首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
扬子克拉通西缘在~260Ma发生短期内大规模峨眉山玄武岩溢流喷发。攀西地区发育的镁铁-超镁铁质岩被广泛认为是峨眉山大火成岩省的产物,但在北端松潘-甘孜岩区一直缺乏该类岩石的报道。本文首次报道扬子西缘丹巴水子乡单斜辉石岩的准确年龄,其锆石LA-ICP-MS U-Pb加权平均年龄为260.7±3.3Ma,表明其为峨眉山大火成岩省北端松潘-甘孜岩区镁铁-超镁铁质岩的组成部分。通过与攀枝花钒钛磁铁矿含矿岩体边缘相带苦橄岩和上部相带浅色辉长岩进行锆石微量元素对比显示,水子乡单斜辉石岩具有相近的高氧逸度,其ΔQFM为0~3,Ce_(N)/Ce_(N)平均为~30,该性质可能同样源自扬子西缘洋壳板片俯冲交代形成的较高氧逸度地幔源区。尽管如此,水子乡辉石岩体并未因高氧逸度而有明显的含钛磁铁矿饱和结晶,可能由其较低结晶分异程度造成。相比之下,攀枝花岩体经历了更高程度的含钛磁铁矿和斜长石分离结晶作用,伴随大规模的钒钛磁铁矿成矿。  相似文献   

2.
攀西白马岩体的矿物结晶顺序与钒钛磁铁矿成因   总被引:1,自引:0,他引:1  
距今约260 Ma的白马岩体位于上扬子板块西缘的攀西裂谷中,是一个大型的含钒钛磁铁矿镁铁质-超镁铁质杂岩体,是峨眉山大火成岩省的重要组成部分。含矿岩体主要由磁铁橄长岩和橄榄辉长岩组成,主要工业矿体赋存在下部的橄长岩岩相带中。显微镜下显示橄榄石和角闪石均存在2种不同的结构状态,岩浆具有多次脉动的侵位特点。矿物结构特点及磁铁矿、钛铁矿、橄榄石、角闪石及斜长石等矿物电子探针成分测定显示,矿物的结晶顺序大致为斜长石+橄榄石+辉石→角闪石+磁铁矿+钛铁矿→角闪石。根据角闪石和斜长石成分计算角闪石最低结晶温度为1090℃,斜长石的最高结晶温度是1120℃,推测磁铁矿的结晶温度介于1090~1120℃之间。橄榄石的Fo值由下部的磁铁橄长岩向上部的橄榄辉长岩呈逐渐降低的变化趋势,表明随着岩浆的结晶分异进程,系统的氧逸度是逐步变化的,暗示整个结晶分异过程系统处于封闭状态。磁铁矿中w(V2O3)变化于0.72%~1.37%之间,可近似看成是岩浆演化过程氧逸度较低的量化标志(FMQ+0.5),这种低氧逸度条件下硅酸盐矿物的结晶,会导致粒间熔体氧逸度逐步升高且成分向着富Fe的方向演化。岩浆的这种成分演化特点,是晚期形成不混溶熔浆及富Fe-Ti矿浆的主要原因。  相似文献   

3.
位于新疆北山地区的漩涡岭岩体是一堆晶层理发育的镁铁质-超镁铁质层状岩体。岩石类型主要有纯橄岩、橄长岩、橄榄辉长岩和辉长岩等。主要的造岩矿物有橄榄石、辉石、斜长石、铬尖晶石,岩相学特征表明岩浆在演化过程中经历了橄榄石、尖晶石、斜长石、斜方辉石和单斜辉石的分离结晶,结晶次序依次为橄榄石+尖晶石→斜长石→辉石,表明结晶时压力较低。漩涡岭岩体的纯橄岩中橄榄石的Fo高达90.1,这不同于新疆北部黄山岩带、喀拉通克岩体群以及甘肃金川岩体的橄榄石Fo组成,利用橄榄石最高Fo值估算得到漩涡岭岩体的母岩浆的Mg#为0.73~0.75,岩浆的液相线温度高达1330~1350℃,其岩浆为高温高Mg的苦橄质岩浆,这为塔里木东北部二叠纪地幔柱活动提供了新的证据。  相似文献   

