首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mineral exploration of the Widgiemooltha-Norseman region of Western Australia has located massive and disseminated nickel sulphide mineralisation.This paper discusses the geological setting of the nickel sulphide mineralisation with reference to the stratigraphy, structure and metamorphism of the ultramafic sequence and spatially associated rocks. The amphibolite facies metamorphosed ultramafic rocks of the Widgiemooltha area are compared with greenschist metamorphosed ultramafic rocks at Eundynie, which exhibit excellently preserved pseudomorphs of primary igneous textures.Some 2000 ultramafic rock samples were analysed for 13 element/oxides and divided into four major mineralogically and texturally distinct groups. The data were analysed statistically by determination of means and standard deviations and multiple regression analyses.The data suggest differentiation of a magma at depth followed by a vast outpouring of lava to produce picritic-peridotitic rocks. The flows crystallised with upper spinifex zones and lower euhedral-olivine zones in varying proportions dependent on magma composition. The development of spinifex texture is compositionally controlled. This texture is not developed in rocks with MgO contents greater than 26% (± 2%).The comparison of the ultramafics of the Widgiemooltha and Eundynie areas indicates that talc-carbonate formation and serpentinization have modified primary igneous textures and geochemistries, resulting in the production of a diverse group of rock types. Such post-magmatic alteration processes in association with structural elements are considered important in the upgrading of nickel sulphide mineralisation.  相似文献   

2.
The West African craton is known for its structurally hosted Au deposits in Ghana, Burkina Faso, Côte d'Ivoire, Mali and Niger. The Essakane goldfield in northeast Burkina Faso has produced 1 606,000 oz of gold since 2010 from the Essakane Main Zone. The Essakane goldfield is made up of several exploration and artisanal sites that include; Essakane Main Zone, Gossey, Falagountou, Sokadie, Tin Zoubratan, Essakane North and South, Korizéna, Bom Kodjélé, Tin Taradat, Tassiri, Gaigou, and Takabangou. Gold mineralisation in sheeted and stockworks quartz–carbonate and tourmaline veins occurs with pyrite, arsenopyrite, and traces of pyrrhotite, galena and hematite. It is hosted in sheared, folded and contact metamorphosed volcanic, volcanoclastic and sedimentary Birimian Supergroup sequences. The maximum age of gold mineralisation in the Essakane goldfield is syn-deformational and formed during the Eburnean Orogeny (D2) at 2130–1980 Ma.  相似文献   

3.
The Starra ironstone-hosted Au-Cu deposit in northwest Queensland, Australia, displays evidence of a polyphase history of late-post metamorphic, structurally controlled metasomatism. The mineralisation is hosted within several massive ironstone units which occur at a lithological contact of metamorphosed sandstone and siltstone sequences and foliated chlorite-biotite-magnetite schists. The ironstones strike north-south and occur as discontinuous lenses that cross cut the host rocks in places. Magnetite ironstone textures are generally massive in appearance, but relict deformed breccia and foliation textures are locally preserved. Sulphide ore textures are more brittle and consist of fine, pervasive brecciation of the ironstones and host rocks. Petrological and textural observations support a hydrothermal origin for both ironstone and mineralisation. Three dominant post-peak metamorphic paragenetic stages of alteration and mineralisation are recognised: (1) early widespread Na-Ca metasomatism consisting of albite-quartz-actinolite-scapolite, (2) localised K-Fe metasomatism consisting of biotite-magnetite-hematite- quartz-pyrite and (3) the mineralising stage consisting of anhydrite-calcite-hematisation of magnetite-pyrite-chalcopyrite-gold and extreme chloritisation of biotite. The Na dominant alteration occurs throughout the Eastern Fold Belt and for at least 50 km to the east and 150 km to the north of Starra. The ironstones were products of localised Fe-metasomatism associated with shearing and brecciation of previously Na-metasomatised host rocks. Gold and copper mineralisation resulted from the interaction of magnetite, a late oxidising fluid and an increase in pH. This produced variable hematisation of magnetite and caused the solubility of chloride-complexed gold to decrease dramatically. High gold:copper ratios can be explained in terms of the solubility differences of gold and copper in the thermochemical conditions that existed at Starra. Received: 15 May 1996 / Accepted: 17 January 1997  相似文献   

