首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The carbon–alumina composite pellet was developed for the adsorption of acid fuchsin from its aqueous solution. The composite pellet was characterized using Brunauer–Emmett–Teller method, scanning Electron Microscopy and Fourier Transform Infrared Spectroscopy. The adsorption capacity of commercial alumina, commercial activated carbon and the prepared composite pellet was investigated against acid fuchsin, and the adsorption capacity was found to be increased in the order of alumina < carbon–alumina composite pellet < activated carbon. Although the adsorption capacity of carbon–alumina composite pellets was less than that of activated carbon, the use of the pelletized form of the present adsorbent was proven to be advantageous for the use in the packed-bed column. The experimental data were fitted to Langmuir, Freundlich and Temkin adsorption isotherms, and the equilibrium behavior was well explained by Langmuir isotherm. Besides, the kinetic behavior was well predicted by pseudo-second-order kinetics. The effects of inlet dye concentration (10–20 mg/L), feed flowrate (5–15 mL/min) and bed height (2.54–7.62 cm) on the breakthrough characteristics were investigated using a fixed-bed column. The maximum removal capacity in the column study was found to be 343.87 mg/L with an initial dye concentration and flowrate of 20 and 10 mL/min according to Bohart–Adams model. The breakthrough behavior was also effectively described by the Yoon–Nelson and Clark models.  相似文献   

2.
The functionalized nano-clay composite adsorbent was prepared, and its properties were characterized using FT-IR, XRD and SEM techniques. The synthesized nano-clay composite was studied with regard to its capacity to remove ibuprofen under different adsorption conditions such as varying pH levels (5–9), initial ibuprofen concentrations (3, 5 and 10 mg L?1), contact time, and the amount of adsorbent (0.125, 0.25, 0.5 and 1 g). In order to evaluate the nanocomposite adsorption capacity, the adsorption results were assessed using nine isotherm models. The results showed that the optimum adsorption pH was 6 and that an increase or decrease in the pH reduced the adsorption capacity. The adsorption process was fast and reached equilibrium after 120 min. The maximum efficacy of ibuprofen removal was approximately 95.2%, with 1 g of adsorbent, 10 mg L?1 initial concentration of ibuprofen, 120 min contact time and pH = 6. The optimal adsorption isotherm models were the Freundlich, Fritz–Schlunder, Redlich–Peterson, Radke–Prausnitz, Sip, Toth and Khan models. In addition, four adsorption kinetic models were employed for adsorption system evaluation under a variety of experimental conditions. The kinetic data illustrated that the process is very fast, and the reaction followed the Elovich kinetic model. Therefore, this nano-clay composite can be used as an effective adsorbent for the removal of ibuprofen from aqueous solutions, such as water and wastewater.  相似文献   

3.
The most appropriate method in designing the adsorption systems and assessing the performance of the adsorption systems is to have an idea on adsorption isotherms. Comparison analysis of linear least square method and nonlinear method for estimating the isotherm parameters was made using the experimental equilibrium data of Zn(II) and Cu(II) onto kaolinite. Equilibrium data were fitted to Freundlich, Langmuir, and Redlich–Peterson isotherm equations. In order to confirm the best-fit isotherms for the adsorption system, the data set using the chi-square (χ 2), combined with the values of the determined coefficient (r 2) was analyzed. Nonlinear method was found to be a more appropriate method for estimating the isotherm parameters. The best fitting isotherm was the Langmuir and Redlich–Peterson isotherm. The Redlich–Peterson is a special case of Langmuir when the Redlich–Peterson isotherm constant g was unity. The sorption capacity of kaolinite to uptake metal ions in the increasing order was given by Cu (4.2721 mg/g)?<?Zn (4.6710 mg/g).  相似文献   