4.
攀西地区钒钛磁铁矿矿床的成因类型   总被引:7,自引:2,他引:7       下载免费PDF全文
含矿岩体受南北向深断裂控制,为辉长岩和辉长岩-辉石岩-橄辉岩两种类型。岩体韵律结构发育,由下而上基性程度不断降低。由于岩浆脉动侵入,韵律结构具多旋回性。钒钛磁铁矿矿层赋存于岩体中下部或韵律旋回底部,自下而上依次发育嵌晶结构、镶嵌结构和海绵陨铁结构。岩体的 Fe_2O_3/FeO 比值很高。根据地质构造背景和氧逸度估算,岩体在熔融状态时处于氧分压较高的环境之中。熔融实验表明铁钛氧化物熔点高,结晶早。但是在相当大的温度范围,铁钛氧化物与造岩矿物同时结晶。矿床中单斜辉石与钛磁铁矿中的 Sc,单斜辉石与钛铁矿中的 MnO有良好的协变关系。攀西地区钒钛磁铁矿矿床不是岩浆晚期矿床,而是岩浆早期矿床。  相似文献   

5.
<正>前人对攀西地区钒钛磁铁矿形成时的温压和氧逸度条件等进行了一定的分析探讨。Pang等(2008a、b,2009)根据磁铁矿和钛铁矿电子探针成分估计了攀枝花岩体氧化物结晶的温度和氧逸度,但是,由于磁铁矿和钛铁矿都发生了固溶体分离,根据电子探针分析估计的温度和氧逸度具有较大的误差。张晓琪等(2011)则利用攀枝花岩体没有发生固溶体分离的斜长石和橄榄石估算了攀枝花钒钛磁铁矿形成时的温度和氧逸度的相对变化。  相似文献   

6.
新疆哈拉达拉辉长岩体中磁铁矿脉特征及其地质意义   总被引:1,自引:0,他引:1  
哈拉达拉岩体是特克斯岩带中规模最大的层状辉长岩体,在岩体NW向断裂中发现磁铁矿脉,系统研究其地质产出特征,稀土元素特征和磁铁矿成分,结构,物性等矿物标型特征,认为磁铁矿脉是岩浆是结晶的产物,为贯入式钒钛磁铁矿脉,与攀枝花,力马河辉长岩体特征对比,认为该岩体具有形成攀枝花式铁矿的成矿远景。  相似文献   

7.
攀枝花岩体下部和中部岩相带各旋回中磁铁辉长岩和辉长岩的岩相结构特征表明,钛铁氧化物和斜长石、橄榄石的结晶发生在相近的温度区间内,这为我们利用斜长石和橄榄石的成分探讨磁铁矿形成时温度、氧逸度和岩浆成分的变化提供了可能.电子探针分析结果表明,下部和中部岩相带中斜长石An牌号自下向上有规律地逐渐降低,而在每一个旋回内部,橄榄石的F(o)值总是由磁铁辉长岩向辉长岩表现出强烈降低的趋势.这些特征说明攀枝花岩体经历了多次富铁钛的岩浆的补充.斜长石An牌号小幅度的规律性降低说明岩浆氧逸度和Fe3/Fe2+比值变化对斜长石成分影响很小,因此,我们可以根据斜长石成分估计钛铁氧化物结晶过程中温度变化.然而,同一旋回中橄榄石Fo值变化较大说明橄榄石成分在很大程度上取决于岩浆中的Fe3+/Fe2+和Fe2 +/Mg含量,因此,可以根据橄榄石成分分析磁铁辉长岩与辉长岩形成过程中氧逸度和Fe3+/Fe2比值的相对变化.计算得到下部和中部岩相带中斜长石的结晶温度介于1079~1121℃之间,认为钛铁氧化物的结晶也大致发生在此温度区间;根据同一旋回中磁铁辉长岩与邻近辉长岩中橄榄石Fo值的差异,发现每次新补充的岩浆分离结晶过程中氧逸度总是逐渐降低,这与前人对封闭体系岩浆结晶分异过程中氧逸度变化规律的认识一致.  相似文献   

