首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Abstract: The Paleoproterozoic Lüliang Metamorphic Complex (PLMC) is situated in the middle segment of the western margin of the Trans-North China Orogen (TNCO), North China Craton (NCC). As the most important lithological assemblages in the southern part of the PLMC, Guandishan granitoids consist of early gneissic tonalities, granodiorites and gneissic monzogranites, and younger gneissic to massive monzogranites. Petrochemical features reveal that the early gneissic tonalities and granodiorites belong to the medium-K calc-alkaline series; the early gneissic monzogranites are transitional from high-K calc-alkaline to the shoshonite series; the younger gneissic to massive monzogranites belong to the high-k calc-alkaline series, and all rocks are characterized by right-declined REE patterns and negative Nb, Ta, Sr, P, and Ti anomalies in the primitive mantle normalized spidergrams. SHRIMP zircon U–Pb isotopic dating reveals that the early gneissic tonalities and granodiorites formed at ~2.17 Ga, the early gneissic monzogranites at ~2.06 Ga, and the younger gneissic to massive monzogranites at ~1.84 Ga. Sm–Nd isotopic data show that the early gneissic tonalities and granodiorites have εNd(t) values of +0.48 to ?3.19 with Nd-depleted mantle model ages (TDM) of 2.76–2.47 Ga, and early gneissic monzogranites have εNd(t) values of ?0.53 to ?2.51 with TDM of 2.61–2.43 Ga, and the younger gneissic monzogranites have εNd(t) values of ?6.41 to ?2.78 with a TDM of 2.69–2.52 Ga.These geochemical and isotopic data indicate that the early gneissic tonalities, granodiorites, and monzogranites were derived from the partial melting of metamorphosed basaltic and pelitic rocks, respectively, in a continental arc setting. The younger gneissic to massive monzogranites were derived by partial melting of metamorphosed greywackes within the continental crust. Combined with previously regional data, we suggest that the Paleoproterozoic granitoid magmatism in the Guandishan granitoids of the PLMC may provide the best geological signature for the complete spectrum of Paleoproterozoic geodynamic processes in the Trans-North China Orogen from oceanic subduction, through collisional orogenesis, to post-orogenic extension and uplift.  相似文献   

2.
The early Mesozoic marked an important transition from collisional orogeny to post-orogenic extension at the northern margin of the North China Craton(NCC). In this study, we undertook zircon U-Pb dating and whole-rock majorand trace-element geochemical analyses of early Mesozoic granitic rocks in the Chifeng area to establish their geochronological framework, petrogenesis, and implications for the tectonic evolution of the eastern Central Asia Orogenic Belt(CAOB). Zircon U-Pb dating results show that these rocks were emplaced in three stages during the Triassic:(1) syenogranites during 250–248 Ma,(2) granodiorites during 244–243 Ma, and(3) monzogranites and granodiorites during 232–230 Ma. These Triassic granitoids belong to the high-K calc-alkaline series and are evolved I-type granites. They have high SiO_2 and low Mg O contents with enrichments in light rare-earth elements, Zr, Hf, Rb, Th, and U, and depletions in Ba, Nb, Ta, Sr, and Eu. These geochemical data indicate that the granitoids were derived from partial melting of a lower-crustal source under relatively low-pressure conditions and subsequently underwent extensive fractional crystallization. Considering both the geochemical data and regional geological information, we propose that the 250–248 Ma syenogranites were emplaced in an extensional environment linked to slab break-off after closure of the Paleo-Asian Ocean(PAO) along the Solonker-Xra Moron-Changchun suture zone. The 244–243 Ma granodiorites were formed in a compressional orogenic setting during collision between the Erguna-Xing'an-Songliao composite block and the NCC. The 232–230 Ma granodiorites and monzogranites were emplaced during the transition from compressional orogeny to post-orogenic extension. Overall, the early Mesozoic tectonic evolution of the Chifeng area can be divided into three main stages:(1) closure of the Paleo-Asian Ocean and extension related to slab break-off during the Early Triassic;(2) continuous collisional compression during the Middle Triassic after closure of the PAO; and(3) post-orogenic extension during the Late Triassic, most probably due to lithospheric delamination after amalgamation of the Erguna-Xing'an-Songliao composite block and the NCC.  相似文献   