4.
In the present study, Juglans regia shells were used to prepare activated carbon by acid treatment method. J. regia shell-based activated carbon was used for the adsorption of two synthetic dyes namely, a basic dye malachite green and an acid dye amido black 10B. The prepared adsorbent was crushed and sieved to three different mesh sizes 100, 600 and 1,000 μm. The adsorbent was characterized by scanning electron microscopy, surface acidity and zero-point charge. Batch experiments were carried out by varying the parameters like initial aqueous phase pH, adsorbent dosage and initial dye concentration. The equilibrium data were tested with Langmuir, Freundlich, Redlich–Peterson and Sips isotherm at three different temperatures 293, 300 and 313 K and it was found that the Freundlich isotherm best fitted the adsorption of both the dyes. Kinetic data were tested with pseudo first-order model and pseudo second-order model. The mechanism for the adsorption of both the dyes onto the adsorbent was studied by fitting the kinetic data with intraparticle diffusion model and Boyd plot. External mass transfer was found to be the rate-determining step. Based on the ionic nature of the adsorbates, the extent of film diffusion and intraparticle diffusion varied; both being system specific. Thermodynamic parameters were also calculated. Finally, the process parameters of each adsorption system were compared to develop the understanding of the best suitable system.  相似文献   

5.
Acacia nilotica was used for the adsorption of Reactive Black 5 (RB5) dye from an aqueous solution. Both the raw and activated (with H3PO4) carbon forms of Acacia nilotica (RAN and ANAC, respectively) were used for comparison. Various parameters (including dye concentration, contact time, temperature, and pH) were optimized to obtain the maximum adsorption capacity. RAN and ANAC were characterized using Fourier transform infrared spectroscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. The maximum experimental adsorption capacities for RAN and ANAC were 34.79 and 41.01 mg g?1, respectively, which agreed with the maximum adsorption capacities predicted by the Langmuir, Freundlich, and Dubinin–Radushkevich equilibrium isotherm models. The adsorption data of ANAC showed a good fit to the isotherm models based on the coefficient of determination (R 2): Langmuir type II (R 2 = 0.99) > Freundlich (R 2 = 0.9853) > Dubinin–Radushkevich (R 2 = 0.9659). This result suggested monolayer adsorption of RB5 dye. The adsorption of RB5 dye followed pseudo-second-order kinetics. The RAN adsorbent reflected an exothermic reaction (enthalpy change, ΔH = ?0.006 kJ mol?1) and increased randomness (standard entropy change, ΔS = 0.038 kJ mol?1) at the solid–solution interface. In contrast, ANAC reflected both exothermic [?0.011 kJ mol?1 (303–313 K)] and endothermic [0.003 kJ mol?1 (313–323 K)] reactions. However, the ΔS value of ANAC was lower when the RB5 adsorption increased from 313 to 323 K. The negative values for the Gibbs free energy change at all temperatures indicated that the adsorption of RB5 dye onto RAN and ANAC was spontaneous in the forward direction.  相似文献   

6.
In this study, the imprinted aniline–formaldehyde was used as an adsorbent for removal of Iridium and Palladium ions from aqueous solutions through batch equilibrium. The sorbent was characterized by fourier transform infrared spectroscopy. The influence of pH, equilibrium time, temperature and initial concentration of metal ions on adsorbed amount of both ions were investigated. The maximum adsorption capacity in initial concentration of 100 mg/L was found to be 12.5 mg/g at pH 7.0 and 14.3 mg/g at pH 8.0 for Iridium and Palladium, respectively. In addition, the best desorption of the metal ions from resin was obtained by 0.5 mol/L nitric acid as eluting agent. The profile of both ions uptake on this sorbent reflects good accessibility of the chelating sites in the imprinted aniline–formaldehyde. Langmuir, Freundlich, Temkin and Redlich–Peterson isotherm models were applied to analyze the experimental data. Moreover, Langmuir linear method was used to obtain the isotherm parameters. However, Langmuir type II achieved the highest coefficient which led to the best fit for the palladium and the best fit for Iridium obtained from linear Redlich–Peterson. However, the thermodynamic parameters (ΔG°, ΔH°, and ΔS°) were also determined using the equilibrium constant values obtained at different temperatures. The results showed that the adsorption for Iridium and Palladium ions was spontaneous nature and endothermic. Moreover, the method was applied for the determination of both ions from tap water samples.  相似文献   

