首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The spatial coexistence and synchronous formation of magmatogene porphyry Cu–Mo mineralization and epithermal gold mineralization are due to the genetic relationship between their formation processes. This relationship might be due to the generation of metal-bearing fluids of different geochemical compositions by the porphyry ore-magmatic system, which then participate in the formation of magmatogene porphyry Cu–Mo(Au) and associated epithermal gold deposits. Synthesis of fluid inclusions in quartz was performed for experimental study of the behavior of Cu, Mo, W, Sn, Au, As, Sb, Te, Ag, and Bi in heterophase fluids similar in composition and aggregate state to natural ore-forming fluids of porphyry Cu–Mo(Au) deposits. We have established that at 700 °C, a pressure decrease from 117 to 106 MPa leads to a significant enrichment of the gas phase of heterophase chloride fluid with Au, As, Sb, and Bi. The heterophase state of carbonate–chloride–sulfate fluids is observed at 600 °C and 100–90 MPa. It characterizes the highly concentrated liquid carbonate–sulfide phase–liquid chloride phase–low-density gas phase equilibrium. A decrease in the pressure of heterophase carbonate–chloride–sulfate fluid leads to a noticeable enrichment of its chloride phase with Cu, Mo, Fe, W, Ag, Sn, Sb, and Zn relative to the carbonate–sulfate phase. The processes of redistribution of ore elements between the phases of heterophase fluids can be considered a model of generation of metal-bearing chloride fluids, which occurs in nature during the formation of porphyry Cu–Mo(Au) deposits, as well as a model of generation of gas fluids supplying Au, Te, As, and other ore elements to the place of formation of epithermal Au–Cu and Au–Ag mineralization.© 2015, V.S. Sobolev IGM, Siberian Branch of the RAS. Published by Elsevier B.V. All rights reserved.  相似文献   

2.
The chemistry and mode of occurrences of native tellurium in the epithermal gold ores from Teine, Kobetsuzawa, Mutsu, Kawazu, Suzaki and Iriki in Japan are examined. Mineral assemblages in contact with native tellurium are: quartz‐sylvanite at Teine, quartz‐hessite‐sylvanite‐tellurantimony at Kobetsuzawa, quartz at Mutsu, quartz‐stutzite‐hessite‐sylvanite‐tetradymite at Kawazu, quartz at Suzaki, and quartz‐goldfieldite at Iriki. The peak patterns of XRD for native tellurium from these six ores are nearly identical to that of JCPDS 4–554. Their chemical compositions of Te range from 98.16 to 100.73 wt.%, showing nearly pure tellurium. Other elements detected are: Se of 0–0.85 and Cu of 0–0.74 at Teine, Sb of 0.45–0.47 and Se of 0.19–0.27 at Kawazu, Se of 0.22–1.11 and Sb of 0–0.49 at Suzaki, and Cu of 0.69–0.98, As of 0.22–0.28 and Bi of 0–0.22 wt.% at Iriki. No other elements are detected in the ores of Kobetsuzawa and Mutsu. The ranges of associated minor compositions are consistent with those of the experimental phase. The differences would be related to associate minerals. The mineral assemblages in these ores agree well with the previously proposed experimental phase relations in Au‐Ag‐Te ternary system for 120–280°C. The Suzaki ore has high Te‐Au assemblage: from calaverite‐sylvanite‐krennerite via native tellurium to petzite, with changing mineralization stage, whereas the Kobetsuzawa and the Kawazu ores have high Te‐Ag assemblage of tellurium‐hessite, and native tellurium‐stutzite‐hessite‐sylvanite, respectively. The Teine ore has intermediate assemblage of native tellurium‐sylvanite. The mineral assemblages in the Au‐Ag‐Te system are related to the hydrothermal environment especially to the pH condition, i.e. Au rich assemblages under acidic and Ag rich assemblages under intermediate pH conditions, being supported by alteration mineral species. The other telluriferous epithermal gold deposits not in association with native tellurium such as Agawa, Date, Takeno, Chugu, Chitose, Sado and Kushikino are estimated to have been formed under higher pH conditions as adularia and calcite occur in these deposits. The pH‐Eh diagram for aqueous tellurium species and tellurium minerals at 250°C indicates that the region of native tellurium occurs between those of aqueous telluride and tellurous species at lower pH, being consistent with their mineral assemblages in ores and alteration envelopes.  相似文献   

