相似文献   

10.
Thermodynamic analysis of the system Na2O-K2O-CaO-Al2O3-SiO2-H2O-F2O–1 provides phase equilibria and solidus compatibilities of rock-forming silicates and fluorides in evolved granitic systems and associated hydrothermal processes. The interaction of fluorine with aluminosilicate melts and solids corresponds to progressive fluorination of their constituent oxides by the thermodynamic component F2O–1. The chemical potential (F2O–1) buffered by reaction of the type: MOn/2 (s)+n/2 [F2O–1]=MFn (s, g) where M=K, Na, Ca, Al, Si, explains the sequential formation of fluorides: carobbiite, villiaumite, fluorite, AlF3, SiF4 as well as the common coexistence of alkali- and alkali-earth fluorides with rock-forming aluminosilicates. Formation of fluorine-bearing minerals first starts in peralkaline silica-undersaturated, proceeds in peraluminous silica-oversaturated compositions and causes progressive destabilization of nepheline, albite and quartz, in favour of villiaumite, cryolite, topaz, chiolite. Additionally, it implies the increase of buffered fluorine solubilities in silicate melts or aqueous fluids from peralkaline silica-undersaturated to peraluminous silica-oversaturated environments. Subsolidus equilibria reveal several incompatibilities: (i) topaz is unstable with nepheline or villiaumite; (ii) chiolite is not compatible with albite because it only occurs only at very high F2O–1 levels. The stability of topaz, fluorite, cryolite and villiaumite in natural felsic systems is related to their peralkalinity (peraluminosity), calcia and silica activity, and linked by corresponding chemical potentials to rock-forming mineral buffers. Villiaumite is stable in strongly peralkaline and Ca-poor compositions (An<0.001). Similarly, cryolite stability requires coexistence with nearly-pure albite (An<2). Granitic rocks with Ca-bearing plagioclase (An>5) saturate with topaz or fluorite. Crystallization of topaz is restricted to peraluminous conditions, consistent with the presence of Li-micas or anhydrous aluminosilicates (cordierite, garnet, andalusite). Fluorite is predicted to be stable in peraluminous biotite granites, amphibole-, clinopyroxene- or titanite-bearing calc-alkaline suites as well as in peralkaline granitic and syenitic rocks. Fluorine concentrations in felsic melts buffered by the coexistence of F-bearing minerals and feldspars increase from peralkaline through metaluminous to mildly peraluminous compositions. At low-temperature conditions, the hydrothermal evolution of peraluminous granitic and greisen systems is controlled by white mica-feldspar-fluoride equilibria. With decreasing temperature, topaz gradually breaks down via: (i) (OH)F–1 substitution and fluorine transfer to fluorite by decalcification of plagioclase below 600 °C, (ii) formation of muscovite and additional fluorite at 475–315 °C, and (iii) formation of paragonite and cryolite, consuming F-rich topaz and albite below 315 °C. These equilibria explain the absence of magmatic fluorite in Ca-bearing topaz granitic rocks; its abundance in hydrothermal rocks is due to: (i) closed-system defluorination of topaz, (ii) open-system decalcification of plagioclase or (iii) hydrolytic alteration. These results provide a complete framework for the investigation of fluorine-bearing mineral stabilities in felsic igneous suites.Electronic Supplementary Material Supplementary material is available in the online version of this article at . A link in the frame on the left on that page takes you directly to the supplementary material.Editorial responsibility: T.L. Grove  相似文献   

11.
以列廷冈-勒青拉Fe-Cu-Pb-Zn多金属矿床为研究对象,通过对其Fe矿化阶段白云母的定年研究,从成矿流体演化持续时间的角度对该问题进行了新的探索。系统的野外踏勘、显微镜下观察和电子探针工作表明,列廷冈-勒青拉矿床中发育与磁铁矿共生的白云母。对白云母进行的Ar-Ar同位素测年工作表明,白云母Ar-Ar坪年龄为51.00±0.38 Ma,等时线年龄为50.45±0.62 Ma,认为其代表了列廷冈-勒青拉矿床氧化物阶段铁矿化过程中开始结晶的白云母达到Ar-Ar体系封闭后的年龄。对比前人得出的辉钼矿年龄(61.96±0.58 Ma),提出二者年龄的差异可能由于不同同位素体系在不同矿物中封闭温度的不同所致,认为该矿床热液演化经历了较长时间,演化过程导致的温度梯度的出现加剧了岩浆热液中带来的多金属物质(如Pb、Zn、Cu、Fe)的分异,为矿区多种金属矿物的共存提供了重要条件;该矿床所属的冈底斯北成矿亚带相比较于其它两个成矿亚带具有更长的岩浆演化时间和区域矿化持续时间,与其丰富的矿种组合发育相一致。  相似文献   