3.
Xiba granitic pluton is located in South Qinling tectonic domain of the Qinling orogenic belt and consists mainly of granodiorite and monzogranite with significant number of microgranular quartz dioritic enclaves. SHRIMP zircon U–Pb isotopic dating reveals that the quartz dioritic enclaves formed at 214±3 Ma, which is similar to the age of their host monzogranite (218±1 Ma). The granitoids belong to high-K calc-alkaline series, and are characterized by enriched LILEs relative to HFSEs with negative Nb, Ta and Ti anomalies, and right-declined REE patterns with (La/Yb)N ratios ranging from 15.83 to 26.47 and δEu values from 0.78 to 1.22 (mean= 0.97). Most of these samples from Xiba granitic pluton exhibit εNd(t) values of ?8.79 to ?5.38, depleted mantle Nd model ages (TDM) between 1.1 Ga and 1.7 Ga, and initial Sr isotopic ratios (87Sr/86Sr)i from 0.7061 to 0.7082, indicating a possible Meso- to Paleoproterozoic lower crust source region, with exception of samples XB01-2-1 and XB10-1 displaying higher (87Sr/86Sr)i values of 0.779 and 0.735, respectively, which suggests a contamination of the upper crustal materials. Quartz dioritic enclaves are interpreted as the result of rapid crystallization fractionation during the parent magmatic emplacement, as evidenced by similar age, texture, geochemical, and Sr-Nd isotopic features with their host rocks. Characteristics of the petrological and geochemical data reveal that the parent magma of Xiba granitoids was produced by a magma mingling process. The upwelling asthenosphere caused a high heat flow and the mafic magma was underplated into the bottom of the lower continent crust, which caused the partial melting of the lower continent crustal materials. This geodynamic process generated the mixing parent magma between mafic magma from depleted mantle and felsic magma derived from the lower continent crust. Integrated petrogenesis and tectonic discrimination with regional tectonic evolution of the Qinling orogen, it is suggested that the granitoids are most likely products in a post-collision tectonic setting.  相似文献   

4.
Mafic rocks are widespread on the Liaodong Peninsula and adjacent regions of the North China Craton. The majority of this magmatism was originally thought to have occurred during the Pre-Sinian, although the precise geochronological framework of this magmatism was unclear. Here, we present the results of more than 60 U–Pb analyses of samples performed over the past decade, with the aim of determining the spatial and temporal distribution of mafic magmatism in this area. These data indicate that Paleoproterozoic–Mesoproterozoic mafic rocks are not as widely distributed as previously thought. The combined geochronological data enabled the subdivision of the mafic magmatism into six episodes that occurred during the middle Paleoproterozoic, the late Paleoproterozoic, the Mesoproterozoic, the Late Triassic, the Middle Jurassic, and the Early Cretaceous. The middle Paleoproterozoic (2.1–2.2 Ga) mafic rocks formed in a subduction-related setting and were subsequently metamorphosed during a ca. 1.9 Ga arc–continent collision event. The late Paleoproterozoic (ca. 1.87–1.82 Ga) bimodal igneous rocks mark the end of a Paleoproterozoic tectono-thermal event, whereas Mesoproterozoic mafic dike swarms record global-scale Mesoproterozoic rifting associated with the final breakup of the Columbia supercontinent. The Late Triassic mafic magmatism is part of a Late Triassic magmatic belt that was generated by post-collisional extension. The Middle Jurassic mafic dikes formed in a compressive tectonic setting, and the Early Cretaceous bimodal igneous rocks formed in an extensional setting similar to a back-arc basin. These latter two periods of magmatism were possibly related to subduction of the Paleo-Pacific plate.  相似文献   