7.
The adsorptive removal of Cr(VI) was studied using activated carbon derived from Leucaena leucocephala (ACLL). The physico-chemical properties of ACLL were determined using proximate analysis and N2 BET surface area analysis. The N2 BET surface area of ACLL was determined to be 1131 m2 g?1. The point of zero charge (pHpzc) of 5.42 indicated that ACLL surface was positively charged for pH below the pHPZC, attracting anions. The effect of experimental operating parameters such as time of contact, ACLL dose, pH, initial concentration and temperature was investigated. The optimum values of parameters such as concentration of 100 mg L?1, 300 mg of ACLL dose, time of contact of 60 min, pH of 4 indicated the maximum Cr(VI) uptake of 13.85 mg g?1. The pseudo-second-order kinetic model best fitted with the Cr(VI) adsorption data. Adsorptive removal of Cr(VI) onto ACLL satisfactorily fitted in the order of Redlich–Peterson > Freundlich > Langmuir > Temkin adsorption isotherm model. The thermodynamic parameters showed the adsorption of Cr(VI) onto ACLL was an endothermic and spontaneously occurred process.  相似文献   

8.
Rapid increases in the amounts of fullerene C60 nanoparticles (nC60) being produced and used will inevitably lead to increases in the amounts released into the aquatic environment. This will have implications for human and ecosystem health. Wastewater treatment plants are key barriers to nC60 being released into aquatic systems, but little information is available on how adsorption processes in wastewater treatment plants affect the fates of nC60. We investigated the effects of the surface properties of activated sludge on the adsorption of nC60 and related mechanisms by modeling the adsorption kinetics and equilibrium process and performing correlation analyses. The adsorption of nC60 closely followed the pseudo-second-order kinetic model (R > 0.983), the Freundlich isotherm model (R > 0.990), and the linear partitioning isotherm model (R > 0.966). Different adsorption coefficients, 1.070–4.623 for the Freundlich partitioning model and 1.788–6.148 for the linear partitioning model, were found for different types of activated sludge. The adsorption coefficients significantly positively correlated with the zeta (ζ) potential (R = 0.877) and hydrophobicity (R = 0.661) and negatively correlated with particle size (R = ?0.750). The results show that nC60 adsorption is strongly affected by the surface properties of activated sludge because changes in surface properties cause changes in the electrostatic and hydrophobic interactions that occur.  相似文献   

9.
The adsorption capacity of raw and sodium hydroxide-treated pine cone powder in the removal of methylene blue (MB) from aqueous solution was investigated in a batch system. It was found that the base modified pine cone exhibits large adsorption capacity compared with raw pine cone. The extent of adsorption capacity was increased with the increase in NaOH concentration. Overall, the extent of MB dye adsorption increased with increase in initial dye concentration, contact time, and solution pH but decreased with increase in salt concentration and temperature for both the systems. Surface characteristics of pine cone and base modified pine cone were investigated using Fourier transform infrared spectrophotometer and scanning electron microscope. Equilibrium data were best described by both Langmuir isotherm and Freundlich adsorption isotherm. The maximum monolayer adsorption capacity was found to be 129.87 mg g?1 at solution pH of 9.02 for an initial dye concentration of 10 ppm by raw pine cone. The base modified pine cone showed the higher monolayer adsorption capacity of 142.25 mg g?1 compared with raw pine cone biomass. The value of separation factor, R L, from Langmuir equation and Freundlich constant, n, both give an indication of favourable adsorption. The various kinetic models, such as pseudo-first-order model, pseudo-second-order model, intraparticle diffusion model, double-exponential model, and liquid film diffusion model, were used to describe the kinetic and mechanism of adsorption process. Overall, kinetic studies showed that the dye adsorption process followed pseudo-second-order kinetics based on other models. The different kinetic parameters, including rate constant, half-adsorption time and diffusion coefficient, were determined at different physicochemical conditions. A single-stage bath adsorber design for the MB adsorption onto pine cone and modified pine cone has been presented based on the Langmuir isotherm model equation. Thermodynamic parameters, such as standard Gibbs free energy (ΔG 0), standard enthalpy (ΔH 0) and standard entropy (ΔS 0), were also calculated.  相似文献   

