首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 123 毫秒
1.
小伊诺盖沟金矿床位于大兴安岭北部额尔古纳地块,其地质、地球化学特征与产于大兴安岭中生代火山岩地区的浅成低温热液型金矿床具有明显区别。本文通过矿床流体包裹体岩相学、显微测温学和包裹体激光拉曼光谱分析研究成矿流体性质,探讨矿床成因类型。研究结果表明,流体包裹体有气液两相、含CO2三相和纯CO2包裹体3种类型。气相成分以CO2为主,其次是H2O,总体属NaCl-H2O-CO2体系;流体包裹体的盐度低,介于2.1%~8.5% NaCl eqv之间;包裹体均一温度介于169~493℃之间,平均为295℃,属中温热液矿床。其成矿压力为38~172MPa,平均93MPa,对应的成矿深度为4~11km,平均8km。小伊诺盖沟金矿床的地质-地球化学特征与世界造山型金矿类似,应属造山型金矿,其形成于蒙古-中朝板块与西伯利亚板块之间的陆-陆碰撞造山环境。  相似文献   

2.
大兴安岭北部砂宝斯金矿床成矿流体特征及矿床成因   总被引:2,自引:0,他引:2  
通过对不同阶段流体包裹体岩相学、显微测温学和包襄体激光拉曼光谱等的分析,研究其成矿流体性质和演化,并探讨矿床成因类型,结果表明:流体包裹体主要为气液两相包裹体,另有少量含CO2 三相和纯CO2 包裹体.包裹体气相成分主要为N2,CH4,CO2和H2O.主成矿期流体包裹体的均一温度介于156℃~365℃(平均267℃),流体盐度介于5.4%~6.3%(平均5.9%),流体密度为0.82 g/cm3~0.87 g/cm3(平均0.86 g/cm3);成矿晚期辉锑矿阶段流体包襄体的均一温度介于164℃~224℃(平均182℃),流体盐度介于7.2%~8.3%(平均7.7%),流体密度为0.93 g/cm3~0.96 g/cm3(平均0.95g/cm3);成矿后期石英大脉阶段漉体包裹体的均一温度介于129℃~253℃(平均184℃),流体盐度介于5.4%~11.2%(平均7.6%),流体密度为0.88 g/cm3~0.98 g/cm3(平均0.95 g/cm3).从主成矿期、成矿晚期到成矿后期,流体包裹体均一温度降低、盐度增加、密度增大,表明随着流体的演化,变质流体逐渐减少,而地层建造水增加.主成矿期流体压力介于62 MPa~73 MPa(平均65 MPa),对应的成矿深度为6.3 km~6.9 km(平均6.5 km).砂宝斯金矿床的地质-地球化学特征与世界造山型金矿类似,应属造山型,其形成于蒙古-中朝板块与西伯利亚板块之间的陆-陆碰撞造山环境.  相似文献   

3.
内蒙古白乃庙矿田十四万金矿床流体包裹体研究   总被引:1,自引:1,他引:0  
钟日晨  李文博 《岩石学报》2009,25(11):2973-2982
十四万金矿床是白乃庙矿田徐尼乌苏金矿化带内重要的石英脉型金矿,矿体产于EW向韧性剪切带的次级NE向断裂.成矿过程划分为3个阶段:早阶段形成无矿石英脉,石英遭受明显压应力作用,包裹体类型包括富水溶液型、富碳质型、纯碳质型,包裹体均一温度为260~420℃,平均盐度6.78%NaCl eqv;中阶段为硫化物-方解石-绿泥石-绢云母-细粒石英组合,充填早阶段石英的裂隙,未遭受明显应力作用,包裹体类型为富水溶液型和纯碳质型,包裹体均一温度为140~260℃,平均盐度7.22%NaCl eqv;晚阶段形成方解石脉,仅有富水溶液型包裹体,包裹体均一温度为140~180℃,平均盐度2.15%NaCl eqv.激光拉曼测试结果表明包裹体气相成份主要为CO_2、CH_4和少量N2.早阶段成矿流体为富碳质流体,成分为CH_4+CO_2+H_2O,中阶段流体为富水流体,成分为H_2O+CH_4,早、中阶段均发生了流体沸腾作用,早阶段强烈的沸腾作用使流体CO_2和CH_4含量降低,中阶段方解石沉淀使CO_2含量进一步降低,并导致了硫化物沉淀和金矿化.十四万金矿床流体包裹体特征、矿床地质特征均与造山型矿床一致,为造山型金矿,成矿流体可能源于徐尼乌苏组浅变质作用产生的变质流体,成矿构造背景可能为二叠纪末-三叠纪初华北板块与西伯利亚板块间的陆陆碰撞造山体制.  相似文献   