4.
Recent exploration in the vicinity of the giant (>90 Mt) Navan orebody has resulted in the discovery of ore-grade mineralisation to the southwest of the deposit, much of which occurs within the Upper Pale Beds, a horizon that is only weakly mineralised above the main orebody. Within this new U lens, mineralisation preferentially occurs within bioclastic carbonate grainstones and calcareous quartz sandstones, and is dominated by sulphide replacement of the carbonate component of the host sequence. Much of the replacive mineralisation is spatially associated with hydrothermal cavities, which are filled by a variable mixture of brecciated replacement sulphide minerals, space-filling sulphide and gangue cements, and internal sediments. Mineralisation also occurs within veins and dissolution seams, and as disseminated sulphide minerals. Massive mineralisation is typically a complex, chaotic, combination of replacement, cavity, and fracture-filling sulphides. Fluid inclusion analyses of ore-stage saddle dolomite indicate temperatures at the time of sulphide precipitation of ~90–150 °C, with a maximum of 175 °C. These temperatures are lower than those typically proposed for Irish-type deposits.  相似文献   

5.
The Marymia gold deposit, comprising two orebodies, Keillor 1 and Keillor 2, is at the northern end of the Plutonic Well greenstone belt in the Marymia Inlier, in the southern Capricorn Orogen, just north of the Yilgarn craton. The Marymia Inlier is a discrete fault-bounded Archean gneiss-granitoid-greenstone domain surrounded by sedimentary basins that were formed and variably metamorphosed and deformed during several Palaeoproterozoic orogenic cycles. The greenstone sequence at Marymia is stratigraphically and geochemically similar to greenstone sequences in the Yilgarn craton, but was subjected to further deformation and metamorphism in the Palaeoproterozoic. Late Archean deformation (D1-D2) was ductile to brittle-ductile in style, whereas Palaeoproterozoic deformation was predominantly brittle. Equilibrium mineral assemblages indicate that peak amphibolite-facies metamorphism (540-575 °C, <3 kb) was overprinted by greenschist-facies metamorphism (300-360 °C). Petrographic textures indicate that prograde metamorphism was coeval with D1-D2, with peak metamorphism early to syn D2. Gold mineralisation at Marymia is hosted in metamorphosed tholeiitic basalts and banded iron formation. On a gross scale, the distribution of gold is controlled by D2 folds and shear zones. Lithological contacts with strong rheological or chemical contrasts provide local controls. Gold-related alteration comprises subtle millimetre- to centimetre-wide zones of silicification with variable amounts of quartz, hornblende, biotite, K-feldspar, plagioclase, calcite/siderite, scheelite, titanite, epidote, sulfide and telluride minerals. Quartz veins are generally narrow and discontinuous with low total volume of quartz. Gold is sited in the wall rock, at vein salvedges or within stringers of wall rock within veins. There are two distinct opaque-mineral assemblages: pyrite-pyrrhotite-chalcopyrite-galena and hessite-petzite-altaite-Bi-telluride-galena. Ore samples are variably enriched in Ag, Te, Pb, W, Cu, S and Fe reflecting heterogeneity of the ore mineralogy. Structural timing and temperature of formation of alteration and ore minerals support deposition of gold during late peak amphibolite-facies metamorphism from neutral to alkaline (pH=5-6), moderately oxidising (log PO2,-21-22) and CO2-bearing (XCO2 Ƹ.2) fluids. The total sulfur content of the fluid is estimated at 1mDS. Lead isotope compositions support derivation of lead from within the local greenstone sequence. Gold lodes were deformed by faults and shear zones in the Palaeoproterozoic, with only limited remobilisation. Subeconomic, carbonate vein- and breccia-hosted base metal mineralisation is locally hosted within Palaeoproterozoic fault zones, which clearly cut gold lodes. Base-metal-related alteration is characterised by intense carbonatisation, chloritisation, and albitisation of the mafic host rocks. Mineral assemblages are consistent with formation at greenschist facies conditions. Lead isotope compositions support crystallisation at ca. 1.7 Ga from lead that is similar in composition to earlier gold-related galena.  相似文献   

6.

