首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 233 毫秒
1.
The South Altyn orogen in West China contains ultra high pressure (UHP) terranes formed by ultra‐deep (>150–300 km) subduction of continental crust. Mafic granulites which together with ultramafic interlayers occur as blocks in massive felsic granulites in the Bashiwake UHP terrane, are mainly composed of garnet, clinopyroxene, plagioclase, amphibole, rutile/ilmenite, and quartz with or without kyanite and sapphirine. The kyanite/sapphirine‐bearing granulites are interpreted to have experienced decompression‐dominated evolution from eclogite facies conditions with peak pressures of 4–7 GPa to high pressure (HP)–ultra high temperature (UHT) granulite facies conditions and further to low pressure (LP)–UHT facies conditions based on petrographic observations, phase equilibria modelling, and thermobarometry. The HP–UHT granulite facies conditions are constrained to be 2.3–1.6 GPa/1,000–1,070°C based on the observed mineral assemblages of garnet+clinopyroxene+rutile+plagioclase+amphibole±quartz and measured mineral compositions including the core–rim increasing anorthite in plagioclase (XAn = 0.52–0.58), core–rim decreasing jadeite in clinopyroxene (XJd = 0.20–0.15), and TiO2 in amphibole (TiM2/2 = 0.14–0.18). The LP–UHT granulite facies conditions are identified from the symplectites of sapphirine+plagioclase+spinel, formed by the metastable reaction between garnet and kyanite at <0.6–0.7 GPa/940–1,030°C based on the calculated stability of the symplectite assemblages and sapphirine–spinel thermometer results. The common granulites without kyanite/sapphirine are identified to record a similar decompression evolution, including eclogite, HP–UHT granulite, and LP–UHT granulite facies conditions, and a subsequent isobaric cooling stage. The decompression under HP–UHT granulite facies is estimated to be from 2.3 to 1.3 GPa at ~1,040°C on the basis of textural records, anorthite content in plagioclase (XAn = 0.25–0.32), and grossular content in garnet (XGrs = 0.22–0.19). The further decompression to LP–UHT facies is defined to be >0.2–0.3 GPa based on the calculated stability for hematite‐bearing ilmenite. The isobaric cooling evolution is inferred mainly from the amphibole (TiM2/2 = 0.14–0.08) growth due to the crystallization of residual melts, consistent with a temperature decrease from >1,000°C to ~800°C at ~0.4 GPa. Zircon U–Pb dating for the two types of mafic granulite yields similar protolith and metamorphic ages of c. 900 Ma and c. 500 Ma respectively. However, the metamorphic age is interpreted to represent the HP–UHT granulite stage for the kyanite/sapphirine‐bearing granulites, but the isobaric cooling stage for the common granulites on the basis of phase equilibria modelling results. The two types of mafic granulite should share the same metamorphic evolution, but show contrasting features in petrography, details of metamorphic reactions in each stage, thermobarometric results, and also the meaning of zircon ages as a result of their different bulk‐rock compositions. Moreover, the UHT metamorphism in UHP terranes is revealed to represent the lower pressure overprinting over early UHP assemblages during the rapid exhumation of ultra‐deep subducted continental slabs, in contrast to the cause of traditional UHT metamorphism by voluminous heat addition from the mantle.  相似文献   

2.
In the North‐East Greenland Caledonides, P–T conditions and textures are consistent with partial melting of ultrahigh‐pressure (UHP) eclogite during exhumation. The eclogite contains a peak assemblage of garnet, omphacite, kyanite, coesite, rutile, and clinozoisite; in addition, phengite is inferred to have been present at peak conditions. An isochemical phase equilibrium diagram, along with garnet isopleths, constrains peak P–T conditions to be subsolidus at 3.4 GPa and 940°C. Zr‐in‐rutile thermometry on inclusions in garnet yields values of ~820°C at 3.4 GPa. In the eclogite, plagioclase may exhibit cuspate textures against surrounding omphacite and has low dihedral angles in plagioclase–clinopyroxene–garnet aggregates, features that are consistent with former melt–solid–solid boundaries and crystallized melt pockets. Graphic intergrowths of plagioclase and amphibole are present in the matrix. Small euhedral neoblasts of garnet against plagioclase are interpreted as formed from a peritectic reaction during partial melting. Polymineralic inclusions of albite+K‐feldspar and clinopyroxene+quartz±kyanite±plagioclase in large anhedral garnet display plagioclase cusps pointing into the host, which are interpreted as crystallized melt pockets. These textures, along with the mineral composition, suggest partial melting of the eclogite by reactions involving phengite and, to a large extent, an epidote‐group mineral. Calculated and experimentally determined phase relations from the literature reveal that partial melting occurred on the exhumation path, at pressures below the coesite to quartz transition. A calculated P–T phase diagram for a former melt‐bearing domain shows that the formation of the peritectic garnet rim occurred at 1.4 GPa and 900°C, with an assemblage of clinopyroxene, amphibole, and plagioclase equilibrated at 1.3 GPa and 720°C. Isochemical phase equilibrium modelling of a symplectite of clinopyroxene, plagioclase, and amphibole after omphacite, combined with the mineral composition, yields a P–T range at 1.0–1. 6 GPa, 680–1,000°C. The assemblage of amphibole and plagioclase is estimated to reach equilibrium at 717–732°C, calculated by amphibole–plagioclase thermometry for the former melt‐bearing domain and symplectite respectively. The results of this study demonstrate that partial melt formed in the UHP eclogite through breakdown of an epidote‐group mineral with minor involvement of phengite during exhumation from peak pressure; melt was subsequently crystallized on the cooling path.  相似文献   