3.
Utilizing theories of minerageny and prospecting mineralogy, the authors studied the attitude, morphotype and chemical composition of metallic minerals of pyrite, gold, chalcopyrite, galena and sphalerite, non-metallic minerals of quartz, carbonate, dolomite and rutile in the Puziwan gold deposit. The study shows the following results. (1) The mineral assemblage is complex and the species of sulfide are abundant with occurrences of sulfosalt minerals. (2) The composition in the minerals is complex and there rich micro elements, including As, Sb, Bi, Se, Te, Au, Ag, Cu, Pb, Zn, and Cr, Ni, V. The typomorphic characteristics of the association of the elements and their specific value suggest that gold mineralization is associated with shallow magmatic hydrothermal activity, the oreforming fluid is the mixture of abundant rising alkali magmatic water originating from the mantle or the lower crust and the descending acid atmospheric water. (3) Ankerite, Fe-rich sphalerite, granular Ti-rich rutile are widely distributed, which indicate great denudation depths, high mineralization temperature. The deposit is found in the middle and shallow positions of the porphyry series. The deep layers are not favorable for gold mineralization. (4) Copper minerals are rich in the ores and sulfides have high content of copper, suggesting possible porphyry-type Cu (Au) mineralization in deep positions and the surrounding areas.  相似文献   

4.
山西省阳高县堡子湾金矿床矿物标型特征   总被引:2,自引:0,他引:2  
根据成因矿物学及找矿矿物学观点,系统研究堡子湾金矿床黄铁矿、金矿物、方铅矿、黄铜矿和闪锌矿等金属矿物,石英、碳酸盐、绢(白)云母和金红石等非金属矿物的产状、形态及化学成分标型,结果表明:①矿床中矿物组合复杂,硫化物种类多,有少量硫盐矿物出现;②矿物中微量元素成分复杂,富含As,Sb,Bi,Se,Te等Au活化、迁移有利的矿化搬运剂,Cu,Ph,Zn,Au,Ag等成矿元素和Cr,Ni,V等深源元素;元素矿物组合及其特征比值指示金矿化与深源(下地壳或上地慢)浅成岩浆热液活动(斑岩系统)有关,燕山期石英二长斑岩(角砾岩)是成矿的主导因素;③矿石中大量出现铁白云石、富铁闪锌矿,粒状、富Ti金红石的大量分布,反映矿床剥蚀深度较大,目前可能已揭露至中深部中温带,位于斑岩系统的中下部,深部金矿化不利;④矿石含丰富的铜矿物,其他硫化物矿物中含铜量大,指示深部可能存在斑岩型Cu(Au)矿化。  相似文献   

5.
New data on the composition of the major minerals from the skarn and vein polymetallic deposits of the Dal’negorskii ore region are reported. Analysis of galena and sphalerite was carried out by the X-ray fluorescent energy-dispersive method of synchrotron radiation for the first time. It is shown that the minor elements in major minerals of different deposits are typomorphic. Among these elements are Fe, Cu, Ni, Cd, Ag, Sn, and Sb, as well as In in sphalerite and Te in galena. The high concentrations of Ag, Cu, Te, Cd, and In in the extracted minerals indicate the complex character of mineralization. The compositional patterns of ore minerals characterize the sequence of mineral formation from the skarn to vein ores, and the sequence of deposits from the mesothermal to epithermal conditions. This provides geochemical evidence for the stage model of the formation of mineralization in the Dal’negorskii ore region.  相似文献   