Endeavour 42 is a structurally controlled Au deposit with similarities to adularia‐sericite deposits. It is the largest of four gold prospects discovered in the Late Ordovician Lake Cowal volcanic complex, adjacent to the Gilmore Fault Zone, in central New South Wales, Australia. The Lake Cowal volcanic complex consists of calc‐alkaline to shoshonitic volcanic rocks and related sedimentary rocks that were deposited in a relatively deep‐water environment. The volcanic and sedimentary rocks of the Lake Cowal volcanic complex were intruded by diorite and granodiorite. Low‐grade porphyry Cu (0.2–0.35% Cu) mineralisation is developed in parts of the granodiorite intrusion. The gold deposits are developed north of the porphyry Cu mineralisation and occur within a north‐south corridor adjacent to a north‐south‐oriented body of diorite. The Endeavour 42 deposit is hosted by three volcanic units and a diorite. The stratigraphic units at Endeavour 42, consistently strike 215° and dip 50°NW, and comprise an upper unit dominated by redeposited pyroclastic debris and a lower conglomerate unit with clasts of reworked volcanic rocks. Separating these units is a sequence of trachyandesite lava and hyaloclastite breccias. Laminated mudstone and siltstone throughout the sequence are indicative of a relatively deep‐water, below wave‐base, environment. Porphyritic dykes, which are typically associated with zones of faulting, cross‐cut both the volcano‐sedimentary sequence and the diorite. The major fault orientations are 290° and 340°, forming subparallel conjugate fault sets. Both sets of faults are mineralised, contain deformed porphyritic dykes and are associated with sericitic alteration. Endeavour 42 is a sulfide‐poor gold deposit with free native Au and Au associated with pyrite and sphalerite. Minor galena, pyrrhotite and chalcopyrite are also observed. Irregular pyrite veinlets and carbonate‐sulfide veinlets occur in the upper unit of re‐deposited pyroclastic debris. Auriferous veins are parallel‐sided dilatant veins with quartz‐sulfide‐carbonate‐adularia. These veins display a consistent strike of 305° and a dip of 35°SW. Alteration and mineralisation were influenced by host‐rock composition and rheology. A pervasive alteration assemblage of chlorite‐carbonate‐hematite‐epidote is developed throughout the Lake Cowal volcanic complex. This is overprinted by sericite‐silica‐carbonate alteration around fault zones and dykes, with patchy and pervasive alteration of this type developed in the lava sequence and upper volcani‐clastic unit, reflecting permeability and probable alteration zoning. In the lower clastic unit, the diorite and, in parts of the lava sequence, a chlorite‐carbonate‐pyrite assemblage partially overprints sericite‐silica alteration, suggesting an evolving fluid composition, changing physico‐chemical conditions or a different alteration fluid. Age dating of the intrusive phases and sericitic alteration associated with mineralisation at Endeavour 42 yields ages of 465.76 ± 1 and 438.6 ± 0.5 Ma, respectively, suggesting that mineralisation post‐dates the Lake Cowal intrusive event and is related to intrusion of magma during the 440 Ma mineralising event, an important period in the eastern Lachlan Fold Belt.  相似文献   

7.
Spinifex (Triodia spp.) grasslands cover vast areas of arid Australia, across a variety of soils and landscapes. These grasses are deep rooted and long lived, hence have great potential as a biogeochemical sampling medium for mineral exploration. This study discusses the results of analyses of Triodia pungens and Triodia scariosa from field sites over buried Au mineralisation (Coyote, Oberon and Tunkillia Prospects). At each site there is a multi-element anomaly in the vegetation over the projected mineralisation, the haloes are of different scales depending on the local landscape setting and dispersion potential of each element associated with mineralisation. The magnitude of the anomalies is similar for each site independent of underlying substrate. Overall, spinifex chemical composition has the potential to act as a point indicator of substrate geochemistry with very minimal dispersion (hundreds of metres only) that can delineate the extent of a potential ore deposit.This study also discusses the Cr accumulation potential of T. pungens and T. scariosa, discovered during the mineral exploration studies, from several field sites (Coyote, Oberon, Tunkillia and North Miitel Prospects). Triodia species are shown to be able to accumulate Cr up to potentially toxic levels independent of substrate concentration. This could be due to accumulation (active transport) or the lack of a barrier mechanism (passive uptake) within the plant.  相似文献   