8.
四川攀枝花钒钛磁铁矿床Fe同位素特征及其成因指示意义   总被引:4,自引:0,他引:4  
本文系统研究了四川攀枝花含钒钛磁铁矿层状岩体全岩和矿石矿物磁铁矿的Fe同位素组成特征。研究获得全岩δ57Fe的范围为0.02‰~0.25‰, 平均值为0.17‰, 磁铁矿的δ57Fe范围为0.05‰~0.61‰, 平均值为0.36‰。相对于磁铁矿单矿物, 全岩Fe同位素组成变化不大。相对于全岩, 磁铁矿具有相对重的Fe同位素组成, 并且其相对偏重程度与样品中磁铁矿的含量呈反相关关系。磁铁矿Fe同位素组成与形成环境氧逸度之间的负相关关系表明磁铁矿从岩浆中结晶出来之后没有发生重力分异, 赋存于岩体和矿体中的磁铁矿是原位结晶的。磁铁矿的Fe同位素特征表明攀枝花岩体是多次岩浆补充和分离结晶共同作用的结果: 形成下部岩相带过程中, 玄武质岩浆补充频繁, 形成巨厚的块状磁铁矿层, 其中的磁铁矿的δ57Fe值变化较小; 而形成中部岩相带过程中, 玄武质岩浆补充的频率逐渐降低, 形成多个旋回以及交替产生的磁铁辉长岩和辉长岩。同时, 形成攀枝花岩体和矿体的初始岩浆的氧逸度很高, 在高氧逸度环境下富集成矿, 演化过程中岩浆体系氧逸度逐渐降低, 很好地解释了攀枝花V-Ti磁铁矿主矿体赋存在含矿岩体下部的辉长岩中的成矿机制。  相似文献   

9.
西南天山哈拉达拉岩体的锆石SHRIMP年代学及地球化学研究   总被引:15,自引:6,他引:9  
薛云兴  朱永峰 《岩石学报》2009,25(6):1353-1363
西南天山哈拉达拉侵入体由橄长岩、橄榄辉长岩和辉长岩组成,橄长岩和橄榄辉长岩具有典型的堆晶结构,堆晶矿物以斜长石和橄榄石为主。辉石、角闪石和金云母主要为堆晶间隙矿物。辉长岩发育辉长—辉绿结构。结晶分异作用在岩浆演化过程中起重要作用。对从辉长岩中分选出来的锆石进行的SHRIMP年代学研究表明,辉长岩形成于308.3±1.8Ma (MSWD=0.86,n=15)。哈拉达拉岩体稀土元素配分模式与E-MORB相似,具有高Rb、Cs、Ba及Sr的特点,87Sr/86Sr初始比值0.7040~0.7050。这些特征表明,岩浆源区具有富集地幔的特征(古南天山洋俯冲流体交代形成了富集地幔)。根据平坦的稀土元素配分模式以及Gd、Sm、Nb、Zr等微量元素的地球化学行为判别,岩浆源区岩石为含角闪石的尖晶石二辉橄榄岩。批式熔融模拟计算显示,地幔岩10%~15%的部分熔融能够形成哈拉达拉岩体的母岩浆。母岩浆通过48%~50%的结晶分异作用则能够形成哈拉达拉岩体。早期结晶的橄榄石和斜长石通过堆晶作用形成橄长岩和橄榄辉长岩,剩余岩浆结晶形成辉长岩。  相似文献   