4.
造山型金矿是全球重要的金矿类型。造山型金矿包含三种类型:产于绿岩带的含金石英碳酸盐脉、产于浊积岩中的含金石英脉和产于条带状铁矿(BIF)中的含金石英脉。造山型金矿的形成受板块构造控制,处于压缩或者转换挤压的造山构造环境。造山型金矿中的绿岩带金矿主要受剪切带、转换断层控制,浊积岩型金矿受褶皱和层间走滑断层控制,而赋存于BIF中的金矿则受剪切带和断层所控制。在这些金矿床中发现了4类流体包裹体:H_2O-CO_2型、富CO_2型、气液包裹体和含Na Cl子矿物的包裹体。所有年代的造山型金矿成矿流体的成分均为低盐度的水溶液和富CO_2的流体,温度在200~400℃范围内。稳定同位素研究表明造山型金矿的成矿流体源自变质流体和岩浆流体。金在成矿流体中的络合物应为Au HS~-或Au H_2S。虽然成矿流体中有丰富的CO_2,但Au在CO_2流体中的溶解度很低,有丰富的CO_2时Au在H_2S中的溶解度增大。流体包裹体研究表明,Au的成矿流体是Na Cl-H_2O-CO_2体系的流体,并在成矿过程中发生了相分离,即Na Cl-H_2O-CO_2流体分成两个流体:H_2O-Na Cl和CO_2-H_2O,Au的沉淀是在这种相分离过程中发生的。  相似文献   

5.
小伊诺盖沟金矿位于内蒙古呼伦贝尔盟额尔古纳市境内的额尔古纳河东岸.小伊诺盖沟金矿的发现是在额尔古纳地区寻找岩金矿的一大突破.笔者在小伊诺盖沟金矿区内发现了形成于中侏罗世的花岗斑岩,并确定该花岗斑岩为小伊诺盖沟金矿的容矿岩和含矿岩.小伊诺盖沟金矿矿体有蚀变花岗斑岩和脉状热液石英岩两种,以前者为主,前者分布于后者的两侧.小伊诺盖沟花岗斑岩的形成受控于额尔古纳河韧性剪切带,额尔古纳河韧性剪切带是小伊诺盖沟花岗斑岩的导岩构造,也是小伊诺盖沟金矿的导矿构造.额尔古纳河韧性剪切带形成过程中所产生的次生裂隙是小伊诺盖沟金矿的容矿构造.  相似文献   

6.
小秦岭文峪金矿床流体包裹体研究及矿床成因   总被引:5,自引:2,他引:3  
周振菊  蒋少涌  秦艳  赵海香  胡春杰 《岩石学报》2011,27(12):3787-3799
文峪金矿位于小秦岭矿田南部,其产出受脆-韧性剪切带控制,赋矿围岩为太华群变质杂岩.根据脉体穿切关系和矿物交代关系,可以将文峪金矿流体成矿过程分为早、中、晚三个阶段,其热液石英中发育CO2-H2O型、纯CO2型和H2O溶液型三种类型流体包裹体.平阶段石英中原生包裹体主要是CO2-H2O型和纯CO2型,其成分为CO2+H2O±N2±CH4,均一温度集中在290~330℃,盐度为1.02%~9.59% NaCleqv;中阶段为主成矿阶段,该阶段石英中包含了所有3种类型的包裹体,其中以CO2-H2O型包裹体为主,获得CO2-H2O和水溶液包裹体均一温度集中在250~290℃,盐度为0.02%~12.81%NaCleqv;晚阶段石英仅发育水溶液型包裹体,具有较低的均一温度(114~239℃)和盐度(4.18%~8.95% NaCleqv).根据CO2-H2O型包裹体计算早、中阶段压力分别为130 ~ 178MPa和85 ~ 150MPa,对应的成矿深度分别为4.7~6.5km和3.1~5.5km.总体而言,文峪金矿的初始流体具有中高温、富CO2、低盐度的变质流体特征,晚成矿阶段流体演化为低温、低盐度水溶液流体,流体的不混溶导致了主成矿期矿质的大量沉淀,文峪金矿为中浅成的造山型矿床.  相似文献   