8.
Despite having been a target for volcanic-hosted massive sulfide (VHMS) deposits since the 1960s, few resources have been defined in the Archean Yilgarn Craton of Western Australia. Exploration challenges associated with regolith and deep cover exacerbate the already-difficult task of exploring for small, deformed deposits in stratigraphically complex, metamorphosed volcanic terranes. We present results of drill-core logging, petrography, whole-rock geochemistry and portable X-ray Fluorescence data from the King Zn deposit, to help refine mineralogical and geochemical halos associated with VHMS mineralisation in amphibolite-facies greenstone sequences of the Yilgarn Craton. The King Zn deposit (2.15?Mt at 3.47?wt% Zn) occurs as a 1–7 m-thick stratiform lens dominated by iron sulfides, in an overturned, metamorphosed volcanic rock-dominated sequence located ~140?km east of Kalgoorlie. The local stratigraphy is characterised by garnet-amphibolite and strongly banded intermediate to felsic schists, with rare horizons of graphitic schist and talc schist. Massive sulfide mineralisation is characterised by stratiform pyrite–pyrrhotite–sphalerite at the contact between quartz–muscovite schists (‘the footwall dacite’), and banded quartz–biotite and amphibole?±?garnet schists of the stratigraphic hanging-wall. A zone of pyrite–(sphalerite) and pyrrhotite–pyrite–(chalcopyrite) veining extends throughout the stratigraphic footwall. Footwall garnet-amphibolites are of sub-alkaline basaltic affinity, with a central zone dominated by chlorite?±?magnetite interpreted to represent the Cu-bearing feeder zone. SiO2, CaO, Fe2O3T, MgO and Cu concentrations are highly variable, reflecting quartz–epidote?±?chlorite?±?magnetite?±?sulfide alteration. Hydrothermal alteration in stratigraphically overlying intermediate to felsic rocks is characterised by a mineral assemblage of quartz–muscovite?±?chlorite?±?albite?±?carbonate. Cordierite and anthophyllite are locally significant and indicative of zones of Mg-metasomatism prior to metamorphism. Increases in SiO2, Fe2O3T, pathfinder elements (e.g. As, Sb, Tl), and depletions of Na2O, CaO, Sr and MgO occur in quartz–muscovite schists approaching massive sulfide mineralisation. Within all strata (including the immediate hanging-wall), the following pathfinder elements are strongly correlated with Zn: Ag, As, Au, Bi, Cd, Eu/Eu*, Hg, In, Ni, Pb, Sb, Se and Tl. These geochemical halos resemble less metamorphosed VHMS deposits across the Yilgarn Craton and suggest that although metamorphism leads to element mobility and mineral segregation at the thin-section scale, assay samples of ~20?cm length are sufficient to vector to mineralisation in amphibolite facies greenstone belts. Recognition of minerals such as Mg-chlorite, muscovite, cordierite, anthophyllite, biotite/phlogopite, and abundant garnet are significant, in addition to Al-rich phases (i.e. kyanite, sillimanite, andalusite and/or staurolite) not identified at King. Chemographic diagrams may be used to identify and distinguish different alteration trends, along with several alteration indices (e.g. Alteration Index, Carbonate–Chlorite–Pyrite Index, Silicification Index) and the abundance of normative corundum and quartz.  相似文献   

9.
《Resource Geology》2018,68(4):352-372
Talc deposits in Nangarhar Province, are hosted by Paleoproterozoic carbonate rocks, metamorphosed to amphibolite facies in the east–west (E–W) trending Spinghar Fault Block. Many deposits in this province have potential economic importance. However, detailed geologic and petrological studies on ore genesis are still lacking. In this study, eight talc deposits and two prospects of the Spinghar Fault Block were investigated. Talc is mainly formed by alteration of the host dolomite marble, magnesite rocks, and tremolitite. Talc ore bodies occur parallel to subparallel to the beddings of the host carbonate rocks. Dolerite occur as dikes and sills and are mostly metamorphosed to amphibolite. Although the amphibolite occurs mostly parallel to subparallel to the beddings of the host carbonate rocks, and talc orebodies, it partly crosscuts the host rocks. Massive layers of tremolitite were observed with most of the talc ore bodies. Quartz veins occur along the gneissosity of gneiss all over the study area. SiO2 and MgO content in talc rocks from all deposits ranged from 49.1 to 65.1 wt% and from 26.1 to 32.9 wt%, respectively. CaO content in talc rocks and magnesite rocks are less than 1 wt%. ƩREE content in talc rocks ranged from 0.1 to 8.9 ppm. Chemical compositions of host carbonate rocks are close to the ideal composition. Concentrations of Al, Ta, Hf, Zr, Th, Cr, Ni, Co, and ƩREE in talc ores and host carbonate rocks were very low and inconsistent with mafic and ultramafic rocks protolith. Therefore, the metamorphosed sedimentary carbonate rocks were likely to be the protolith of the talc ores. The occurrence of parallel to subparallel quartz veins to the gneissosity of gneiss, as well as the presence of hydrous minerals in host carbonate rocks, suggested that hydrothermal fluids were most probably supplied through the gneiss.  相似文献   