10.
橄榄石是基性岩浆中最早期结晶的硅酸盐矿物之一,其主量、微量元素特征可以反映出岩浆演化环境、岩浆源区岩性和再循环组分性质等重要信息.本次研究通过对峨眉山大火成岩省平川苦橄岩中橄榄石主量和微量元素分析,以及橄榄石内尖晶石包裹体分析,并与大理苦橄岩中橄榄石和尖晶石成分进行对比,来探讨不同苦橄岩母岩浆氧逸度及源区性质的异同.橄...  相似文献   

11.
The Taihe intrusion is one of the layered intrusions situated in the central zone of the Emeishan Large Igneous Province (ELIP), SW China. The cyclic units in the Middle Zone of the intrusion are composed of apatite-magnetite clinopyroxenite at the base and gabbro at the top. The apatite-rich oxide ores contain 6–12 modal% apatite and 20–50 modal% Fe-Ti oxides evidently distinguished from the coeval intrusions in which apatite-rich rocks are poor in Fe-Ti oxides. Most of apatites of the Taihe Middle and Upper Zones are fluorapatite, although four samples show slightly high Cl content in apatite suggesting that they crystallize from a hydrous parental magma. Compared to the apatite from the gabbro of the Panzhihua intrusion, situated 100 km to the south of the Taihe intrusion, the apatite of the Taihe rocks is richer in Sr and depleted in HREE relative to LREE. The calculated magma in equilibrium with apatite of the Taihe Middle and Upper Zones also shows weakly negative Sr anomalies in primitive mantle normalized trace element diagrams. These features indicate that the apatite of the Taihe Middle and Upper Zones crystallizes after clinopyroxene and before plagioclase. The apatite of the Taihe Middle and Upper Zones shows weakly negative Eu anomalies suggesting a high oxygen fugacity condition. The high iron and titanium contents in the oxidizing magma result in crystallization of Fe-Ti oxides. Crystallization of abundant Fe-Ti oxides and clinopyroxenes lowers the solubility of phosphorus and elevates SiO2 concentration in the magma triggering the saturation of apatite. The positive correlations of Sr, V, total REE contents and Ce/Yb ratio in apatite with cumulus clinopyroxene demonstrate approximately compositional equilibrium between these phases suggesting they crystallized from the same ferrobasaltic magma. Early crystallization and accumulation of Fe-Ti oxide together with apatite produced the apatite-rich oxide ores at the base of the cyclic units of the Taihe Middle Zone.  相似文献   

12.
甘肃天水三叠纪太阳山斑岩铜钼矿床位于西秦岭造山带东段。矿体主要赋存于石英闪长斑岩、二长斑岩、石英二长斑岩和泥盆系大草滩群。氧逸度是表征岩石物理化学性质的重要参数,对岩浆热液成矿具有明显的控制作用。在综合评述常用氧逸度计算方法及适用性的前提下,文中应用激光剥蚀等离子质谱分析方法对太阳山矿床含矿岩体锆石微量元素进行测定,选用含量较高的Sm、Nd进行Ce异常计算,查明含矿斑岩岩浆氧逸度,探讨其成矿意义。太阳山矿床岩浆氧逸度计算结果表明,太阳山成矿二长斑岩和石英二长斑岩相对氧逸度ΔFMQ分别为+3.04和+3.15,成矿前石英闪长斑岩相对氧逸度ΔFMQ为-1.83,成矿岩体氧逸度明显高于成矿前岩体。成矿岩体岩浆氧逸度高于成矿前岩体的原因可能与富集地幔有关。富集岩石圈地幔的加入,带来了大量的硫和金属铜,并提高了岩浆氧逸度。  相似文献   

13.
新疆北山地区罗东镁铁质-超镁铁质层状岩体岩石成因   总被引:4,自引:0,他引:4  
罗东镁铁质-超镁铁质岩体位于塔里木板块东北部的新疆北山地区,岩体平面形态为眼球状,出露面积约2.1 km2.由纯橄岩、单辉橄榄岩、斜长二辉橄榄岩、橄榄二辉岩、方辉辉石岩、橄长岩、橄榄辉长岩、辉长岩、苏长辉长岩和淡色辉长岩组成,堆晶结构和堆晶韵律发育,属于层状岩体.岩浆演化过程中主要分离结晶/堆晶相是橄榄石和单斜辉石,此...  相似文献   