3.
High‐pressure kyanite‐bearing felsic granulites in the Bashiwake area of the south Altyn Tagh (SAT) subduction–collision complex enclose mafic granulites and garnet peridotite‐hosted sapphirine‐bearing metabasites. The predominant felsic granulites are garnet + quartz + ternary feldspar (now perthite) rocks containing kyanite, plagioclase, biotite, rutile, spinel, corundum, and minor zircon and apatite. The quartz‐bearing mafic granulites contain a peak pressure assemblage of garnet + clinopyroxene + ternary feldspar (now mesoperthite) + quartz + rutile. The sapphirine‐bearing metabasites occur as mafic layers in garnet peridotite. Petrographical data suggest a peak assemblage of garnet + clinopyroxene + kyanite + rutile. Early kyanite is inferred from a symplectite of sapphirine + corundum + plagioclase ± spinel, interpreted to have formed during decompression. Garnet peridotite contains an assemblage of garnet + olivine + orthopyroxene + clinopyroxene. Thermobarometry indicates that all rock types experienced peak P–T conditions of 18.5–27.3 kbar and 870–1050 °C. A medium–high pressure granulite facies overprint (780–820 °C, 9.5–12 kbar) is defined by the formation of secondary clinopyroxene ± orthopyroxene + plagioclase at the expense of garnet and early clinopyroxene in the mafic granulites, as well as by growth of spinel and plagioclase at the expense of garnet and kyanite in the felsic granulite. SHRIMP II zircon U‐Pb geochronology yields ages of 493 ± 7 Ma (mean of 11) from the felsic granulite, 497 ± 11 Ma (mean of 11) from sapphirine‐bearing metabasite and 501 ± 16 Ma (mean of 10) from garnet peridotite. Rounded zircon morphology, cathodoluminescence (CL) sector zoning, and inclusions of peak metamorphic minerals indicate these ages reflect HP/HT metamorphism. Similar ages determined for eclogites from the western segment of the SAT suggest that the same continental subduction/collision event may be responsible for HP metamorphism in both areas.  相似文献   

4.
High‐pressure granulites are characterised by the key associations garnet‐clinopyroxene‐plagioclase‐quartz (in basic rocks) and kyanite‐K‐feldspar (metapelites and felsic rocks) and are typically orthopyroxene‐free in both basic and felsic bulk compositions. In regional metamorphic areas, two essential varieties exist: a high‐ to ultrahigh‐temperature group and a group representing overprinted eclogites. The high‐ to ultrahigh‐temperature type formerly contained high‐temperature ternary feldspar (now mesoperthite) coexisting with kyanite, is associated with garnet peridotites, and formed at conditions above 900 °C and 1.5 GPa. Clinopyroxene in subordinate basic rocks is Al‐rich and textural evidence points to a high‐pressure–high‐temperature melting history. The second variety contains symplectite‐like or poikilitic clinopyroxene‐plagioclase intergrowths indicating former plagioclase‐free, i.e. eclogite facies assemblages. This type of rock formed at conditions straddling the high‐pressure amphibolite/high‐pressure granulite field at around 700–850 °C, 1.0–1.4 GPa. Importantly, in the majority of high‐pressure granulites, orthopyroxene is secondary and is a product of reactions at pressures lower than the peak recorded pressure. In contrast to low‐ and medium‐pressure granulites, which form at conditions attainable in the mid to lower levels of normal continental crust, high‐pressure granulites (of nonxenolith origin) mostly represent rocks formed as a result of short‐lived tectonic events that led to crustal thickening or subduction of the crust into the mantle. Short times at high‐temperature conditions are reflected in the preservation of prograde zoning in garnet and pyroxene. High‐pressure granulites of both regional types, although rare, are known from both old and young metamorphic terranes (e.g. c. 45 Ma, Namche Barwa, E Himalaya; 400–340 Ma, European Variscides; 1.8 Ga Hengshan, China; 1.9 Ga, Snowbird, Saskatchewan and 2.5 Ga Jianping, China). This spread of ages supports proposals suggesting that thermal and tectonic processes in the lithosphere have not changed significantly since at least the end of the Archean.  相似文献   

5.
High‐P (HP) eclogite and associated garnet–omphacite granulite have recently been discovered in the Mulantou area, northeastern Hainan Island, South China. These rocks consist mainly of garnet, omphacite, hornblende, quartz and rutile/ilmenite, with or without zoisite and plagioclase. Textural relationships, mineral compositions and thermobarometric calculations demonstrate that the eclogite and garnet–omphacite granulite share the same three‐stage metamorphic evolution, with prograde, peak and retrograde P?T conditions of 620–680°C and 8.7–11.1 kbar, 820–860°C and 17.0–18.2 kbar, and 700–730°C and 7.1–8.5 kbar respectively. Sensitive high‐resolution ion microprobe U–Pb zircon dating, coupled with the identification of mineral inclusions in zircon, reveals the formation of mafic protoliths before 355 Ma, prograde metamorphism at c. 340–330 Ma, peak to retrograde metamorphism at c. 310–300 Ma, and subsequent pegmatite intrusion at 295 Ma. Trace element geochemistry shows that most of the rocks have a MORB affinity, with initial εNd values of +2.4 to +6.7. As with similar transitional eclogite–HP granulite facies rocks in the thickened root in the European Variscan orogen, the occurrence of relatively high P?T metamorphic rocks of oceanic origin in northeastern Hainan Island suggests Carboniferous oceanic subduction leading to collision of the Hainan continental block, or at least part of it, with the South China Block in the eastern Palaeo‐Tethyan tectonic domain.  相似文献   