10.
Short-wave infrared reflectance spectra obtained from a Portable Infrared Mineral Analyser (PIMA) have been used to define alteration zones adjacent to base metal sulfide ore bodies at the Elura Mine, Cobar, Australia. The spectroscopic work identified white mica (sericite), chlorite and carbonates of hydrothermal origin in the alteration zones associated with the ore bodies. Weathering, alteration and ore zones can be discriminated by variations in the intensity and wavelength of relevant absorption features. Hydrothermal alteration is classified into four principal types, namely sericitic, silicic, chloritic and carbonate alteration. The first three types comprise overprinting hydrothermal assemblages of quartz, sericite, chlorite, ankerite, siderite, calcite and sulfides developed in strongly altered metasiltstone and slate of Early Devonian age, adjacent to the zinc–lead–silver mineralisation. An extensive zone of carbonate alteration, manifested as porphyroblasts of siderite in the host metasediments, is recognised beyond the zones of strong alteration. Spectral analysis is consistent with the mineralogical data obtained from XRD and XRF analyses and defines the limits of the alteration zones to distances of about 80 m around the ore bodies. The study demonstrates the potential for spectral analysis to assist with drill hole logging and the identification of alteration zones as part of mineral exploration and development programs.  相似文献   

11.
We present the iron isotope composition of primary, diagenetic and metamorphic minerals in five samples from the contact metamorphosed Biwabik Iron Formation. These samples attained peak metamorphic temperatures of <200, <340, ∼500, <550, and <740°C respectively. δ56Fe of bulk layers ranges from −0.8 to +0.8‰; in some samples the layers may differ by >1‰ on the millimeter scale. Minerals in the lowest grade samples consistently show a sequence in which δ56Fe of magnetite > silicate ≥ carbonate. The inter-mineral Fe isotope differences vary in a fashion that cannot be reconciled with theoretical temperature-dependent fractionation factors. Textural evidence reveals that most, if not all, magnetite in the Biwabik Formation is diagenetic, not primary, and that there was tremendous element mobility during diagenesis. The short duration of contact metamorphism allowed diagenetic magnetite compositions to be preserved throughout prograde metamorphism until at least the appearance of olivine. Magnetite compositions therefore act as an isotope record of the environment in which these sediments formed. Larger-scale fluid flow and longer timescales may allow equilibration of Fe isotopes in regionally metamorphosed rocks to lower temperatures than in contact metamorphic environments, but weakly regionally metamorphosed rocks may preserve small-scale Fe isotopic heterogeneities like those observed in the Biwabik Iron Formation. Importantly, Fe isotope compositions that are characteristic of chemical sedimentation or hydrothermal processes are preserved at low grade in the form of large inter-mineral variations, and at high grade in the form of unique bulk rock compositions. This observation confirms earlier work that has suggested that Fe isotopes can be used to identify sedimentary processes in the Precambrian rock record. An erratum to this article can be found at  相似文献   

12.
Stratigraphy, structure and host-rock chemistry are dominant controls on the location of Au in Archaean greenstone-hosted Au deposits, but the stratigraphy in such deposits is seldom obvious due to the monotonous nature of the host rocks or pervasive alteration associated with Au mineralisation. Portable, hand-held, X-ray fluorescence (pXRF) spectrometry provides a method to rapidly collect large amounts of whole-rock geochemical data that can yield new insights into both stratigraphy and Au localisation. Here we present results of pXRF analyses of samples from a representative section through Au-mineralised amphibolite-facies metabasaltic rocks at Plutonic Gold Mine, Western Australia. These data illustrate a geochemical stratigraphy in which individual lava flows can be identified on the basis of element concentrations. The most evolved basalts are at the structural base of the succession, and the least evolved at the top of the sequence, confirming previous geochemical interpretations and textural evidence that the sequence is overturned, and demonstrating for the first time that the presented section does not involve significant structural repetition. In conjunction with Au assay data, the pXRF data reveal that Au commonly occurs along basalt flow boundaries. The elemental concentration data clearly demonstrates for the first time the stratigraphic control on Au mineralisation that is not readily apparent at the macroscopic level. The methods described in this paper are readily applied, and have the potential to enhance the understanding of otherwise unclear stratigraphy and its control on mineralisation in many different types of deposits worldwide.  相似文献   