12.
Daraban Leucogranite dykes intruded discordantly into the basal serpentinized harzburgite of the Mawat Ophiolite, Kurdistan region, NE Iraq. These coarse grained muscovite-tourmaline leucogranites are the first leucogranite dykes identified within the Mawat Ophiolite. They are mainly composed of quartz, K-feldspar, plagioclase, tourmaline, muscovite, and secondary phologopite, while zircon, xenotime, corundum, mangano-ilemnite and cassiterite occur as accessories.The A/CNK value of the granite dyke samples varies from 1.10 to 1.22 indicating a strongly peraluminous composition. CaO/Na2O ranges from 0.11 to 0.15 and Al2O3/TiO2 from 264 to 463, similar to the strongly peraluminous (SP) granites exposed in ‘high-pressure’ collision zones such as the Himalayas.Ar–Ar muscovite step-heating dating yields 37.57 ± 0.25 and 38.02 ± 0.53 Ma plateau ages for two samples which are thought to reflect either their magmatic emplacement or resetting during collision-related metamorphism. Mineral chemistry shows evidence of both primary and secondary types of muscovite, with cores favouring the magmatic interpretation and slight effects of a late syn-serpentinization fluid seen at the rims.Geochemical features of Daraban Leucogranite dykes favour a syn-collisional tectonic setting. They probably formed in response to the continental collision between Eurasia and Arabia during the initial stage of the opening of the Gulf of Aden at 37 Ma. The muscovite ages and geochemical features of Daraban Leucogranite are strong evidence for the timing of the continental collision between northeastern Arabia and Eurasia in Kurdistan region of Iraq.  相似文献   

13.
张娟  毛景文  程彦博  李肖龙 《矿床地质》2012,31(6):1149-1162
在个旧锡铜多金属矿集区发育有矽卡岩型和热液脉型等锡铜矿化体,其形成时代是晚白垩世,属与花岗岩有关的岩浆热液成因矿床。赋存于三叠纪蚀变玄武岩层中,呈(似)层状的铜矿体的精确年龄尚未有报道,成因仍备受争议。文章选择赋存于卡房矿田蚀变玄武岩层中,呈(似)层状分布的铜矿体中的金云母,及新山岩体接触带云英岩中的白云母为研究对象,利用40Ar-39Ar阶段加热同位素定年方法对它们进行了年代学研究,获得了金云母和白云母的40Ar-39Ar同位素坪年龄分别为(79.55±0.47) Ma和(79.53±0.57) Ma,对应等时线年龄分别为(79.8±1.3) Ma和(79.7±1.0) Ma,反等时线年龄分别为(79.7±2.0) Ma和(79.61±0.75) Ma,两者年龄基本一致。结合矿物共生组合特征和流体包裹体测温资料,认为金云母的坪年龄(79.55±0.47) Ma,可以代表卡房蚀变玄武岩中(似)层状铜矿的形成时代,而白云母的坪年龄(79.53±0.57) Ma,则代表新山岩体形成后期岩浆热液活动的年龄。这2个年龄与个旧锡铜多金属矿床的成矿时代基本一致,应是同一构造-岩浆-流体活动形成的成矿系列产物。  相似文献   

14.
《Geodinamica Acta》2013,26(5):267-282
The interaction of distinct geologic processes involved during late orogenic extensional exhumation history of the metamorphic units in the Eastern Rhodope is refined by new and reviewing 40Ar/39Ar geochronological and structural data. Minerals with different closure temperatures from metamorphic rocks investigated in this study are combined with those from magmatic and ore-forming hydrothermal rocks in two late stage metamorphic domes – the Kesebir-Kardamos and the Biala reka-Kehros domes. The 38-37 Ma muscovite and biotite cooling ages below 350°-300°C characterize basement metamorphic rocks that typified core of the Kesebir-Kardamos dome, constraining their exhumation at shallow crustal levels in the footwall of detachment. These ages are interpreted as reflecting last stage of ductile activity on shear zone below detachment, which continued to operate under low-temperature conditions within the semi-ductile to brittle field. They are close to and overlap with existing cooling ages in southern Bulgaria and northern Greece, indicating supportively that the basement rocks regionally cooled between 42-36 Ma below temperatures 350°-300°C. The spatial distribution of ages shows a southward gradual increase up structural section, suggesting an asymmetrical mode of extension, cooling and exhumation from south to the north at latitude of the Kesebir-Kardamos dome. The slightly younger 36.5-35 Ma crystallization ages of adularia in altered rocks from the ore deposits in the immediate hanging-wall of detachments are attributed to brittle deformation on high-angle normal faults, which further contributed to upper crustal extension, and thus constraining the time when alteration took place and deformation continued at brittle crustal levels. Silicic dykes yielded ages between 32-33 Ma, typically coinciding with the main phase of Palaeogene magmatic activity, which started in Eastern Rhodope region in Late Eocene (Priabonian) times. The 40Ar/39Ar plateau ages from the above distinct rock types span time interval lasting approximately ca. 6 Ma. Consequently, our geochronologic results consistently indicate that extensional tectonics and related exhumation and doming, epithermal mineralizations and volcanic activity are closely spaced in time. These new 40Ar/39Ar age results further contribute to temporal constraints on the timing of tectonic, relative to ore-forming and magmatic events, suggesting in addition that all above mentioned processes interfered during the late orogenic extensional collapse in the Eastern Rhodope region.  相似文献   