6.
Jadeite‐bearing kyanite eclogite has been discovered in the Iratsu body of the Sanbagawa belt, SW Japan. The jadeite + kyanite assemblage is stable at higher pressure–temperature (PT) conditions or lower H2O activity [a(H2O)] than paragonite, although paragonite‐bearing eclogite is common in the Sanbagawa belt. The newly discovered eclogite is a massive metagabbro with the peak‐P assemblage garnet + omphacite + jadeite + kyanite + phengite + quartz + rutile. Impure jadeite is exclusively present as inclusions in garnet. The compositional gap between the coexisting omphacite (P2/n) and impure jadeite (C2/c) suggests relatively low metamorphic temperatures of 510–620 °C. Multi‐equilibrium thermobarometry for the assemblage garnet + omphacite + kyanite + phengite + quartz gives peak‐P conditions of ~2.5 GPa, 570 °C. Crystallization of jadeite in the metagabbro is attributed to Na‐ and Al‐rich effective bulk composition due to the persistence of relict Ca‐rich clinopyroxene at the peak‐P stage. By subtracting relict clinopyroxene from the whole‐rock composition, pseudosection modelling satisfactorily reproduces the observed jadeite‐bearing assemblage and mineral compositions at ~2.4–2.5 GPa, 570–610 °C and a(H2O) >0.6. The relatively high pressure conditions derived from the jadeite‐bearing kyanite eclogite are further supported by high residual pressures of quartz inclusions in garnet. The maximum depth of exhumation in the Sanbagawa belt (~80 km) suggests decoupling of the slab–mantle wedge interface at this depth.  相似文献   

7.
Lawsonite eclogites are crucial to decipher material recycling along a cold geotherm into the deep Earth and orogenic geodynamics at convergent margins. However, their tectono‐metamorphic role and record especially at ultrahigh‐pressure (UHP) conditions are poorly known due to rare exposure in orogenic belts. In a ~4 km long cross‐section in Muzhaerte, China, at the western termination of the HP‐UHP metamorphic belt of western Tianshan, metabasite blocks contain omphacite and lawsonite inclusions in porphyroblastic garnet, although matrix assemblages have been significantly affected by overprinting at shallower structural levels. Two types of lawsonite eclogites occur in different parts of the section and are distinguished based on inclusion assemblages in garnet: Type 1 (UHP) with the peak equilibrium assemblage garnet+omphacite±jadeite+lawsonite+rutile+coesite±chlorite±glaucophane and Type 2 (HP) with the assemblage garnet+omphacite±diopside+lawsonite+titanite+quartz±actinolite±chlorite+glaucophane. Pristine coesite and lawsonite and their pseudomorphs in Type 1 are present in the mantle domains of zoned garnet, indicative of a coesite‐lawsonite eclogite facies. Regardless of grain size and zoning profiles, garnet with Type 1 inclusions systematically shows higher Mg and lower Ca contents than Type 2 (prp4–25grs13–24 and prp1–8grs20–45 respectively). Phase equilibria modelling indicates that the low‐Ca garnet core and mantle of Type 1 formed at UHP conditions and that there was a major difference in peak pressures (i.e., maximum return depth) between the two types (2.8–3.2 GPa at 480–590°C and 1.3–1.85 GPa at 390–500°C respectively). Scattered exposures of Type 1 lawsonite eclogite is scatteredly exposed in the north of the Muzhaerte section with a structural thickness of ~1 km, whereas Type 2 occurs throughout the rest of the section. We conclude from this regular distribution that they were derived from two contrasting units that formed along two different geothermal systems (150–200°C/GPa for the northern UHP unit and 200–300°C/GPa for the southern HP unit), with subsequent stacking of UHP and HP slices at a kilometre scale.  相似文献   

8.
High‐pressure granulites are an important record of geodynamic processes in overthickened or subducted continental crust. Orthopyroxene‐free assemblages in granitic (ternary feldspar(s) + quartz + garnet + kyanite + rutile), intermediate (ternary feldspar(s) + quartz + garnet + clinopyroxene ± kyanite ±rutile ± titanite) and basic (garnet + clinopyroxene + plagioclase ± quartz + rutile) compositions indicate formation conditions at mantle depths. Clinopyroxene compositions in Variscan high‐pressure granulites are unusual in that they include omphacite (in plagioclase‐bearing rocks thus not eclogite) and Al‐rich diopside (i.e. indicating high Ca‐Tschermak content), with both yielding temperatures above 900 °C. Problems such as compositional zoning, multiple generations of key phases in reaction domains and unmixing of high‐temperature solid‐solution phases during cooling (ternary feldspars, omphacite) clearly indicate disequilibrium and require very careful interpretation as to which phases and compositions possibly represent a former equilibrium association. Pressure–temperature (P–T) determination by the pseudosection method, although allowing prediction of mineral assemblages, compositions and molar proportions for a fixed bulk composition for modelled P–T conditions, still requires reliable activity–composition information for the key phases feldspar and clinopyroxene as well as an interpretation of former equilibrium compositions in the investigated samples, i.e. the same restrictions applying to conventional thermobarometry. The interpretations of some recently determined pseudosections for the composition of Variscan clinopyroxene‐bearing high‐pressure granulites contradict numerous published P–T paths. However, quantitative information from thermobarometry or pseudosections must be integrated with key petrographic observations. In the case of the Variscan example, it is argued that petrographic observations and published P–T paths are consistent with mineral assemblages predicted in pseudosections and support existing tectonometamorphic models.  相似文献   