13.
The large lead-zinc deposits of Middle Proterozoic age in northern Australia occur in sediments interpreted as having been deposited under saline, shallow-emergent conditions. Significant alkaline diagenesis is evident from the presence of abundant K-feldspar and locally albite. Alkali element compositions clearly distinguish the sediments of the mineralised shallow-emergent locations both from those of more permanent water cover (lacustrine or lagoonal), and from those close to basin margins. The key variables for identifying the geochemical contrasts are the levels of K, Rb and Na, and the ratios of K : Al and K : Rb. These geochemical parameters can be used in conjunction with the levels of the target and indicator elements to detect whether mineralisation may be present in a favourable geological environment. Two case studies of the application of whole rock geochemistry in base metal exploration are given for the Glyde River Sub-basin (McArthur Basin) and the Western Succession, Mt Isa Block.  相似文献   

14.
Marine calcite cementation and lithification of Carboniferous carbonate sediments hosting Zn-Pb mineralisation in the Irish orefield occurred at or near the seafloor. A relatively early, fine-grained, grey replacive dolomite, preferentially developed in micrite, is widely developed in the Waulsortian Limestone Formation, the main host to mineralisation, and is pervasive in the southeastern Midlands in proximity to the Leinster Massif. This dolomite formed after the first four main stages of calcite cementation but probably also developed within tens of metres of the seafloor as evidenced by incorporation of clasts of dolomite in intraformational sedimentary breccias. Later, coarse-grained white dolomite preferentially replaced coarser components of the Waulsortian Limestone and infilled residual vuggy porosity. Whilst some of this coarse dolomite may be related to the fine replacive dolomite event, a common spatial association with fault zones, coupled with primary fluid inclusion data, suggest that a significant proportion of this phase precipitated during the onset of fault-controlled subsidence and widespread hydrothermal circulation within the Irish Midlands area. Fluids up to ~250 °C and 10–15 wt% NaCl equivalent, sourced from a Lower Palaeozoic basement-equilibrated fluid reservoir, infiltrated the carbonate sequence via faults and fractures. The more localised development of dolomite-cemented breccias (white matrix breccias) that are frequently associated spatially with mineralisation was a consequence of the increased focusing of these hydrothermal fluids. Ore formation was broadly synchronous with development of the white dolomite breccias but only happened where mixing occurred between the hydrothermal ore-fluids and localised, near-surface reservoirs of low-temperature, H2S-rich brine. In the Waulsortian, this process led to the precipitation of a distinctive black dolomite that forms a broad halo to massive sulphides. Although ore-stage sulphides postdate significant diagenesis of the host rocks, and often display "epigenetic" textures, the fact that much of the cementation occurred soon after carbonate deposition means that mineralisation does not have to have formed after significant burial. In fact, the occurrence of clasts of hydrothermal dolomite and sulphides in intraformational debris-flow breccias is only consistent with mineralising processes occurring in the near-seafloor environment, relatively soon after host-rock deposition. The regional development of a distinctive pink dolomite associated with faults and fractures was a post-ore event, and is considered to mark a regional brine migration linked to the onset of the Variscan orogeny. The development of this new tectonic and flow regime may have been responsible for the cessation of economic mineralisation in Ireland.Editorial handling: J. Menuge  相似文献   

15.
Abstract

The Yilgarn Craton of Western Australia hosts a number of Cenozoic paleochannels, which have been incised into the underlying Paleozoic and Precambrian rocks, filled with sediments and subsequently weathered. The paleochannels are of particular interest in mineral exploration as they may not only host placer-type deposits but also overlie significant supergene and primary mineralisation. Paleochannels also pose particular challenges during exploration as they mask underlying geochemical anomalies, including gold and pathfinder elements. This study investigates a method of distinguishing transported overburden from residual regolith utilising a combination of field and laboratory-based techniques. At the Minotaur deposit, the residual regolith and transported overburden are mineralogically similar, although the presence of biotite, chlorite and muscovite is more characteristic of the residual regolith. Geochemically, Zr, Ti, Co and Sc ratios form distinct groupings allowing more confident discrimination of transported overburden from the underlying residual regolith units. The presence of a distinct gold depletion zone at the redox front was also identified to be a feature of the Minotaur deposit, with Au enrichment occurring above (within transported overburden) and below (within saprolite) the redox front, similar to other gold deposits on Lake Lefroy. The lithological, stratigraphic and Au-enrichment characteristics at Minotaur have also been compared with regional studies and suggest the long-lived impact of paleovalleys on the depositional systems and Au distribution of Lake Lefroy. This work provides a basis for future studies of the region in particular the variation of depositional sequences within regional paleochannel networks.  相似文献   