7.
山东玲珑金矿流体包裹体地球化学特征   总被引:8,自引:12,他引:8  
玲珑金矿位于胶东半岛招-掖成矿带东部,是我国典型的超大型含金石英脉型金矿。成矿过程可划分为早、中、晚三个阶段,金主要在中阶段沉淀。早阶段流体包裹体为纯 CO_2型(L_(CO_2) V_(CO_2)>90%)和富 CO_2型(10%≤L_(CO_2) V_(CO_2)≤90%),中阶段为纯 CO_2型、富 CO_2型、富 H_2O 型,晚阶段为水溶液包裹体。从早到晚,包裹体均一温度分别集中在240℃~360℃、220℃~360℃、180℃~260℃和80℃~180℃,盐度分别集中在3.4%~10.4%、3.0%~10.2%、4.0%~14.6%和2.4%~5.0%NaCl eqv;早、中阶段流体盐度随温度降低而升高。中阶段第一世代石英中大量水溶液包裹体和富 CO_2包裹体共生,指示流体强烈沸腾。从早到晚,流体包裹体的变化记录了成矿流体性质和构造环境的演化。早阶段石英中沿 X 型节理发育面型包裹体群,既记录了石英脉遭受的剪切变形事件,又记录了同构造流体作用。而充填于张性裂隙的黄铁矿为主的多金属硫化物-石英组合则表明主成矿期构造环境由压性向张性转化,成矿流体系统减压沸腾、逐步开放,并导致金等成矿物质大量沉淀。结合区域构造演化和成矿时间,认为玲珑金矿成矿系统发育在应力场由挤压向伸展转换的构造背景,流体压力变化滞后于构造应力场变化,流体成分以低盐度、富 CO_2为特征,应属典型的造山型金矿系统。  相似文献   

8.
张立仕  孙丰月  张雅静  李良  王宇利 《地质与资源》2013,22(2):94-96,98,100,141
辽宁清原开封沟金矿床位于华北克拉通北缘清原花岗-绿岩地体内,矿体为石英脉型,控矿构造为北东东向浑河断裂及其次级断裂.流体包裹体有气液两相、含CO2三相和纯CO2包裹体3种类型.气相成分以CO2为主.流体包裹体盐度较低,介于0.35%~19.55%(Nacl质量分数)之间,平均为6.55%.均一温度介于110~390℃之间,平均247℃,属于中温热液矿床.开封沟金矿成矿压力估算为26~91 MPa,平均61 MPa;成矿深度为2.7~8.2 km,平均5.7 km.成矿早阶段流体为富CO2的高温流体.主成矿阶段富CO2型和气液两相流体包裹体共存,发生了以CO2逸失为特征的不混溶或沸腾.成矿晚阶段主要为气液两相包裹体.稳定同位素研究结果表明矿床成矿热液来源为幔源C-H-O流体分异之后的岩浆热液.与成矿密切相关的花岗斑岩体锆石U-Pb年龄为200.1±1.5 Ma,7个点的加权平均年龄为200.2±0.84 Ma,形成于燕山早期.成矿综合研究表明,开封沟金矿床成因类型属造山型金矿.  相似文献   