6.
花敖包特Pb-Zn-Ag多金属矿床构造上位于滨西太平洋成矿域内蒙古大兴安岭成矿带南段, 是一个近年来发现的与白垩纪早期构造岩浆活动有关的隐伏热液脉状矿床.研究表明: (1)矿体原生晕发育, 且分带明显.据其异常强度建立的元素横向分带顺序(从强到弱)为Cd→Pb→Zn→Ag→Sb→In→Hg→As→Cu→Sn→W→Mo→Bi, 排在序列前面的Cd、Pb、Zn、Sb、Ag等5种元素, 可作为远矿指示元素; 排在序列后端的As、Bi、Mo、W等4种元素, 可作为近矿指示元素.(2)根据Grigorian原生晕分带计算方法, 获得矿体原生晕轴向分带序列(自矿体头部至尾部)为Sb→Pb→Cd→Ag→Zn→Hg→Cu→In→As→Bi→Sn→Mo→W, 与Grigorian建立热液矿床标准分带基本一致.(3)构建深部矿体找矿模型, 其预测评价指标(Sb×Pb×Cd×Ag)D/(As×Sn×Mo×W)D在矿体头部为1.30、矿体中上部为0.35、矿体中下部为0.056、矿体尾部为0.005, 这表明该指标随深度的增加有规律地降低, 是预测深部矿体资源潜力的有效指标.   相似文献   

7.
The Eastern Highlands of Australia have probably been in existence since the Late Cretaceous or earlier and so there has been ample time for mature gossan profiles to form over outcropping volcanogenic Zn–Pb–Cu mineralisation in the eastern Lachlan Fold Belt. The mature gossan profiles are characterised by the upward progression from supergene sulfides to secondary sulfates, carbonates and phosphates into a Fe-oxide dominated surficial capping which may contain boxwork textures after the original sulfides (as at the Woodlawn massive sulfide deposit). However, the region has locally been subjected to severe erosion and the weathering profile over many deposits is incomplete (immature) with carbonate and phosphate minerals, especially malachite, being found in surficial material. These immature gossans contain more Cu, Pb and Zn but lower As, Sn (and probably Au) than the mature gossans. Although Pb is probably the best single pathfinder for Zn–Pb–Cu VHMS deposits of the eastern Lachlan Fold Belt, Ag, As, Au, Bi, Mo, Sb and Sn are also useful, with most of these elements able to be concentrated in substantial amounts in Fe oxides and alunite–jarosite minerals.  相似文献   

8.
Nickel-copper sulfide deposits occur in the basal unit of the Partridge River Intrusion, Duluth Complex (Minnesota, USA). Many lines of evidence suggest that these sulfides are formed after assimilation of the proterozoic S-rich black shales, known as the Bedded Pyrrhotite Unit. In addition to S, black shales are enriched in Te, As, Bi, Sb and Sn (TABS) and the basaltic magma of the intrusion is contaminated by the partial melt of the black shales. The TABS are chalcophile and together with the platinum-group elements, Ni and Cu partitioned into the magmatic sulfide liquid that segregated from the Duluth magma. The TABS are important for the formation of platinum-group minerals (PGM) thus their role during crystallization of the base metal sulfide minerals could affect the distribution of the PGE. However, the concentrations of TABS in magmatic Ni-Cu-PGE deposits and their distribution among base metal sulfide minerals are poorly documented. In order to investigate whether the base metal sulfide minerals host TABS in magmatic Ni-Cu-PGE deposits, a petrographic and Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) study has been carried out on base metal sulfide and silicate phases of the Partridge River Intrusion, Duluth Complex.Petrographic observations showed that the proportions of the base metal sulfide minerals vary with rock type. The sulfide assemblage of the least metamorphosed Bedded Pyrrhotite Unit from outside the contact metamorphic aureole consists of pyrite with minor pyrrhotite plus chalcopyrite (<5%), whereas within the contact aureole the sulfide assemblage of the Bedded Pyrrhotite Unit rocks consists dominantly of pyrrhotite (>95%) with small amount of chalcopyrite (<2%). The sulfide mineral assemblage in the xenoliths of the Bedded Pyrrhotite Unit and in the mafic rocks of the basal unit contains two additional sulfides, pentlandite and cubanite.Our LA-ICP-MS study shows that sulfides of the Bedded Pyrrhotite Unit are rich in TABS; consistent with these S-rich black shales being the source of TABS that contaminated the mafic magma. Most of the TABS are associated with sulfides and platinum-group minerals in the rocks of the Bedded Pyrrhotite Unit from the contact aureole, the Bedded Pyrrhotite Unit xenoliths and the mafic rocks of the Duluth Complex. In addition to these phases the laser maps show that silicate phases, i.e., orthopyroxene and plagioclase contain Sn and Pb respectively. In contrast, in the least metamorphosed samples of the Bedded Pyrrhotite Unit from outside the contact aureole although the pyrite contains some TABS mass balance calculations indicates that most the TABS are contained in other phases. In these rocks, galena hosts significant amounts of Te, Bi, Sb, Sn and Ag and few very small grains of Sb-rich phases were also observed. The host phases for As were not established but possibly organic compounds may have contributed.  相似文献   