9.
The petrogenetic relations among Ti‐rich minerals in high‐grade metabasites is illuminated here through a detailed petrological investigation of an anatectic garnet–clinopyroxene granulite from the Grenville Province, Ontario, Canada containing rutile, titanite and ilmenite in distinct microtextural settings. Garnet porphyroblasts exhibit zoned Ti concentrations (up to 0.15 wt% TiO2 in their cores), as well as a variety of rutile inclusion types, including clusters of small, variably elongate grains and thin (≤1 μm) oriented needles. Calcite inclusions in garnet, commonly observed surrounding garnet cores containing quartz and clinozoisite, indicate the presence of evolving C–O–H fluids during garnet growth and suggest that the rutile clusters may have formed from subsequent Ti diffusion and rutile precipitation within existing fluid inclusions. Titanite forms large subhedral crystals and typically occurs where the primary garnet–clinopyroxene assemblage is in contact with leucosome containing megacrystic hornblende, silvialitic scapolite and calcic plagioclase. Many titanite crystals exhibit marginal subgrains that correspond with sharp changes in their major and trace element composition, likely related to a dissolution–precipitation or recrystallization process following primary crystallization. Clinopyroxene–ilmenite symplectite coronas surround titanite in most locations, likely forming from reaction with the hornblende‐plagioclase matrix (±fluids/melt). Integration of multi‐equilibria thermobarometry and Zr thermometry in rutile and titanite with phase equilibrium modelling allows definition of a clockwise P–T path evolving to peak pressures of ~1.5 GPa at ~750°C during garnet and rutile growth, followed by peak temperature conditions of ~1.2 GPa and ~820–880°C associated with melt‐present titanite growth, and finally cooling and decompression to regional amphibolite facies conditions (~1.0 GPa and ~750°C) associated with the formation of clinopyroxene–ilmenite symplectites surrounding titanite. P–T pseudosections calculated for the pristine (leucosome‐ and titanite ‐free) metabasite bulk composition reproduce much of the prograde phase relations, but predict rutile as the stable Ti‐rich mineral at the peak thermal conditions associated with melt‐present titanite growth. The PM(CaO) and TM(CaO) models show that bulk CaO concentrations have a significant effect on the stability ranges of titanite and rutile. Increased bulk CaO tends to stabilize titanite to higher pressure and temperature at the expense of rutile, with a ≥15% increase in CaO producing the observed titanite‐bearing assemblage at high‐P granulite facies conditions. Thus, the model results are consistent with the textural observations, which suggest that titanite stability is associated with a chemical exchange between the host metabasite and a Ca‐rich melt.  相似文献   

10.
Mafic granulites have been found as structural lenses within the huge thrust system outcropping about 10 km west of Nam Co of the northern Lhasa Terrane, Tibetan Plateau. Petrological evidence from these rocks indicates four distinct metamorphic assemblages. The early metamorphic assemblage (M1) is preserved only in the granulites and represented by plagioclase+hornblende inclusions within the cores of garnet porphyroblasts. The peak assemblage (M2) consists of garnet+clinopyroxene+hornblende+plagioclase in the mafic granulites. The peak metamorphism was followed by near-isothermal decompression (M3), which resulted in the development of hornblende+plagioclase symplectites surrounding embayed garnet porphyroblasts, and decompression-cooling (M4) is represented by minerals of hornblende+plagioclase recrystallized during mylonization. The peak (M2) P-T conditions of garnet+ clinopyroxene+plagioclase+hornblende were estimated at 769-905℃ and 0.86-1.02 GPa based on the geothermometers and geobarometers. The  相似文献   

11.
Abstract The prograde metamorphism of eclogites is typically obscured by chemical equilibration at peak conditions and by partial requilibration during retrograde metamorphism. Eclogites from the Eastern Blue Ridge of North Carolina retain evidence of their prograde path in the form of inclusions preserved in garnet. These eclogites, from the vicinity of Bakersville, North Carolina, USA are primarily comprised of garnet–clinopyroxene–rutile–hornblende–plagioclase–quartz. Quartz, clinopyroxene, hornblende, rutile, epidote, titanite and biotite are found as inclusions in garnet cores. Included hornblende and clinopyroxene are chemically distinct from their matrix counterparts. Thermobarometry of inclusion sets from different garnets record different conditions. Inclusions of clinozoisite, titanite, rutile and quartz (clinozoisite + titanite = grossular + rutile + quartz + H2O) yield pressures (6–10 kbar, 400–600 °C and 8–12 kbar 450–680 °C) at or below the minimum peak conditions from matrix phases (10–13 kbar at 600–800 °C). Inclusions of hornblende, biotite and quartz give higher pressures (13–16 kbar and 630–660 °C). Early matrix pyroxene is partially or fully broken down to a diopside–plagioclase symplectite, and both garnet and pyroxene are rimmed with plagioclase and hornblende. Hypersthene is found as a minor phase in some diopside + plagioclase symplectites, which suggests retrogression through the granulite facies. Two‐pyroxene thermometry of this assemblage gives a temperature of c. 750 °C. Pairing the most Mg‐rich garnet composition with the assemblage plagioclase–diopside–hypersthene–quartz gives pressures of 14–16 kbar at this temperature. The hornblende–plagioclase–garnet rim–quartz assemblage yields 9–12 kbar and 500–550 °C. The combined P–T data show a clockwise loop from the amphibolite to eclogite to granulite facies, all of which are overprinted by a texturally late amphibolite facies assemblage. This loop provides an unusually complete P–T history of an eclogite, recording events during and following subduction and continental collision in the early Palaeozoic.  相似文献   