9.
丁嘉鑫  韩申  黄柏诚  吴艳爽  张博  肖飞  王永 《地质论评》2019,65(6):1440-1461
造山型金矿形成于汇聚板块边缘,俯冲增生或碰撞造山体制,是现代矿床学研究的热点之一。西准噶尔地区有几十个造山型金矿,但其究竟形成在洋壳俯冲增生造山过程还是洋盆闭合后的碰撞造山过程,尚不清楚。本文系统总结了西准噶尔地区造山型金矿的时空分布及地质、地球化学特征,发现它们主要赋存于达拉布特断裂西北侧,可分为安齐(包括哈图金矿)和萨尔托海(包括萨Ⅰ金矿)两个成矿带;成矿作用受控于达拉布特走滑断裂引发的区域变质变形事件,矿体主要赋存于中晚石炭世变质火山沉积岩或蛇绿岩中,发育NaCl—H_2O—CO_(2 )±CH_(4 )±N_2流体包裹体体系,成矿温度为170~380℃,成矿流体主要为变质热液,晚期为大气降水热液;成矿同位素年龄为271~300 Ma,已有资料显示西准噶尔地区存在多期次俯冲增生作用,并于晚石炭世—早二叠世消减完毕。而造山型金矿广泛发育的达拉布特西北侧古洋盆闭合于308~328 Ma,此后为大陆碰撞造山体制,因此西准噶尔造山型金矿形成于大陆碰撞造山体制,适合于碰撞造山成岩成矿和流体作用模式。晚石炭世—早二叠世,达拉布特地区陆—陆或弧陆碰撞过程中,大规模的韧脆性剪切变形及区域变质事件导致地层及围岩中不稳定组分发生变质活化,形成含矿变质流体,流体向上运移至韧—脆性转换带内形成了西准噶尔造山型金矿成矿系统。  相似文献   

10.
甘肃阳山金矿流体包裹体地球化学和矿床成因类型   总被引:16,自引:19,他引:16  
西秦岭造山带内的甘肃阳山金矿是我国最新发现的规模最大的金矿床。矿床受 EW 韧脆性剪切带控制,赋矿围岩为泥盆系碳质碳酸盐-千枚岩-板岩和侵入其中的花岗斑岩脉。流体成矿过程包括:形成石英-绢云母-黄铁矿组合的早阶段,形成石英-黄铁矿-毒砂和石英-毒砂-黄铁矿以及石英-碳酸盐-辉锑矿-自然金组合的主成矿阶段,形成碳酸盐-石英网脉的晚阶段。早阶段流体包裹体以含 CO_2包裹体为主,CO_2含量为7.3%~21.5mol%,均一温度集中于270℃~300℃,盐度<3wt.%NaCl eqv;主阶段发育纯 CO_2包襄体、水溶液包裹体和少量含 CO_2包裹体,均一温度集中于210℃~270℃,盐度集中在<2 wt.%NaCl eqv 和3~5 wt.%NaCl eqv 两个范围;晚阶段只发育水溶液包裹体,均一温度集中在160℃~210℃,盐度<3 wt.%NaCl eqv。主阶段流体包裹体类型的多样性、相似的均一温度和流体盐度的双峰特征均指示流体沸腾现象的存在,其流体包裹体捕获温度为210℃~375℃,压力为85~222MPa;赋矿断层的阀门式活动导致主阶段流体系统交替于静岩和静水压力之间,成矿深度为8.5km 左右,成矿流体系统发育在早侏罗世大陆碰撞造山过程。矿床地质特征类似于卡林型金矿。但赋存于蚀变花岗斑岩中矿体既非造山型,也不同于卡林型,成矿流体具造山型矿床特征。因此,阳山金矿可能代表一种新的金矿类型,建议称为"阳山型金矿"。  相似文献   

11.
Lithostratigraphy, physicochemical stratigraphy, biostratigraphy, and geochronology of the 77–70 Ma old series bracketing the Campanian–Maastrichtian boundary have been investigated by 70 experts. For the first time, direct relationships between macro- and microfossils have been established, as well as direct and indirect relationships between chemo-physical and biostratigraphical tools. A combination of criteria for selecting the boundary level, duration estimates, uncertainties on durations and on the location of biohorizons have been considered; new chronostratigraphic units are proposed. The geological site at Tercis is accepted by the Commission on Stratigraphy as the international reference for the stratigraphy of the studied interval. To cite this article: G.S. Odin, C. R. Geoscience 334 (2002) 409–414.  相似文献   