9.
山东夏甸金矿及其外围矿区隐伏矿体定位预测   总被引:5,自引:0,他引:5  
总结国内103个、国外35个含硫盐矿物金矿床的特征,发现蚀变岩型金矿中出现硫盐矿物的概率较大,为034,且以Cu的硫盐矿物为主,其概率为063。含硫盐矿物金矿围岩蚀变类型多样,并以硅化、黄铁矿化、绢云母化为主。探讨了As,Sb,Bi,Te等的活动及硫盐矿物的形成与Au的释放、搬运、沉淀、富集的内在联系,并指出硫盐矿物的找矿预测意义。  相似文献   

10.
《Ore Geology Reviews》2011,43(1):32-46
Hydrothermal pyrite contains significant amounts of minor and trace elements including As, Pb, Sb, Bi, Cu, Co, Ni, Zn, Au, Ag, Se and Te, which can be incorporated into nanoparticles (NPs). NP-bearing pyrite is most common in hydrothermal ore deposits that contain a wide range of trace elements, especially deposits that formed at low temperatures. In this study, we have characterized the chemical composition and structure of these NPs and their host pyrite with high-resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED), high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), analytical electron microscopy (AEM), and electron microprobe analysis (EMPA). Pyrite containing the NPs comes from two types of common low-temperature deposits, Carlin-type (Lone Tree, Screamer, Deep Star (Nevada, USA)), and epithermal (Pueblo Viejo (Dominican Republic) and Porgera (Papua New-Guinea)).EMPA analyses of the pyrite show maximum concentrations of As (11.2), Ni (3.04), Cu (2.99), Sb (2.24), Pb (0.99), Co (0.58), Se (0.2), Au (0.19), Hg (0.19), Ag (0.16), Zn (0.04), and Te (0.04) (in wt.%). Three types of pyrite have been investigated: “pure” or “barren” pyrite, Cu-rich pyrite and As-rich pyrite. Arsenic in pyrite from Carlin-type deposits and the Porgera epithermal deposit is negatively correlated with S, whereas some (colloform) pyrite from Pueblo Viejo shows a negative correlation between As + Cu and Fe. HRTEM observations and SAED patterns confirm that almost all NPs are crystalline and that their size varies from 5 to 100 nm (except for NPs of galena, which have diameters of up to 500 nm). NPs can be divided into three groups on the basis of their chemical composition: (i) native metals: Au, Ag, Ag–Au (electrum); (ii) sulfides and sulfosalts: PbS (galena), HgS (cinnabar), Pb–Sb–S, Ag–Pb–S, Pb–Ag–Sb–S, Pb–Sb–Bi–Ag–Te–S, Pb–Te–Sb–Au–Ag–Bi–S, Cu–Fe–S NPs, and Au–Ag–As–Ni–S; and (iii) Fe-bearing NPs: Fe–As–Ag–Ni–S, Fe–As–Sb–Pb–Ni–Au–S, all of which are in a matrix of distorted and polycrystalline pyrite. TEM-EDX spectra collected from the NPs and pyrite matrix document preferential partitioning of trace metals including Pb, Bi, Sb, Au, Ag, Ni, Te, and As into the NPs. The NPs formed due to exsolution from the pyrite matrix, most commonly for NPs less than 10 nm in size, and direct precipitation from the hydrothermal fluid and deposition into the growing pyrite, most commonly for those > 20 nm in size. NPs containing numerous heavy metals are likely to be found in pyrite and/or other sulfides in various hydrothermal, diagenetic and groundwater systems dominated by reducing conditions.  相似文献   