15.
The Sn-rich Qiguling topaz rhyolite dike intrudes the Qitianling biotite granite of the Nanling Range in southern China; the granite hosts the large Furong Sn deposit. The rhyolite dike is typically peraluminous, volatile-enriched, and highly evolved. Whole-rock F and Sn concentrations attain 1.9 wt.% and 2700 ppm, respectively. The rhyolite consists of a fine-grained matrix formed by quartz, feldspar, mica and topaz, enclosing phenocrysts of quartz, feldspar and mica; it is locally crosscut by quartz veinlets. Lithium-bearing micas in both phenocrysts and the groundmass can be classified as primary zinnwaldite, “Mus-Ann” (intermediate member between annite and muscovite), and secondary Fe-rich muscovite. Topaz is present in the groundmass only; common fluorite occurs in the groundmass and also in a specific cassiterite, rutile and fluorite (Sn–Ti–F) assemblage. Cassiterite and rutile are the only Sn and Ti minerals; both cassiterite and Nb-rich rutile are commonly included in the phenocrysts. The Sn–Ti–F assemblage is pervasive, and contains spongy cassiterite in some cases; cassiterite also occurs in quartz veinlets which cut the groundmass. Electron microprobe and LA-ICP-MS compositions were used to study the magmatic and hydrothermal processes and the role of F in Sn mineralization. The presence of zinnwaldite and “Mus-Ann”, which are respectively representative of early and late mica crystallization during magma differentiation, also suggests a significant decrease in f(HF)/f(H2O) of the system. Cassiterite included in the zinnwaldite phenocrysts is suggested to have crystallized from the primary magma at high temperature. Within the Sn–Ti–F aggregates, rutile crystallized as the earliest mineral, followed by fluorite and cassiterite. Spongy cassiterite containing inclusions of the groundmass minerals indicate a low viscosity of the late fluid. The cassiterite in the quartz veinlets crystallized from low-temperature hydrothermal fluids, which possibly mixed with meteoric water. In general, cassiterite precipitated during both magmatic and hydrothermal stages, and over a range of temperatures. The original fluorine and tin enrichments, f(HF)/f(H2O) change in the residual magma, formation of Ca,Sn,F-rich immiscible fluid, decrease of the f(HF) during groundmass crystallization, and mixing of magma-derived fluids with low-saline meteoric water during the late hydrothermal stage, are all factors independently or together responsible for the Sn mineralization in the Qiguling rhyolite.  相似文献   

16.
A previously reported porphyry Cu + Mo deposit in an Eocene pluton within the South Shetland Island magmatic arc has been re-interpreted as three distinct hydrothermal assemblages. The oldest assemblage (1) exsolved under confinement from the deep (~6 km?) cooling magma whereas assemblages (2) and (3) formed during tectonic ± magmatic episodes at depths of < 1.5 km in the late Cenozoic. The three assemblages occur over the 5 × 11 km mapped in Barnard Point tonalite pluton. Assemblage (1) comprises shallowly dipping sheets of aplite, biotite + tourmaline pegmatite, massive ‘grey’ quartz, and quartz + tourmaline + bornite + chalcopyrite + molybdenite veins. Magnetite + tourmaline + chalcopyrite breccias have associated biotite, K-feldspar and muscovite alteration. Fluid inclusions indicate formation from hot (~600°C), saline (40 equivalent weight % NaCl + CaCl2) aqueous-carbonic fluids that exsolved from the partly consolidated magma. The primary control on solution chemistry and nature of fracturing was the depth of pluton emplacement. Assemblage (2) consists of steep, vuggy veins and country-rock breccias, with thick propylitic alteration selvages, cemented by microcrystalline quartz, complex inter-growths of FeMg carbonate, bladed barite and trace amounts of bornite and chalcopyrite. These rocks, previously described as breccia (sensu ‘pebble’) dykes in the porphyry complex, are reinterpreted as an influx of moderately hot (175–330°C), weak to moderately saline (2–21 EWP NaCl), aqueous-carbonic fluids that underwent isobaric boiling at 0.8 to 1.3 km depth. Assemblage (3) consists of thin, hematitic fault infillings formed during a second episode of brittle faulting.  相似文献   