16.
Vegetation sampling is an effective mineral exploration technique in areas of transported cover in the Tanami Gold Province where other techniques have been of limited success. This research tests the ability of plants to show signatures of mineralisation as well as the optimum scale of sampling for first-pass mineral exploration surveys. The semi-arid Tanami Gold Province in northern Australia encompasses nearly 160,000 km2 and is a highly prospective yet under-explored region due to transported cover masking mineralisation. Various dominant plant species were sampled along transects across four sites of Au mineralisation in the Tanami (Larranganni, Hyperion, Coyote and Titania). Snappy gum (Eucalyptus brevifolia) gave a geobotanical (plant distribution) and lithological (S and Zn) signature of an underlying geological structure known to host Au mineralisation at the Coyote Prospect. Soft spinifex (Triodia pungens) provided an Au, As, ± Zn, ± S, and ± Ce expression of buried Au mineralisation at Coyote and Titania. At the Hyperion prospect, mineralisation is located at the contact between granite and dolerite, and biogeochemical signatures from snappy gum and dogwood (Acacia coriacea) show elevated ± Au, Ce, S and Zn that corresponded to the contact. Biogeochemistry is able to determine the location of mineralisation at each site, except at Hyperion where the sample density was too low. It is able to identify underlying substrate differences, however, background knowledge relating to regolith, geology, hydrology and geophysics are important in aiding the interpretation of the elemental data. It was found that having too few samples (at Hyperion) there was insufficient useful information for mineral exploration. Grid coverage of an area (at Titania) provided information on mineralisation and groundwater dispersion plumes; however, in this case a single transect over the same area would have been sufficient for a first-pass mineral exploration survey.  相似文献   

17.
Strata-bound antimony, mercury, tungsten and massive sulfide mineralization occurs within a metamorphosed Paleozoic volcanosedimentary sequence in the Kreuzeck Mountains, Austria. Amphibolites are a significant constituent of that sequence; on the basis of stable trace element data, they can be classified as metamorphic equivalents of recent olivine tholeiites. In the ore environment of strata-bound mineralization, intensive alteration associated with submarine hydrothermal activity has affected the wall rocks. This includes depletion in SiO2, a change in the oxidation stage of iron and pronounced enrichment in Na, Sr, Ba and CO2. Microprobe analyses reveal lower MgO content in chlorites and higher Na2O content in feldspars in rocks from the ore environment. Hydrothermal halos are thus documented by changes in mineral and whole-rock compositions and represent guides to exploration.  相似文献   

18.
The Otavi Mountain Land is a base metal sulphide ore province in northern Namibia where deposits are hosted by platform carbonates of the Otavi Group in a foreland fold-and-thrust belt on the northern edge of the Pan-African Damara Belt. Deposits have been classified as the Berg Aukas- or Tsumeb-types, based on differences in ore association, stratigraphic position and geochemistry of ores and gangue carbonates. Mineralisation at these deposits is accompanied by carbonate alteration in the form of dolomite and calcite veins, carbonate recrystallisation, calcitisation and carbonate silicification. Based on cathodoluminescence imaging, trace and rare earth element (REE), O and C isotope, and fluid inclusion data, a series of carbonate generations, constituting wall rock alteration around the Tsumeb and Kombat (Tsumeb-type) and Berg Aukas (Berg Aukas-type) deposits, was established. Similar data obtained on the recently discovered Khusib Springs deposit indicate a strong affinity to Tsumeb-type deposits. Tsumeb-type deposits are distinguished from Berg Aukas-type deposits by having trace element and REE concentrations that are significantly higher in the alteration products compared to the carbonate host rocks. Only around Tsumeb-type deposits a relative enrichment in light REE is noted for the hydrothermal carbonate generations that are cogenetic with the main stage of mineralisation. Microthermometric results from fluid inclusions in carbonate alteration phases and associated quartz indicate relatively high salinity (17–23 wt% NaCl equivalent) for the main mineralising and subsequent sulphide remobilisation stages at the deposits investigated. Estimated mineralisation temperatures are significantly higher for Tsumeb-type deposits (370–405 °C) with early sulphide remobilisation in Tsumeb at 275 °C, whereas they are lower at Berg Aukas (up to 255 °C). Fluid inclusion leachate analysis suggests that most of the observed salinity can be ascribed to dissolved, predominantly Ca- and Mg-carbonates and chlorides with subordinate NaCl. Na-Cl-Br leachate systematics indicate a derivation of the fluid salinity from the interaction with evaporitic rocks en route. Tsumeb-type mineralisation is interpreted to be derived from fluids expelled during Pan-African orogeny in the more intensely deformed internal zones of the Damara Belt further south. When the high salinity fluids reached the carbonate platform after having scavenged high concentrations of base metals, base metal sulphide precipitation occurred in zones of high porosity, provided by karst features in the carbonate sequence. Results obtained for the Berg Aukas-type deposits emphasise their derivation from basinal brines, similar to Mississippi Valley-type deposits, and confirm that mineralisation of the Berg Aukas- and Tsumeb-types are both spatially and temporally distinct. Received: 5 May 1999 / Accepted: 10 November 1999  相似文献   