11.
黝铜矿-砷黝铜矿系列矿物(Tetrahedrite -Tennantite Series Mineral,TTSM)作为含Cu、Ag、S、Sb、As、Hg及少量Au、Fe、Zn、Cd、Bi、Te、Se的硫盐矿物广泛存在于世界各地的Cu、Ag、Au、Pb、Zn多金属矿床中.为了能够更好的认识该系列矿物,提高矿物中有用元素的回收率,扩大黝铜矿型铜矿床的经济效益,本文对TTSM的化学组成和类质同象置换规律,晶胞参数和晶体结构的形变,矿物人工合成和有用元素的浸出试验等研究进展进行了综述.天然TTSM矿物一般化学式为:(Cu,Ag)6 Cu4 (Fe,Zn,Cu,Hg,Ag,Cd)2 (Sb,As,Bi,Te)4 (S,Se)13,其中S-Se、Sb-As-Bi-Te、Ag-Cu、Cu-Hg-Fe-Pb-Zn-Cd的类质同象置换相当普遍;TTSM晶体结构中不同结构位置离子置换规律更多的受限于离子价键,而同一结构位置不同离子的置换除受限于离子价键还受限于该位置空间大小,晶胞参数与离子置换类型和数量密切相关;人工合成实验证实形成TTSM矿物的温度范围为350~540℃,浸出试验证明随反应温度增高、浸出浓度增大、矿物颗粒减小时,TTSM中有用元素的浸出速率增大.  相似文献   

12.
黄沙坪铅锌矿床中银矿化组合特征   总被引:6,自引:0,他引:6  
研究黄沙坪铅锌矿床中银矿化组合表明:与301花岗斑岩和304花斑岩岩体有关铅(锌)-银-锡-锑矿化组合,银矿化伴随铅矿化出现,其微量元素富Sn、Sb、Ag,低Bi、Te、Mo、Wo、W为特征;银矿物组合以硫银锡矿-银黄锡矿-深红银矿-螺状硫银矿-硫锑铜银矿组合为特征,与石英斑岩有关的铜(钼)-银-碲矿化组合,铜矿石以高Te、Bi、Mo和W,低Sb为特征,银矿物组合以碲银矿-六方碲银矿-粒碲银组合和硫银铋矿-块辉铋铅银矿-碲银矿组合为特征  相似文献   

13.
浙江火山岩区金矿床黄铁矿的找矿矿物学研究   总被引:4,自引:0,他引:4       下载免费PDF全文
论文给出了中国浙江火山岩区金矿床中黄铁矿的微量元素、形态和物理性质找矿标型特征.例如.(在许多)浙江火山岩区重要金-银矿床中黄铁矿相对富含铅、锌、钼、锡、砷、锑、铋而贫钴,镍、硒、碲:并且S/Se、Ag/Au、Pb/Ni、Se/Te、(As+sb+Bi)/(Se+Te)比值较高,Co/Nj、Ag/Pb、Ag/Zn、Cu/Zn和(Co+Ni)/(Pb+Zn)比值较低,再如含金黄铁矿比不含金黄铁矿的反射率低.总之,黄铁矿的标型性研究对于寻找金矿具有重大的理论意义和实际意义.  相似文献   