14.
攀枝花岩体钛铁矿成分特征及其成因意义   总被引:2,自引:1,他引:1  
峨眉大火成岩省是全球最大的钒钛磁铁矿床聚集区,攀枝花岩体是其中的典型代表。根据岩性特点,攀枝花岩体主体可划分为上、中、下三个岩相带,其中中部岩相带和下部岩相带岩性旋回非常发育,每个旋回从下向上铁钛氧化物和暗色硅酸盐矿物逐渐减少,块状铁钛氧化物矿石或磁铁矿辉长岩都出现在每个旋回的底部和下部。然而,尽管钛铁矿固相线以下固溶体出溶远弱于磁铁矿,从而能更好地保留成因信息,但其成分变化的成因意义没有受到足够重视。本次研究发现作为主要金属氧化物之一的钛铁矿的成分不仅在不同岩性中有明显差异,同时,中、下部岩相带的各岩性旋回中钛铁矿成分也具有周期性变化。例如,块状矿石中钛铁矿具有最高的MgO和TiO2及最低的FeO、Fe2O3和MnO,而辉长岩中钛铁矿则具有相反的成分特征。同时,钛铁矿的MgO含量与磁铁矿的MgO含量及橄榄石的Fo牌号具有显著的正相关关系。这种规律性变化说明每个旋回可以代表一次比较明显的岩浆补充,每次新岩浆补充后,钛铁矿和磁铁矿及橄榄石都是结晶较早的矿物。与Skaergaard岩体相比,攀枝花岩体钛铁矿的MgO含量较高,表明攀枝花岩体分离结晶过程中铁钛氧化物结晶较早;与挪威Tellnes斜长岩套铁钛矿床中的钛铁矿相比,攀枝花岩体的钛铁矿不仅具有较高的MgO和FeO,还具有极高的TiO2和MnO,但Fe2O3却很低,说明地幔柱背景下形成的钛铁矿与斜长岩套中钛铁矿的成分有显著的区别。  相似文献   

15.
The Newark Island layered intrusion, a composite intrusion displaying a similar fractionation sequence to the Skaergaard, has both dikes which preserved liquids fed into the intrusion and chilled pillows of liquids resident in the chamber. This study reports experimentally determined one atmosphere liquid lines of descent of these compositions as a function of oxygen fugacity which varies from QFM (quartz-fayalite-magnetite) to 0.5 log10 units above IW (iron-wustite). These experiments reveal a strong oxygen fugacity dependence on the order of appearance and relative abundances of the Fe–Ti oxide minerals. Titanomagnetite saturates prior to ilmenite at QFM, but the order is reversed at lower oxygen fugacities. In the layered series of the Newark Island intrusion, ilmenite arrives shortly before titanomagnetite and the titanomagnetite/ilmenite ratio decreases monotonically after the cumulus appearance of titanomagnetite. Comparison of the crystallization sequence in the intrusion with that of the experiments requires that the oxygen fugacity in the intrusion increased relative to QFM before titanomagnetite saturation and decreased afterward, but always remained between the QFM and IW buffers. Similar trends in the modes of the Fe–Ti oxides (ilmenite and titanomagnetite) in the Skaergaard, Kiglapait, and Somerset Dam intrusions along with Fe2O3/FeO ratios in MORBs suggest that such a temperature-oxygen fugacity path may be typical of tholeiitic magma differentiation. Calculations of the temperature-density paths of the experimental liquids indicate that, at all possible oxygen fugacities, the density must have decreased abruptly after Fe–Ti oxide saturation. Accordingly, liquids replenishing the intrusion after Fe–Ti oxide saturation should pond at the bottom of the chamber, quenching against older cumulates. Field observation at the Newark Island intrusion confirm this prediction. The similarities in the fractionation paths of several other layered intrusions to that of the Newark Island intrusion suggest that the density of the liquids in these intrusions also decreased after Fe–Ti oxide saturation. Experiments on a suggested initial Skaergaard liquid are consistent with this model.  相似文献   