12.
The Shirokaya Salma eclogite‐bearing complex is located in the Archean–Palaeoproterozoic Belomorian Province (Russia). Its eclogites and eclogitic rocks show multiple clinopyroxene breakdown textures, characterized by quartz–amphibole, orthopyroxene and plagioclase lamellae. Representative samples, a fresh eclogite, two partly retrograded eclogites, and a strongly retrograded eclogitic rock, were collected for this study. Two distinct mineral assemblages—(1) omphacite+garnet+quartz+rutile±amphibole and (2) clinopyroxene+garnet+amphibole+plagioclase+quartz+rutile+ilmenite±orthopyroxene—are described. Based on phase equilibria modelling, these assemblages correspond to the eclogite and granulite facies metamorphism that occurred at 16–18 kbar, 750–800°C and 11–15 kbar, 820–850°C, respectively. The quartz–amphibole lamellae in clinopyroxene formed during retrogression with water ingress, but do not imply UHP metamorphism. The superfine orthopyroxene lamellae developed due to breakdown of an antecedent clinopyroxene (omphacite) during retrogression that was triggered by decompression from the peak of metamorphism, while the coarser orthopyroxene grains and rods formed afterwards. The P–T path reconstructed for the Shirokaya Salma eclogites is comparable to that of the adjacent 1.9 Ga Uzkaya Salma eclogite (Belomorian Province), and those of several other Palaeoproterozoic high‐grade metamorphic terranes worldwide, facts allowing us to debate the exact timing of eclogite facies metamorphism in the Belomorian Province.  相似文献   

13.
A combined study of petrology and geochemistry was carried out for granulites from the Tongbai orogen in central China. The results reveal the tectonic evolution from collisional thickening to extensional thinning of the lithosphere at the convergent plate boundary. Petrographic observations, zircon U–Pb dating, and pseudosection calculations indicate that the granulites underwent four metamorphic stages, which are categorized into two cycles. The first cycle occurred at 490–450 Ma and involves high-P (HP) metamorphism (M1) at 785–815°C and 10–14 kbar followed by decompressional heating to 840–880°C and 8–9 kbar for medium-pressure granulite facies metamorphism (M2), defining a clockwise PT path. The high pressure is indicated by the occurrence of inclusions of rutile+kyanite+K-feldspar in the garnet mantle. The second cycle occurred at c. 440 Ma and shows an anticlockwise PT path with continuous heating to ultrahigh-temperature (UHT) metamorphism (M3) at 890–980°C and 9–11 kbar, followed by decompressional cooling to 740–880°C and 7–9 kbar (M4) till 405 Ma. The HP metamorphism is synchronous with the ultrahigh-pressure eclogite facies metamorphism in the Qinling orogen, indicating its relevance to the continental collision in the Cambrian. The UHT metamorphism took place at reduced pressures, indicating thinning of the collision-thickened orogenic lithosphere. Therefore, the Tongbai orogen was initially thickened by the collisional orogeny and then thinned, possibly as a result of foundering of the orogenic root. Such tectonic evolution may be common in collisional orogens where compression during continental collision switched to extension during continental rifting.  相似文献   

14.
Recent petrological studies on high‐pressure (HP)–ultrahigh‐pressure (UHP) metamorphic rocks in the Moldanubian Zone, mainly utilizing compositional zoning and solid phase inclusions in garnet from a variety of lithologies, have established a prograde history involving subduction and subsequent granulite facies metamorphism during the Variscan Orogeny. Two temporally separate metamorphic events are developed rather than a single P–T loop for the HP–UHP metamorphism and amphibolite–granulite facies overprint in the Moldanubian Zone. Here further evidence is presented that the granulite facies metamorphism occurred after the HP–UHP rocks had been exhumed to different levels of the middle or upper crust. A medium‐temperature eclogite that is part of a series of tectonic blocks and lenses within migmatites contains a well‐preserved eclogite facies assemblage with omphacite and prograde zoned garnet. Omphacite is partly replaced by a symplectite of diopside + plagioclase + amphibole. Garnet and omphacite equilibria and pseudosection calculations indicate that the HP metamorphism occurred at relatively low temperature conditions of ~600 °C at 2.0–2.2 GPa. The striking feature of the rocks is the presence of garnet porphyroblasts with veins filled by a granulite facies assemblage of olivine, spinel and Ca‐rich plagioclase. These minerals occur as a symplectite forming symmetric zones, a central zone rich in olivine that is separated from the host garnet by two marginal zones consisting of plagioclase with small amounts of spinel. Mineral textures in the veins show that they were first filled mostly by calcic amphibole, which was later transformed into granulite facies assemblages. The olivine‐spinel equilibria and pseudosection calculations indicate temperatures of ~850–900 °C at pressure below 0.7 GPa. The preservation of eclogite facies assemblages implies that the granulite facies overprint was a short‐lived process. The new results point to a geodynamic model where HP–UHP rocks are exhumed to amphibolite facies conditions with subsequent granulite facies heating by mantle‐derived magma in the middle and upper crust.  相似文献   