12.
Some olistolites reworked in a Tertiary flysch of Mount Parnon (Peloponnesus, Greece) exhibit a Late Permian assemblage, dominated by Paradunbarula (Shindella) shindensis, Hemigordiopsis cf. luquensis and Colaniella aff. minima. This association corresponds to the Late Wuchiapingian (=Late Dzhulfian), a substage whose algae and foraminifera are generally little known. Contemporaneous limestones crop out in the middle part of the Episkopi Formation in Hydra, but they are rather commonly reworked in Mesozoic and Cainozoic sequences. The palaeobiogeographical affinities shared by the foraminiferal markers of Greece, southeastern Pamir, and southern China, are very strong (up to the specific level), and are congruent with the Pangea B reconstructions. To cite this article: E. Skourtsos et al., C. R. Geoscience 334 (2002) 925–931.  相似文献   

13.
PALEONTOLOGY     
正20141596 Liu Yunhuan(School of Earth Sciences and Resources,Chang’an University,Xi’an 710054,China);Shao Tiequan Early Cambrian Quadrapyrgites Fossils of Xixiang Boita in Southern Shaanxi Province(Journal of Earth Sciences and Environment,ISSN1672-6561,CN61-1423/P,35(3),2013,p.39-43,3 illus.,20 refs.)  相似文献   

14.
正20141719 Chen Zhijun(State Key Laboratory of Geological Processes and Mineral Resources,China University of Geosciences,Wuhan 430074,China);Chen Jianguo Automated Batch Mapping Solution for Serial Maps:A Case Study of Exploration Geochemistry Maps(Journal of Geology,ISSN1674-3636,CN32-1796/P,37(3),2013,p.456-464,2 illus.,2 tables,10 refs.)  相似文献   

15.
正20140962 Chen Fenning(Xi’an Institute of Geology and Mineral Resources,Xi’an710054,China);Chen Ruiming Late Miocene-Early Pleistocene Ostracoda Fauna of Gyirong Basin,Southern Tibet(Acta Geologica Sinica,ISSN0001-5717,CN11-1951/P,87(6),2013,p.872-886,6illus.,56refs.)  相似文献   

16.
PETROLOGY     
正1.IGNEOUS PETROLOGY20142008Cai Jinhui(Wuhan Center,China Geological Survey,Wuhan 430205,China);Liu Wei Zircon U-Pb Geochronology and Mineralization Significance of Granodiorites from Fuzichong Pb-Zn Deposit,Guangxi,South China(Geology and Mineral Resources of South China,ISSN1007-3701,CN42-1417/P,29(4),2013,p.271-281,7illus.,  相似文献   

17.
正20141205Cheng Weiming(State Key Laboratory of Resources and Environmental Information System,Institute of Geographic Sciences and Natural Resources Research,CAS,Beijing 100101,China);Xia Yao Regional Hazard Assessment of Disaster Environment for Debris Flows:Taking Jundu Mountain,Beijing as an  相似文献   

18.
正20141266Fan Chaoyan(Guangdong Provincial Key Laboratory of Mineral Resources and Geological Processes,Guangzhou 510275,China);Wang Zhenghai On Error Analysis and Correction Method of Measured Strata Section with Wire Projection Method(Journal of  相似文献   

19.
正20140582 Fang Xisheng(Key Lab.of Marine Sedimentology and Environmental Geology,First Institute of Oceanography,State Oceanic Administration,Qingdao 266061,China);Shi Xuefa Mineralogy of Surface Sediment in the Eastern Area off the Ryukyu Islands and Its Geological Significance(Marine Geology Quaternary Geology,ISSN0256-1492,CN37  相似文献   

20.
正20141810 Bian Yumei(Geological Environmental Monitoring Center of Liaoning Province,Shenyang 110032,China);Zhang Jing Zoning Haicheng,Liaoning Province,by GeoHazard Risk and Geo-Hazard Assessment(Journal of Geological Hazards and Environment Preservation,ISSN1006-4362,CN51-1467/P,24(3),2013,p.5-9,2 illus.,tables,refs.)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号