14.
大兴安岭中段铜多金属矿床矿物微量元素研究   总被引:16,自引:4,他引:12  
盛继福  李岩  范书义 《矿床地质》1999,18(2):153-160
对大兴安岭中段铜多金属矿床硫化物矿同量元素研究表明,虽然该区矿床类型不同,但闪锌矿种属一致,多为铁闪锌矿和含铁闪锌矿,而方铅矿中Sb,Bi,Ag含量却明显不同;黄铜矿中的Co,Ni含量明显大于黄铁矿中的Co,Ni含量;各类型矿床中方铅矿,闪锌矿,黄铜矿,黄铁矿等硫化物中Ag普遍有较高的含量,反映了大兴安岭中段银处于高异常区,银,金,镉,铟往往具有综合利用价值。  相似文献   

15.
吴胜华  孙冬阳  李军 《岩石学报》2020,36(1):245-256
华南包括两个世界级的W矿带,分别是南岭和江南造山带W成矿带。柿竹园W多金属矿床位于南岭地区,香炉山W矿床位于江南造山带东北部。两个矽卡岩W矿床都发育硫化物成矿阶段。但硫化物和成矿元素组成存在显著的差异。前者由含Pb、Zn、Ag硫化物和黝铜矿、银黝铜矿、含Ag斜方辉铅铋矿和铁硫锡铜矿硫盐组成;后者主要为磁黄铁矿。柿竹园远接触带Pb-Zn-Ag矿脉中硫化物(闪锌矿、黄铜矿、方铅矿和磁黄铁矿)较富集B、Mn、Cr、Sb、Sn和Hg,香炉山似层状矽卡岩和硫化物-白钨矿矿体中硫化物(磁黄铁矿、黄铜矿和闪锌矿)较富集W、Se和Bi。两个矿床中黄铜矿、闪锌矿和方铅矿较富集Ag,黄铜矿、闪锌矿富集In和Sn,闪锌矿还富集Cd。两个矿床中的硫化物微量元素分析表明与矽卡岩W矿成矿相关的硫化物可载有多种微量元素。这些元素参与到硫化物中程度由多种因素控制。具体如下,硫化物中B含量高低与成矿相关岩体中B含量相关;在相对高温和还原条件下,硫化物中W含量较高;闪锌矿中Mn和Cd与Zn发生取代作用; Cr可以一定程度进入到硫化物中,并受成矿流体中Cr含量影响; Se与S发生了一定程度的取代进入硫化物,并受流体中它的含量控制; Bi在闪锌矿与黄铜矿易形成固溶体;硫化物中Sb含量受初始流体中它的含量影响,方铅矿中易包裹一定的辉锑矿(Sb_2S_3)或含Sb的硫盐矿物; Ag是否形成独立的矿物相和进入哪些硫化物中,取决于流体中Ag的初始含量和硫化物的沉淀次序;硫化物中Hg的含量受温度影响。  相似文献   