17.
Detailed petrographic and mineralogic investigations of an albite-lepidolite granite at Echassières (Massif Central, France; scientific deep drill program) shows the existence of hydrothermal stages which are closely related to the magmatic and structural history. According to fluid inclusion data, K-Ar datations and 18O/16O-D/H compositions of secondary minerals, two successive hydrothermal periods have been recognized. The early one (273–268 million years) produced a series of aluminous phyllosilicates: muscovite, pyrophyllite, donbassite, tosudite, kaolinite which are observed as vein deposits (<10 mm wide) and alteration products of primary minerals in wall-rocks. The vein system was sealed by monomineralic assemblages during a cooling period (400–150°C). This early hydrothermal alteration stage was controlled by interactions of rock with low salinity (1–10 wt% NaCl equivalent) fluids expelled from the granitic body during the cooling processes. The chemical properties of these fluids were the following: low pH, very low Mg and Fe and high Li, Na and K contents. Thermodynamic calculations show that the sequence pyrophyllite, Li-bearing donbassite, tosudite is mostly temperature dependent. From the chemical composition of secondary minerals and isotopic data it can be deduced that these fluids, which have a meteoric origin, have been expelled from the granite body during its cooling period and after interaction with it at high temperature. The late hydrothermal stage corresponds to deposits of fluorite and Fe-Mg rich illite (151 million years) in subvertical fractures. Temperature conditions did not exceed 250° C and fluids came through the surrounding metamorphic rocks into the granitic body. IIlite/smectite mixed-layer minerals have been identified in subvertical fractures which were opened during Tertiary periods. In the host micaschists, successive hydrothermal alterations took place during the cooling of the Beauvoir granite. Early magmatic fluids interacted with these micaschists. Locally, the metamorphic assemblage is replaced by a metasomatic one. Secondary topaz and (F, Li)-rich mica crystals were formed over a range of 450 of 150°C. Later hydrothermal fluids reacted with the country rocks to form phengite-biotite, chlorite-illite and kaolinite over a range of 300 to 150°C. Illite/smectite mixed-layer minerals crystallized in the roof micaschists and within the Beauvoir granite during the Tertiary alteration period. Meteoric water invaded open fractures producing supergene alteration mineral assemblages.  相似文献   

18.
Textural and geochemical studies of inclusions in topaz from greisens in the Hensbarrow topaz granite stock (St. Austell, Cornwall) are used to constrain the composition of fluids responsible for late stage greisening and mineralisation. The topaz contains an abundant and varied suite of inclusions including aqueous liquid + vapour (L + V), quartz, zinnwaldite, albite, K-feldspar, muscovite, ilmenorutile, apatite, columbite, zircon, varlamoffite [(Sn, Fe)(O, OH)2] and qitianlingite [(Fe+2,Mn+2)2(Nb,Ta)2W+6O10]. Primary L + V inclusions in topaz show relatively high T h (mainly 300 to >500 °C) and a narrow range of salinities (23–30 wt % NaCl equivalent) compared with those in greisen quartz (150–450 °C, 0–50 wt % NaCl equivalent). Textures indicate that topaz formed earlier than quartz and the fluid inclusion data are interpreted as indicating a cooling of the hydrothermal fluids during greisenisation, mixing with meteoric waters and a decrease in pressure causing intermittent boiling. The presence of early-formed albite and K-feldspar as inclusions in the topaz is likely to indicate that the greisen-forming fluid became progressively more acid during greisenisation. The most distinctive inclusions in the topaz are wisp- and bleb-shaped quartz, < 50 μm in size, which show textural characteristics indicating former high degrees of plasticity. They often have multiple shrinkage bubbles at their margins rich in Sn, Fe, Mn, S and Cl and, more rarely, contain euhedral albite, K-feldspar, stannite or pyrrhotite crystals up to 40 μm in size. The quartz inclusions show similar morphologies to inclusions in topaz from quartz-topaz rocks elsewhere which have been interpreted as trapped “silicate melt”. Their compositions are, however, very different to those expected for late stage topaz-normative granitic melts. From their textural and chemical characteristics they are interpreted as representing crystallised silica colloid, probably trapped as a hydro gel during greisenisation. There is also evidence for the colloidal origin of inclusions of varlamoffite in the topaz. These occurrences offer the first reported evidence in natural systems for the formation of colloids in high temperature hydrothermal fluids. Their high ore carrying potential is suggested by the presence of varlamoffite and the occurrence of stannite, pyrrhotite and SnCl within the quartz inclusions. Received: 9 April 1996 / Accepted: 12 November 1996  相似文献   