15.
Composite granite–quartz veins occur in retrogressed ultrahigh pressure (UHP) eclogite enclosed in gneiss at General's Hill in the central Sulu belt, eastern China. The granite in the veins has a high‐pressure (HP) mineral assemblage of dominantly quartz+phengite+allanite/epidote+garnet that yields pressures of 2.5–2.1 GPa (Si‐in‐phengite barometry) and temperatures of 850–780°C (Ti‐in‐zircon thermometry) at 2.5 GPa (~20°C lower at 2.1 GPa). Zircon overgrowths on inherited cores and new grains of zircon from both components of the composite veins crystallized at c. 221 Ma. This age overlaps the timing of HP retrograde recrystallization dated at 225–215 Ma from multiple localities in the Sulu belt, consistent with the HP conditions retrieved from the granite. The εHf(t) values of new zircon from both components of the composite veins and the Sr–Nd isotope compositions of the granite consistently lie between values for gneiss and eclogite, whereas δ18O values of new zircon are similar in the veins and the crustal rocks. These data are consistent with zircon growth from a blended fluid generated internally within the gneiss and the eclogite, without any ingress of fluid from an external source. However, at the peak metamorphic pressure, which could have reached 7 GPa, the rocks were likely fluid absent. During initial exhumation under UHP conditions, exsolution of H2O from nominally anhydrous minerals generated a grain boundary supercritical fluid in both gneiss and eclogite. As exhumation progressed, the volume of fluid increased allowing it to migrate by diffusing porous flow from grain boundaries into channels and drain from the dominant gneiss through the subordinate eclogite. This produced a blended fluid intermediate in its isotope composition between the two end‐members, as recorded by the composite veins. During exhumation from UHP (coesite) eclogite to HP (quartz) eclogite facies conditions, the supercritical fluid evolved by dissolution of the silicate mineral matrix, becoming increasingly solute‐rich, more ‘granitic’ and more viscous until it became trapped. As crystallization began by diffusive loss of H2O to the host eclogite concomitant with ongoing exhumation of the crust, the trapped supercritical fluid intersected the solvus for the granite–H2O system, allowing phase separation and formation of the composite granite–quartz veins. Subsequently, during the transition from HP eclogite to amphibolite facies conditions, minor phengite breakdown melting is recorded in both the granite and the gneiss by K‐feldspar+plagioclase+biotite aggregates located around phengite and by K‐feldspar veinlets along grain boundaries. Phase equilibria modelling of the granite indicates that this late‐stage melting records P–T conditions towards the end of the exhumation, with the subsolidus assemblage yielding 0.7–1.1 GPa at <670°C. Thus, the composite granite–quartz veins represent a rare example of a natural system recording how the fluid phase evolved during exhumation of continental crust. The successive availability of different fluid phases attending retrograde metamorphism from UHP eclogite to amphibolite facies conditions will affect the transport of trace elements through the continental crust and the role of these fluids as metasomatic agents interacting with the mantle wedge in the subduction channel.  相似文献   

16.
在一些典型碰撞造山带中,高压麻粒岩与榴辉岩在空间和时间上密切相关,它们之间的关系对揭示碰撞造山带的造山过程和造山机制具有重要意义.本文以中国西部的南阿尔金、柴北缘及中部的北秦岭造山带为例,详细陈述了这3个地区榴辉岩和相关的高压麻粒岩的野外关系、变质演化和形成时代,目的是要建立大陆碰撞造山带中榴辉岩和相关高压麻粒岩形成的地球动力学背景模式.南阿尔金榴辉岩呈近东西向分布在江尕勒萨依,玉石矿沟一带,与含夕线石副片麻岩、花岗质片麻岩和少量大理岩构成榴辉岩一片麻岩单元,榴辉岩中含有柯石英假象,其峰期变质条件为P=2.8~3.0GPa,T=730~850℃,并在抬升过程中经历了角闪岩-麻粒岩相的叠加;大量年代学研究显示其峰期变质时代为485~500Ma.南阿尔金高压麻粒岩分布在巴什瓦克地区,包括高压基性麻粒岩和高压长英质麻粒岩,它们与超基性岩构成了一个大约5km宽的构造岩石单元,与周围角闪岩相的片麻岩为韧性剪切带接触.长英质麻粒岩和基性麻粒岩的峰期组合均具有蓝晶石和三元长石(已变成条纹长石),形成的温压条件为T=930~1020℃,P=1.8~2.5GPa,并在退变质过程中经历了中压麻粒岩相变质作用叠加.锆石SHRIMP测定显示巴什瓦克高压麻粒岩的峰期变质时代为493~497Ma.都兰地区的榴辉岩分布柴北缘HP-UHP变质带的东端,在榴辉岩和围岩副片麻岩中均发现有柯石英保存,形成的峰期温压条件为T=670~730℃和P=2.7~3.25GPa,退变质阶段经过了角闪岩相的叠加;榴辉岩相变质时代为420~450Mao都兰地区的高压麻粒岩分布在阿尔茨托山西部,高压麻粒岩包括基性麻粒岩长英质麻粒岩,基性麻粒岩的峰期矿物组合为Grt+Cpx+Pl±Ky±Zo+Rt±Qtz,长英质麻粒岩的峰期矿物组合为:Grt+Kf+Ky+Pl+Qtz.峰期变质条件为T=800~925℃,P=1.4~1.85GPa,退变质阶段经历了角闪岩-绿片岩的改造,高压麻粒岩的变质时代为420~450Ma.北秦岭榴辉岩分布在官坡-双槐树一带,榴辉岩的峰期变质组合为Grt+Omp±Phe+Qtz+Rt,所计算的峰期温压条件为T=680~770℃和P=2.25~2.65GPa,年代学数据显示榴辉岩的变质时代为500Ma左右.北秦岭高压麻粒岩分布在含榴辉岩单元的南侧松树沟一带,包括高压基性麻粒岩和高压长英质麻粒岩,与超基性岩在空间上密切伴生,高压麻粒岩的峰期温压条件为T=850~925℃,P=1.45~1.80GPa,锆石U-Pb年代学研究显示其峰期变质时代为485~507Ma.以上三个实例显示,出现在同一造山带、在空间上伴生的高压麻粒岩和榴辉岩有各自不同的变质演化历史,但榴辉岩中的榴辉岩相变质时代和相邻的高压麻粒岩中的高压麻粒岩相变质作用时代相同或相近,这种成对出现的榴辉岩和高压麻粒岩代表了它们同时形成在造山带中不同的构造环境中,即榴辉岩的形成于大陆俯冲带中,而高压麻粒岩可能形成在俯冲带之上增厚的大陆地壳根部.  相似文献   