16.
Relationships between noble-metal and oxide-sulfide mineralization during the origin of the Volkovsky gabbroic pluton are discussed on the basis of geochemical data and thermodynamic calculations. The basaltic magma initially enriched in noble metals (NM) relative to their average contents in mafic rocks, except for Pt, is considered to be a source of Pd, Pt, Au, and Ag in the gabbroic rocks of the Volkovsky pluton. The ores were formed with a progressive gain of NM in the minerals during the fractionation of the basaltic magma. The active segregation of NM in the form of individual minerals (palladium tellurides and native gold) hosted in titanomagnetite and copper sulfide ore occurred during the final stage of gabbro crystallization, when the residual fluid-bearing melt acquired high concentrations of Cu, Fe, Ti, and V, along with volatile P and S. Copper sulfides—bornite and chalcopyrite—are the major minerals concentrating NM; they contain as much as 22.65–25.20 ppm Pd and 0.74–1.56 ppm Pt; 4.39–8.0 ppm Au, and 127.2–142.6 ppm Ag, respectively. The copper ore and associated NM mineralization were formed at a relatively low sulfur fugacity, which was a few orders of magnitude (attaining 5 log units) lower than that of the pyrite-pyrrhotite equilibrium. The low sulfur fugacity and the close chemical affinity of Pd and Pt to Te precluded the formation of pyrrhotite, pyrite, and PGE disulfides. The major ore minerals and NM mineralization were formed within a wide temperature range (800–570°C), under nearly equilibrium conditions. Foreign elements (Ni, Co, and Fe) affected the thermodynamic stability of Pd and Pt compounds owing to the difference in their affinity to Te and to elements of the sulfur group (S, Se, and As). The replacement of Pd with Ni and Co and, to a lesser extent, with Pt and the replacement of Te with S, As, and Se diminish the stability field of palladium telluride. Comparison of Pd tellurides from copper sulfide ores at the Volkovsky and Baronsky deposits showed the enrichment of the former in Au, Sb, and Bi, while the latter are enriched in Pt, Ni, and Ag. The enrichment of Pd tellurides at the Baronsky deposit in Ni is correlated with the analogous enrichment of the host gabbroic rocks.  相似文献   

17.
Concentrations of platinum group elements (PGE), Ag, As, Au, Bi, Cd, Co, Mo, Pb, Re, Sb, Se, Sn, Te, and Zn, have been determined in base metal sulfide (BMS) minerals from the western branch (402 Trough orebodies) of the Creighton Ni–Cu–PGE sulfide deposit, Sudbury, Canada. The sulfide assemblage is dominated by pyrrhotite, with minor pentlandite, chalcopyrite, and pyrite, and they represent monosulfide solid solution (MSS) cumulates. The aim of this study was to establish the distribution of the PGE among the BMS and platinum group minerals (PGM) in order to understand better the petrogenesis of the deposit. Mass balance calculations show that the BMS host all of the Co and Se, a significant proportion (40–90%) of Os, Pd, Ru, Cd, Sn, and Zn, but very little (<35%) of the Ag, Au, Bi, Ir, Mo, Pb, Pt, Rh, Re, Sb, and Te. Osmium and Ru are concentrated in equal proportions in pyrrhotite, pentlandite, and pyrite. Cobalt and Pd (∼1 ppm) are concentrated in pentlandite. Silver, Cd, Sn, Zn, and in rare cases Au and Te, are concentrated in chalcopyrite. Selenium is present in equal proportions in all three BMS. Iridium, Rh, and Pt are present in euhedrally zoned PGE sulfarsenides, which comprise irarsite (IrAsS), hollingworthite (RhAsS), PGE-Ni-rich cobaltite (CoAsS), and subordinate sperrylite (PtAs2), all of which are hosted predominantly in pyrrhotite and pentlandite. Silver, Au, Bi, Mo, Pb, Re, Sb, and Te are found predominantly in discrete accessory minerals such as electrum (Au–Ag alloy), hessite (Ag2Te), michenerite (PdBiTe), and rhenium sulfides. The enrichment of Os, Ru, Ni, and Co in pyrrhotite, pentlandite, and pyrite and Ag, Au, Cd, Sn, Te, and Zn in chalcopyrite can be explained by fractional crystallization of MSS from a sulfide liquid followed by exsolution of the sulfides. The early crystallization of the PGE sulfarsenides from the sulfide melt depleted the MSS in Ir and Rh. The bulk of Pd in pentlandite cannot be explained by sulfide fractionation alone because Pd should have partitioned into the residual Cu-rich liquid and be in chalcopyrite or in PGM around chalcopyrite. The variation of Pd among different pentlandite textures provides evidence that Pd diffuses into pentlandite during its exsolution from MSS. The source of Pd was from the small quantity of Pd that partitioned originally into the MSS and a larger quantity of Pd in the nearby Cu-rich portion (intermediate solid solution and/or Pd-bearing PGM). The source of Pd became depleted during the diffusion process, thus later-forming pentlandite (rims of coarse-granular, veinlets, and exsolution flames) contains less Pd than early-forming pentlandite (cores of coarse-granular).  相似文献   