10.
Magnesium hydroxide-coated pyrolytic bio-char composite was prepared by chemical precipitation, and the adsorption behavior of anionic dye (directly frozen yellow) onto magnesium hydroxide-coated pyrolytic bio-char was investigated in the batch mode. The Fourier transform infrared spectroscopy, X-ray diffraction spectroscopy and X-ray fluorescence spectroscopy of adsorbents were characterized. Adsorption studies were performed at different pH, salt concentration, contacting time and dye concentration. The pH value of the solution influenced the adsorption capacity significantly, and adsorption is favored of pH 6–8. Salt coexisted in solution increased slightly directly frozen yellow adsorption capacity. The isotherm data were analyzed by Langmuir and Freundlich isotherm model, and Langmuir model was better to predict the equilibrium data. Thermodynamic calculations showed that the adsorption was a spontaneous and endothermic process. Exhausted magnesium hydroxide-coated pyrolytic bio-char was treated by microwave irradiation, and yield of regeneration was 98 % in the case of microwave irradiated time 5 min at 320 W. The magnesium hydroxide-coated pyrolytic bio-char can be reused.  相似文献   

11.
Barium ion cross-linked alginate beads have shown great affinity to toxic hexavalent chromium ions in aqueous solution, in contrast to the traditionally used calcium alginate beads. Our adsorption experiments were carried out by the batch contact method. The optimal pH for removal was found to be pH 4. The equilibrium was established in 4 h, and the removal efficiency of chromium(VI) was found to be 95 %. The adsorption data were applied to Langmuir, Freundlich, Dubinin–Redushkevich (D–R), and Temkin isotherm equations. Both Langmuir and Freundlich isotherm constants indicated a favorable adsorption. The value of mean sorption energy calculated from D–R isoterm indicates that the adsorption is essentially physical. The high maximum chromium(VI) adsorption capacity was determined from the Langmuir isotherm as 36.5 mg/g dry alginate beads. The chromium(VI) adsorption data were analyzed using several kinetic models such as the pseudo-first-order, pseudo-second-order, intraparticle diffusion, and Elovich models, and the rate constants were quantified. Our study suggests that barium alginate beads can be used as cost-effective and efficient adsorbents for the removal of chromium(VI) from contaminated waters.  相似文献   

12.
The alumina impregnated by the di-2-ethyl hexyl phosphoric acid was introduced to make more adsorption of strontium as well as to determine the optimal conditions. The influence of various parameters such as pH, equilibrium time, adsorbent mass, interfering ions, and various eluant agents for the desorption of the strontium ions, initial concentration, and temperature was investigated to find out the adsorption behavior of the adsorbent under different conditions. The adsorbent was characterized by the Fourier transform infrared spectroscopy. The experimental data were fitted on the two-parameter and three-parameter adsorption isotherm models. The Freundlich and Redlich–Peterson models have suitable fitting on the experimental data (R 2 = 0.9307). The kinetic models of adsorption were analyzed by the pseudo-first- and pseudo-second-order models. The results have been indicated that the pseudo-second-order kinetic model is more appropriate than the others. Advantages of our method were simple operation, less time for preparation of adsorbent, rapid phase separation, and capability to combine with various detection techniques. The method has been utilized to extract and the recovery of strontium ions in environmental aqueous samples.  相似文献   

13.
The adsorption of methyl tert-butyl ether by granular activated carbon was investigated. The experimental data were analyzed using the Freundlich isotherm and the Langmuir isotherm. Although equilibrium data were found to follow Freundlich isotherm model, it were fitted better by the Langmuir model with a maximum adsorption capacity of 204.1 mg/g. The kinetic data obtained at different concentrations were analyzed to predict the constant rate of adsorption using three common kinetic models: pseudo-first-order, pseudo-second-order equation and intraparticle diffusion equation. The pseudo-second-order model was suitable for describing the adsorption kinetics for the removal of methyl tert-butyl ether from aqueous solution onto granular activated carbon. Both the Lagergren first-order rate constant k 1 and pseudo-second-order rate constant k 2 decrease with increasing initial concentrations of methyl tert-butyl ether and the intraparticle diffusion rate constant k p shows the reverse characteristic. Analysis of sorption data using a boyd plot confirmed that external mass transfer is the main rate-limiting step at the initial stage of adsorption. Results illustrate that granular activated carbon is an effective adsorbent for methyl tert-butyl ether and also provide specific guidance into adsorption of methyl tert-butyl ether on granular activated carbon in contaminated groundwater.  相似文献   