17.
The Wuhe Complex in the Bengbu area of the Jiao–Liao–Ji Belt, southeast North China Craton, contains garnet-bearing mafic granulites that have undergone high-pressure (HP) and ultrahigh-temperature (UHT) metamorphism. These granulites also experienced partial melting and occur as lenses within marbles. Petrographic observations and quantitative phase equilibria modeling reveal clockwise PT paths, involving an inferred HP stage followed by decompressional, medium-pressure, granulite-facies metamorphism and subsequent cooling. The HP assemblage of garnet + clinopyroxene + plagioclase + K-feldspar ± amphibole ± quartz ± rutile indicates PT conditions of 840–980 °C and 12–17 kbar. This was followed by post-peak, near-isothermal decompression with the development of orthopyroxene + clinopyroxene + plagioclase + K-feldspar + garnet + amphibole + ilmenite at 850–960 °C and 7–10 kbar, resulting in the development of orthopyroxene rims on resorbed garnet. Pyroxene and ternary feldspar thermometry yielded high temperatures of ~1150 °C and 1055–1087 °C at 10 kbar, respectively, which constrain the minimum crystallization temperatures of the igneous protoliths. The host and lamellae of the pyroxene and ternary feldspar are relict magmatic minerals/textures that survived metamorphism due to the silica-undersaturated bulk-rock conditions. Zr-in-rutile thermometry yielded temperatures of ~935 °C and 800 °C, with the former being consistent with the predicted peak metamorphic temperatures. Small amounts of melts (up to 5%) were generated during decompression of the Bengbu mafic granulites. The generated partial melts were mainly (quartz) monzonite at 900–920 °C, and the silica contents of the melts were controlled by the quartz stability field in PT pseudosections. The partial melts were enriched in Na and strongly depleted in Fe–Mg at the peak pressure of ~14 kbar and 920 °C, and later evolved to Fe–Mg-rich and high-K compositions during decompression. The melt compositions in the studied rocks are similar when the pressures reached ~9 kbar. The modal proportion of amphibole increased as the melt H2O content decreased at lower pressures, indicating that the limited H2O remaining in the host rocks was consumed to produce amphibole. U–Pb geochronology of zircon containing inclusions of clinopyroxene, plagioclase, and apatite constrains the timing of metamorphism to 1930–1840 Ma, as is the case for HP granulites from Shandong, Liaoning, and southern Jilin in the central and northeastern Jiao–Liao–Ji Belt. The Wuhe HP–UHT mafic granulites were ultimately sourced from upwelling asthenosphere-derived magma at ~2.1 Ga, which intruded and crystallized at shallower depths. The igneous protoliths were then buried to middle–lower crustal levels and experienced HP–UHT granulite-facies metamorphism and partial melting at 1.95–1.90 Ga related to continental subduction and overthickening. The HP–UHT mafic granulites were rapidly exhumed at ~1.85 Ga and generated small volumes of (quartz) monzonite during decompression. The newly discovered Paleoproterozoic HP–UHT mafic granulites associated with partial melting suggest that the continent materials were deeply subducted to the lower crustal levels and that additional heating was not involved. The finding of the HP–UHT granulites, together with the widespread distributions of the granulite-facies metamorphic rocks and the determination of the clockwise PTt paths, reveal that the Paleoproterozoic Jiao–Liao–Ji orogenic belt extends at least 1000 km, starting from southern Jilin, passing through the southeastern Liaoning and Jiaobei terranes, and elongating to the Bengbu area in Anhui.  相似文献   