19.
The Chertovo Koryto gold deposit(80 t Au at 1.84 g/t) in the Lena world-class province,Siberia,is hosted in a metamorphosed sequence of the Paleoproterozoic Mikhailovsk Formation that comprises the oldest black shale strata of the Baikal-Patom region.The mineralisation is confined to the thrust zone complicated with a conjugate anticline fold,zones of shearing and dislocation.The struaural position of the mineralisation is similar to that at the giant Sukhoi Log deposit in the neighbouring Mama-Bodaibo zone.In the latter,the isotope age data suggest that Khomolkho black shales,hosts to Sukhoi Log mineralisation,are of Ediacaran age and underwent prograde metamorphism during early Paleozoic.The geochemical composition of the terrigenous rocks that host Sukhoi Log,Chertovo Koryto,and a number of other deposits at the various stratigraphic levels throughout the Proterozoic sequence have much in common.They do not show elevated metal contents above the common black shale abundances,except for Au and As,which is at variance with the accepted view on diagenetic enrichment of black shales in the Lena province.The occurrence of sagenitic rutile in quartz and chlorite pseudomorphs after biotite and other petrographic observations provide evidence on a retrograde nature of the metamorphic mineral assemblages in the Mikhailovsk rocks.The sulphides are pyrrhotite and arsenopyrite with very minor pyrite at Chertovo Koryto,whereas pyrite is the predominant sulphide in the Sukhoi Log ore.Fluid inclusion data on both deposits emphasise a high-temperature nature of the mineralisation albeit revealing great contrast in the fluid composition.Sukhoi Log mineralisation was formed at mixing between low-salinity aqueous solutions and dense gaseous carbonic fluids,which facilitated effective gold scavenging and precipitation,as demonstrated by thermodynamic simulation.The precursory devolatilisation of the Mikhailovsk sediments at the prograde stage results in the paucity of gaseous carbonic fluid during retrograde metamorphism and mineralisation.The similarity in the styles and chemical parameters of mineralisation,and the predominant structural control of ore localisation within the same Precambrian regional tectonic unit support an idea that orogenic gold mineralisation in the Lena province was produced during a single early Paleozoic event.  相似文献   

20.
Exploration of Zn-rich sulphide deposits at Leadville, northern Lachlan Fold Belt, New South Wales, for over two decades has been largely on the premise that the mineralisation represents felsic volcanic-hosted massive sulphides (VHMS). Deposits are hosted by ?Silurian felsic metavolcanic, psammopelitic and calcareous metasedimentary rocks which have been intruded by the late Carboniferous I-type Gulgong Granite. Evidence for an epigenetic replacement (skarn) origin of the deposits, rather than representing metamorphosed volcanogenic massive sulphides, includes the proximity of evolved granitic intrusives and reactive carbonate rocks, a skarn mineral assemblage (with characteristic prograde and retrograde stages), lack of textural or lithological indications of an exhalative origin, and gossan and sulphide compositions consistent with Zn-Pb skarns and atypical of Lachlan Fold Belt VHMS deposits. Furthermore, sulphide lead isotope ratios are significantly more radiogenic than signatures for VHMS deposits in the Lachlan Fold Belt. Carbonate δ13C and δ18O and sulphide δ34S values are consistent with the interaction of magmatic hydrothermal fluids with Palaeozoic carbonate rocks and a largely magmatic source of sulphur. It is concluded that the Leadville deposits are of skarn type, genetically related to the Gulgong Granite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号