16.
中甸铜钼多金属矿集区位于义敦岛弧南段,区内绝大多数矿床与晚三叠世和晚白垩世岩浆活动有关,目前两期斑岩锆石氧逸度及差异性成矿研究薄弱.对4个斑岩体5类岩石的锆石开展LA-ICPMS微量元素分析,数据经筛选检验后进行了氧逸度估算.氧逸度结果由高到低为:地苏嘎铜矿晚三叠世石英闪长玢岩(Ce4+/Ce3+比值为515)、休瓦促...  相似文献   

17.
湖南浏阳七宝山铜多金属矿床位于钦杭成矿带西段,是湘东北规模最大的铜多金属矿床。矿床的形成与区内的石英斑岩关系密切。石英斑岩内锆石具有岩浆锆石特征,LA-ICP-MS锆石U-Pb定年结果为155~153 Ma,代表其形成年龄,属晚侏罗世岩浆活动产物。岩浆锆石的~(176)Hf/~(177)Hf=0.282296~0.282603,εHf(t)=–12~–2.7,平均地壳模式年龄tDM2=1377~2056 Ma;锆石ΣREE=496~4162μg/g,(Yb/Nd)N=71.9~3133.8,HREE强烈富集,具有强烈Ce正异常(δCe=1.68~203.13)和强烈至中等Eu负异常(δEu=0.05~0.67),表明石英斑岩的岩浆源区具有明显壳源特征,来自于古元古代至中元古代地壳的部分熔融。结合岩石学研究,七宝山矿区石英斑岩的形成除了中下地壳冷家溪群或更古老的基底物质的部分熔融外,还有幔源组分加入,这一期岩浆与成矿作用与岩石圈拆离和软流圈物质上涌及随后的玄武岩底侵作用有关。  相似文献   

18.
The Panzhihua gabbroic layered intrusion is associated withthe 260 Ma Emeishan Large Igneous Province in SW China. Thissill-like body hosts a giant Fe–Ti–V oxide depositwith 1333 million ton ore reserves, which makes China a majorproducer of these metals. The intrusion has a Marginal zoneof fine-grained hornblende-bearing gabbro and olivine gabbro,followed upward by Lower, Middle, and Upper zones. The Lowerand Middle zones consist of layered melanogabbro and gabbrocomposed of cumulate clinopyroxene, plagioclase, and olivine.These zones also contain magnetite layers. The Upper zone consistschiefly of leucogabbro composed of plagioclase and clinopyroxenewith minor olivine. Most rocks in the body show variable-scalerhythmic modal layering in which dark minerals, primarily clinopyroxene,dominate in the lower parts of each layer, and lighter minerals,primarily plagioclase, dominate in the upper parts. The oxideores occur as layers and lenses within the gabbros and are concentratedin the lower parts of the intrusion. Ore textures and associatedmineral assemblages indicate that the ore bodies formed by verylate-stage crystallization of V-rich titanomagnetite from animmiscible oxide liquid in a fluid-rich environment. The rocksof the Panzhihua intrusion become more evolved in chemistryupward and follow a tholeiitic differentiation trend with enrichmentin Fe, Ti, and V. They are enriched in light rare earth elementsrelative to heavy rare earth elements, and exhibit positiveNb, Ta, and Ti anomalies and negative Zr and Hf anomalies. Thesilicate rocks and oxide ores of the Panzhihua intrusion formedfrom highly evolved Fe–Ti–V-rich ferrobasaltic orferropicritic magmas. The textures of the ores and the abundanceof minor hydrous phases indicate that addition of fluids fromupper crustal wall-rocks induced the separation of the immiscibleoxide melts from which the Fe–Ti–V oxide ore bodiesin the lower part of the intrusion crystallized. KEY WORDS: magnetite; Fe–Ti-rich gabbro; layered intrusion; Panzhihua; SW China  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号