18.
The Central Asian Orogenic Belt (CAOB) is one of the largest accretionary collages in the world, and records a prolonged sequence of subduction‐accretion and collision processes. The Tarim Craton is located at the southernmost margin of the CAOB. In this study, the discovery of early Palaeozoic high‐pressure (HP) granulites from the Dunhuang block in the northeastern Tarim Craton is reported, and these rocks are characterized through detailed petrological and geochronological studies. The peak mineral assemblage of the HP mafic granulite is garnet + clinopyroxene + plagioclase + quartz + rutile, which is overprinted by amphibolite facies retrograde metamorphic assemblages. The calculated P–T conditions of the peak metamorphism are ~1.4–1.7 GPa and ~800 °C. The retrograde P–T conditions are ~0.7 GPa and ~700 °C. The metamorphic zircon grains from the HP mafic granulite show homogeneous CL‐images, low Th/U ratios and flat HREE patterns and yield a weighted mean 206Pb/238U age of 444 ± 5 Ma. The metamorphic zircon grains from the associated kyanite‐bearing garnet gneiss and garnet‐mica schist show a similar 206Pb/238U age of 429 ± 3 and 435 ± 4 Ma, respectively. The c. 440–430 Ma age is interpreted to mark the timing of HP granulite facies metamorphism in the Dunhuang block. The results from this study suggest that the Dunhuang block experienced continental subduction prior to the early Palaeozoic collisional orogeny between the northeastern Tarim Craton and the southern CAOB, and the Dunhuang area could be considered as the southward extension of the CAOB. It is suggested that the continental collision in the eastern part involving the Dunhuang block of the southern CAOB may have occurred c. 120 Ma earlier than in the western part involving the Tianshan orogen.  相似文献   

19.
Pelitic schists from contact aureoles surrounding mafic–ultramafic plutons in Westchester County, NY record a high‐P (~0.8 GPa) high‐T (~790 °C) contact overprint on a Taconic regional metamorphic assemblage (~0.5 GPa). The contact metamorphic assemblage of a pelitic sample in the innermost aureole of the Croton Falls pluton, a small (<10 km2) gabbroic body, consists of quartz–plagioclase–biotite–garnet–sillimanite–ilmenite–graphite–Zn‐rich Al‐spinel. Both K‐feldspar and muscovite are absent, and abundant biotite, plagioclase, sillimanite, quartz and ilmenite inclusions are found within subhedral garnet crystals. Unusually low bulk‐rock Na and K contents imply depletion of alkalic components and silica through anatexis and melt extraction during contact heating relative to typical metapelites outside the aureole. Thermobarometry on nearby samples lacking a contact overprint yields 620–640 °C and 0.5–0.6 GPa. In the aureole sample, WDS X‐ray chemical maps show distinct Ca‐enriched rims on both garnet and matrix plagioclase. Furthermore, biotite inclusions within garnet have significantly higher Mg concentration than matrix biotite. Thermobarometry using GASP and garnet–biotite Mg–Fe exchange equilibria on inclusions and adjacent garnet host interior to the high‐Ca rim zone yield ~0.5 ± 0.1 GPa and ~620 ± 50 °C. Pairs in the modified garnet rim zone yield ~0.9 ± 0.1 GPa and ~790 ± 50 °C. Thermocalc average P–T calculations yield similar results for core (~0.5 ± ~0.1 GPa, ~640 ± ~80 °C) and rim (~0.9 ± ~0.1 GPa, ~800 ± ~90 °C) equilibria. The core assemblages are interpreted to record the P–T conditions of peak metamorphism during the Taconic regional event whereas the rim compositions and matrix assemblages are interpreted to record the P–T conditions during the contact event. The high pressures deduced for this later event are interpreted to reflect loading due to the emplacement of Taconic allochthons in the northern Appalachians during the waning stages of regional metamorphism (after c. 465 Ma) and before contact metamorphism (c. 435 Ma). In the absence of contact metamorphism‐induced recrystallization, it is likely that this regional‐scale loading would remain cryptic or unrecorded.  相似文献   

20.
The Upper Units of the allochthonous complexes of the NW Iberian Massif constitute a terrane with continental affinity. They represent the vestiges of a Cambrian magmatic arc developed in the periphery of Gondwana (West African Craton) which was involved in the Devonian Variscan collision, undergoing high-P, high-T metamorphism. This includes ultramafic rocks, high-P mafic rocks (eclogites and granulites) and high-P migmatitic paragneisses. The latter rocks show an extensive migmatization with the leucosomes oriented parallel to the regional foliation. The migmatitic paragneisses are composed of garnet, kyanite, biotite, quartz, plagioclase, K-feldspar, rutile and Ti-hematite. Thermodynamic modelling using the measured bulk composition in the NCKFMASTHO system indicates metamorphic peak conditions of ~15 kbar and ~800 to 835°C, followed by a significant cooling. The prograde evolution is assessed by means of a melt-reintegration approach, using the composition of the garnet and its inclusions. An appropriate composition of liquid is added to the measured bulk composition to emulate the pre-melting bulk composition. Modelling of this melt-reintegrated composition allows to identify a colder high-P episode below ~500°C. Zircon crystals extracted from the leucosomes show overgrowths crystallized from the partial melt at c. 389 Ma (U–Pb system). The P–T–t path proposed reveals a subduction of the peri-Gondwanan arc-derived section down to mantle depths. An isobaric heating stage occurred as a result of residence at great depths and/or inception of a transient oceanic basin at c. 395 Ma. The ensuing near-isothermal exhumation occurred due to the extension related to the inception of the basin, reaching the thermal peak shortly before c. 389 Ma. Subsequent cooling is related to the underthrusting of colder oceanic and transitional crust below the HP-HT Upper Units.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号