18.
The purposes of this study were to assess the influence of old mining activities on the geochemistry and quality of sediments and to identify the sites of economic elements. Thirty sites of stream sediment were sampled in the study area covered by granitic, metarhyodacitic and meta-andesitic rocks and related tuffs-hosted abandoned Au mine. The suite of chemical elements, Ag, Bi, Cd, Cu, Fe, Ga, Hg, Mn, Nb, Pb, Rb, Sb, Se, Sn, Te, Th, U, Y, Zn and Zr, pH value and total organic carbon were determined, and univariate, bivariate and multivariate statistical methods were applied. The results show that the enrichment factor (EF) is very high in the case of Te and significant also with respect to Ag, Bi, Cu, Sb, Se, Sn and Zn. Likewise, geoaccumulation indices (Igeos) varied from very highly polluted with Sn and Te, strongly to very strongly polluted with Bi and Se, and moderately polluted with Sb. The polluted sites of Ag, Bi, Sb, Se, Sn and Te were outlined using Igeos maps, and economic sites of Ag and Sn were identified by geochemical maps leading to their sources, which are likely to be mining activities and lithogenic processes. The pollutant elements may cause toxicity in stream sediments, or surface or underground water, as well as plants and animals in the area. This investigation provides an environmental baseline for future monitoring of possible human/anthropogenic, industrial and agricultural impacts on the study area and considers an attempt at re-mining Ag and Sn.  相似文献   

19.
斑岩型矿床——非传统矿产资源研究的重要对象   总被引:2,自引:0,他引:2  
张寿庭  赵鹏大 《地球科学》2011,36(2):247-254
多年来, 斑岩型矿床在传统意义上被认为是铜和钼的主要来源.然而, 斑岩型矿床成岩成矿地质条件复杂, 矿化类型丰富, 尤其是对一些大型-超大型斑岩矿床, 均为多元素综合性的巨型矿床, 除传统意义上的铜、钼等矿产外, 非传统矿产的成矿-找矿潜力巨大, 包括: 金、银、锡、钨、铋、铅、锌、铼、铀、钴、硫、硒、碲、铂族元素、磁铁矿等, 金红石和稀有金属如钽、铌等也值得关注.开展斑岩型矿床成岩成矿地质背景、矿床地质特征与非传统矿产矿化富集分布规律研究, 总结斑岩型矿床非传统矿产资源潜力预测评价标志, 指导找矿预测与资源潜力评价, 具有重要的理论价值和现实意义.   相似文献   

20.
To evaluate biogeochemical characteristics, eco-environmental risks and sources of trace elements (TEs: As, Hg, Se, Sb, Te, Sn, Bi and Ge), their total concentrations and chemical speciation in surface sediments collected from the Changjiang Estuary were determined. Total concentrations for As, Hg, Se, Sb, Te, Sn, Bi and Ge were 4.57–30.20, 0.01–0.40, 0.04–0.38, 0.36–1.48, 0.02–0.10, 0.48–6.58, 0.13–0.64 and 0.83–2.43 μg/g, respectively, with higher values at the estuary. This distribution pattern was attributed to the riverine input and high clay and total organic carbon contents. The sequential extraction suggested that TEs mainly occurred in residual fractions. The risk assessment code suggested that As, Hg and Sn were at low risk, whereas Bi, Se, Sb, Te and Ge were at medium risk. The geoaccumulation index (I geo) and principal component analysis indicated that Se and Sn mainly came from the natural input (crustal and biological inputs), whereas As, Sb, Hg, Bi and Te came from both of the crustal and anthropogenic inputs via atmosphere and rivers. In addition, Ge possibly came from the natural (crustal and biological inputs) and anthropogenic inputs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号