14.
Asexual spores of the filamentous fungus Rhizopus arrhizus were used as the resting biomass as they tolerate chitosan gelling for mycelia growing in chitosan beads. Biosorption of lead using the dead detergent pre-treated chitosan-immobilised and grown fungal beads was performed with initial lead (II) nitrate concentrations ranging from 9.02 to 281.65 mg/L. The adsorption data were best correlated with equilibrium adsorption isotherms in the order Redlich–Peterson, Langmuir, Freundlich and Fritz–Schlünder by non-linear regression. The biosorption kinetic model of pseudo second-order (R 2 > 0.99) fitted better than pseudo first-order and modified pseudo first-order models. Among the four pseudo second-order kinetic models, the Blanchard model was the best fit for the experimental biosorption data. The rate-limiting step of biosorption of lead was shown to be intraparticle diffusion controlled according to Weber and Morris model fitting. The beads could be regenerated using 1 M nitric acid solution. This illustrated the good performance of the beads for regenerated sorption/desorption at least five cycles.  相似文献   

15.
Abundantly available agricultural waste materials (banana bunch, sorghum stem and casuarinas fruit) are processed with negligible cost and are found to be highly suitable as biosorbents for chromium(VI) removal from aqueous environment due to high surface area and functional groups of adsorbents. The equilibrium data have been analyzed for the adsorbate–adsorbate/adsorbent interactions and found to be fitted to the data in the order, Hill–de Boer ≥ Fowler–Guggenheim ? Frumkin > Kiselev. To determine the characteristic parameters for process design, mass transfer studies have been carried out using two-parameter isotherm models (Harkins–Jura, Halsey, Smith, El-Awady and Flory–Huggins) and three-parameter isotherm models (Redlich–Peterson and Sips) which are applied to the experimental data. The fitness of the isotherms describes that both mono- and multilayer adsorptions occur in the present studied three biosorbents in preference to the latter. The mechanism of adsorption has been studied using diffusion kinetic models (viz. liquid film diffusion, Dunwald–Wagner intra-particle diffusion model and moving boundary model) and described the possibility of diffusion in the order of banana bunch–stem powder > sorghum stem powder > casuarinas fruit powder in terms of diffusion coefficients. In essence of all the results, the selected adsorbents can be used as a potential adsorbent for the removal of Cr(VI) from aqueous solutions.  相似文献   

16.
Sugar beet pulp is an abundant, renewable and low-cost precursor for production of activated carbon. In the present study, sugar beet pulp based activated carbon was prepared by using phosphoric acid as activating agent for adsorption of methylene blue. The conditions of preparation process had a significant influence on the adsorption of methylene blue, and the optimal preparation conditions were obtained as follows: liquid-to-solid ratio of 5, temperature of 450 °C and phosphoric acid concentration of 3 mol/L. The properties of sugar beet pulp based activated carbon were characterized by nitrogen adsorption isotherm. The adsorption increases as the increase of contact time, adsorption temperature and pH, and initial concentration of methylene blue. Batch kinetic studies showed that an equilibrium time of 100 min was needed for the adsorption, and the adsorbance of methylene blue is 244.76 mg/g at equilibration. Kinetic models, Weber’s pore diffusion model and Boyd’s equation were applied to the experimental data to study the mechanism of adsorption and the controlled step. The results showed that the adsorption kinetics followed the pseudo-second-order type kinetic model, intraparticle diffusion was not the rate-limiting mechanism and adsorption process was controlled by film diffusion.  相似文献   

17.
The Luhuagang landfill site (LLS) in Kaifeng, China, lacks liner and leachate collection systems. Thus, leachate generated from the waste dump has contaminated the surrounding subsoil and shallow aquifer with various chemicals, including 1,2,4-Trichlorobenzene (1,2,4-TCB). This paper is a part of a series of studies on adsorption, transport and biodegradation and fate of 1,2,4-TCB in the shallow aquifer beneath LLS. Here, adsorption of 1,2,4-TCB onto silt, fine sand and medium sand aquifer deposits collected at LLS was conducted by performing batch experiments involving four common adsorption kinetic models. The results of the analyses showed that the pseudo-second-order adsorption kinetic model provided the best fit for the equilibrium data with a coefficient of determination (R 2) greater than 0.99. Least squares analysis of Henry, Freundlich and Langmuir linearly transformed isotherm models was used to establish the best isotherm for 1,2,4-TCB adsorption onto the three aquifer materials. The Freundlich isotherm provided the best fit for experimental data with R 2 > 0.99. The results further suggested that the highest adsorption rate of 1,2,4-TCB (27.55 μg/g) was onto silt deposit, followed by fine sand (21.65 μg/g) and medium sand (14.88 μg/g). This showed that silt layer beneath the LLS was critical for retarding the downward percolation and migration of 1,2,4-TCB into the shallow aquifer systems under the landfill. The findings of the study were adopted as basis for designing the slated transport and biodegradation study of 1,2,4-TCB in aquifer system at LLS.  相似文献   