19.
Rare metal mineralization of Sn, Nb-Ta and W is encountered in the Gebel Dihmit area (GDA), southeastern Aswan, Egypt. The mineralization is related to muscovite granites and their pegmatite derivatives. The pegmatites are divided into three types according to their main mineral assemblages: K-feldspar-muscovite-tourmaline, K-feldspar-albite-muscovite and albite-K-feldspar-lepidolite veins. Petrogenetic studies indicate that Sn and Nb-Ta mineralization extends from the late-magmatic stage to the pegmatite and hydrothermal stages of the (GDA) suite. The albite-K-feldspar-lepidolite granite is composed dominantly of albite, lepidolote, and quartz, with topaz, K-feldspar and amblygonite. The accessory minerals are zircon, monazite, pollucite, columbite-tantalite, microlite and Ta-rich cassiterite. Phenocrysts of quartz, topaz and K-feldspar contain abundant inclusions of albite laths and occasional lepidolite crystals along growth zones (snowball texture), indicating simultaneous crystallization from a subsolvus, residual magma. The origin of the pegmatites is attributed to extreme differentiation by fractional crystallization of a granitic magma. The economic potential for rare metals was evaluated in the geochemical discrimination diagrams. Accordingly, some of the pegmatites are not only highly differentiated in terms of alkalis, but also the promising targets for small-scale Ta and, to a less extent, Sn. The pegmatites also provide the first example of Fe-Mn and Nb-Ta fractionation in successive generations of granites to cassiterite-bearing pegmatites, which perfectly ex- hibit similar fractionation trends established for primary columbite-tantalite in the corresponding categories of pegmatites. Uranium and Th of magmatic origin are indicated by the presence of thorite and allanite, whereas evidence of hydrothermal mineralization is the alteration of rock- foring minerals such as feldspar and the formation of secondary minerals such as uranophane..  相似文献   

20.
Pegmatite deposits commonly occur in the 1500 km long, N-S-trending, tungstentin-bearing granitoid belt in Myanmar. Pegmatites are emplaced as veins and dikes that cut granitoid, migmatite, granitoid gneiss, gneiss, and schist. The pegmatite veins and dikes are mostly 2 to 5 meters wide and 30 to 150 meters long, and some are traceable over a distance of 300 meters.

The pegmatites are composed of quartz, orthoclase, albite, microcline microperthite, and muscovite, with minor biotite, tourmaline, beryl, garnet, topaz, lepidolite, magnetite, wolframite, cassiterite, and rare columbite. They are commonly zoned, feldspars and muscovite being more abundant in the center and quartz more common at the margin. The zoning pattern is rather distinct in the pegmatite body, where tourmaline is present. The light-colored felsic minerals are confined to the core zone and the dark-colored tourmaline crystals to the outer zone.

Numerous fluid inclusions have been found in quartz, topaz, and beryl. Most of the inclusions are rounded to elliptical, with a variable degree of liquid filling. All inclusions are aqueous, two-phase (liquid and vapor) inclusions with no daughter minerals. Homogenization temperatures of 173 fluid inclusions were measured in this study.

Geothermometric studies indicate that the pegmatites were formed over a homogeniza-tion temperature range of 230° to 410°C. Salinities of fluid inclusions in pegmatite minerals yielded from 1.0 to 10.8 NaCl equiv. wt‰. Topaz and quartz single crystals (several cm across) from the Sakangyi pegmatite provide an opportunity to extract the fluids trapped in these minerals. The Na/K ratios of the fluid inclusions in two topaz samples were 3.0 to 4.9, and those of two quartz samples were 2.9 to 10.5, suggesting the presence of substantial potassium in the pegmatite-forming fluids. In this study, evidence for phase separation of the pegmatite-forming fluids was not observed. The post-magmatic, hydrothermal fluids responsible for the pegmatite veins evidently emanated from cooling S-type granitoids, with which they are spatially associated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号