18.
Multi-walled carbon nanotubes were used successfully for the removal of Copper(II), Lead(II), Cadmium(II), and Zinc(II) from aqueous solution. The results showed that the % adsorption increased by raising the solution temperature due to the endothermic nature of the adsorption process. The kinetics of Cadmium(II), Lead(II), Copper(II), and Zinc(II) adsorption on Multi-walled carbon nanotubes were analyzed using the fraction power function model, Lagergren pseudo-first-order, pseudo-second-order, and Elovich models, and the results showed that the adsorption of heavy metal ions was a pseudo-second-order process, and the adsorption capacity increased with increasing solution temperature. The binding of the metal ions by the carbon nanotubes was evaluated from the adsorption capacities and was found to follow the following order: Copper(II) > Lead(II) > Zinc(II) > Cadmium(II). The thermodynamics parameters were calculated, and the results showed that the values of the free energies were negative for all metals ions, which indicated the spontaneity of the adsorption process, and this spontaneity increased by raising the solution temperature. The change in entropy values were positives, indicating the increase in randomness due to the physical adsorption of heavy metal ions from the aqueous solution to the carbon nanotubes’ surface. Although the enthalpy values were positive for all metal ions, the free energies were negative, and the adsorption was spontaneous, which indicates that the heavy metal adsorption of Multi-walled carbon nanotubes was an entropy-driving process.  相似文献   

19.
The adsorption behavior study of diethyl and dibutyl phthalates was investigated onto a new activated carbon prepared from an abundant biomass “Albizia julibrissin pods,” treated chemically by H3PO4. A series of experiments were conducted in a batch system to estimate the effect of operating conditions such as the adsorbent nature, the dose of adsorbent, the contact time, the initial concentration and the temperature on the adsorption efficiency. The optimum operating conditions were found to be 0.1 and 0.05 g of adsorbent for diethyl and dibutyl phthalates, respectively, at 30 min equilibrium time, 150 mg g?1 and 293 K. The adsorption isotherms for both phthalates were fit at different temperatures using the nonlinear regression of Langmuir, Freundlich, Dubinin–Radushkevich and Redlich–Peterson. The pseudo-first order, pseudo-second order by nonlinear regression and intraparticle diffusion models were used to describe the adsorption kinetic. The results show that the intraparticle diffusion model is not the limiting step governing the adsorption mechanism. The structural and textural characteristics of adsorbent surface were investigated. FTIR analysis of unloaded and phthalates-loaded adsorbent revealed that the aliphatic groups attached to phthalate esters are involved in adsorption mechanism.  相似文献   

20.
The ability of magnetically modified activated sludge affected by thermal treatment to remove water-soluble organic dyes was examined. Twelve different dyes were tested. Based on the results of the initial sorption study, four dyes (namely aniline blue, Nile blue, Bismarck brown Y and safranin O) were chosen for further experiments due to their promising binding onto magnetic activated sludge. Significant factors influencing adsorption efficiency such as dependence of contact time, initial pH or temperature were studied in detail. The adsorption process was very fast; more than 88 % of dye content (55 mg/L) was adsorbed within 15 min under experimental conditions used. The equilibrium adsorption data were analyzed by Freundlich, Langmuir and Sips adsorption isotherm models, and the fitting of each isotherm model to experimental data was assessed on the basis of error functions. The maximum adsorption capacities of magnetic activated sludge were 768.2, 246.9, 515.1 and 326.8 mg/g for aniline blue, Bismarck brown Y, Nile blue and safranin O, respectively. The kinetic studies indicated that adsorption of all selected dyes could be well described by the pseudo-second-order kinetic model, and the thermodynamic data suggested the spontaneous and endothermic process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号