5.
扬子克拉通西缘康定杂岩中的片麻状花岗岩主要由英云闪长岩、花岗闪长岩、灰白色细粒二长花岗岩和少量的粉红色粗粒二长花岗岩组成.其中英云闪长岩和花岗闪长岩形成于797~795Ma,灰白色细粒二长花岗岩SHRIMP锆石定年产生一个206Pb/238U权重平均767±24Ma,被解释为该期花岗质岩浆的结晶年龄.英云闪长岩、花岗闪长岩和灰白色细粒二长花岗岩和其中的闪长岩包体表现为右斜式稀土配分模式,具有很高的(La/Yb)N比值,无Eu异常,在原始地幔标准化的多元素蜘蛛网状图上表现了明显的Nh、Ta、P和Ti负异常.而粉红色粗粒二长花岗岩却表现了平坦的稀土配分模式,具有强烈的负Eu异常和强烈的Nh、Ta、sr、P和Ti负异常,但是富集大离子亲石元素.所有这些片麻状花岗岩具有εNd(t)=-0.57~+5.67,绝大部分样品εNd(t)>0.结合地质学、岩石学、地球化学和Sm-Nd同位素特征,康定杂岩中英云闪长岩、花岗闪长岩和灰白色细粒二长花岗岩形成于来自亏损地幔的初生地壳玄武质岩石和相关的杂砂岩在高压条件下的部分熔融,而粉红色粗粒二长花岗岩的岩浆导源于表壳岩低压条件下的部分熔融.结合这些片麻状花岗岩的岩石成因和构造鉴别,表明扬子克拉通西缘康定杂岩中新元古代片麻状花岗岩形成于安第斯型活动大陆边缘.  相似文献   

6.
Late Paleozoic post-collisional granitoids are widespread in West Junggar,as well as northern Xinjiang.As a representative of those intrusions,the Jietebutiao granite occurs in the southwestern margin of the West Junggar(northwest China),and is mainly composed of mid-coarsegrained monzogranite and syenogranite.In the present study,we report the results of high-precision zircon laser-ablation-inductively-coupled plasma mass-spectrometry U-Pb dating on the Jietebutiao granite for the first time,and yield weighted mean 206Pb/238U ages of 287±9 Ma and 278±3 Ma for monzogranite and syenogranite,respectively.The Jietebutiao granite has a pronounced A-type affinity;it is metaluminous to slightly peraluminous;has a high-K calc-alkaline composition;high concentrations of Na2O + K2O,varying from 6.8 to 8.5 wt%;high FeOt/MgO;10 000a/Al ratios,a low CaO,MgO,and TiO2 content;enriched in some large ion lithophile elements(LILE,such as Rb and Th) and high field strength elements(HFSE,such as Zr,Hf,and Y);and depleted in Sr,Ba,and Ti.In addition,the granite has a relatively high rare earth element(REE) content(except for Eu), with significant negative Eu anomalies(Eu/Eu* = 0.01-0.72),and showing slight tetrad REE patterns and non-charge and radius controlled(CHARAC) trace element behavior.Petrographic,geochemical, and geochronological data suggest that the parental magma of Jietebutiao intrusions are of mixed origin,and are most probably formed by the interaction between the lower crust- and mantle-derived magmas in the Early Permian post-collisional tectonic setting.The basaltic magmas underplated and interacted with the lower crust that was dominated by deeply buried arc(and back-arc basin) series and the oceanic crust formed in the Paleozoic,and then triggered the partial melting of the juvenile lower crust,producing voluminous granitic melts and forming the Jietebutiao A2-typc monzogranites, with the lithospheric mantle progressively thinning and rifting to form A1-type granites,such as syenogranites,in the Jietebutiao pluton.This further proves the important contribution of Late Paleozoic granitic magmatism in terms of vertical crustal growth in northern Xinjiang.  相似文献   

7.
Petrological characteristics of granitic rocks related to the world large molybdenum deposits are studied. The granitoids are evaluated by Fe2O3+TiO2‐FeO+MnO‐MgO diagrams, and found to all plot to the magnetite‐series field. They are all high silica and high‐K series, but not A‐type, except for the Climax‐type porphyries and some others in the Colorado mineral belt. By‐product molybdenum contained in porphyry copper deposits, lower grade but huge tonnage, occurs with calc‐alkaline I‐type magnetite‐series granodiorite and monzogranite. Felsic intrusive rocks of the Climax mine are A‐type and are exceptionally high in trace elements such as F and Rb, which are generally enriched with W and Sn‐related granitoids that originated in crustal source rocks. The by‐product molybdenites in porphyry copper deposits appear to originate in adakitic granodiorite or monzogranite, having deep origins with the subducted slab or thickened juvenile mafic lower crust. Therefore, there is no single magma type but the magnetite series, which concentrates a large volume of molybdenum in the ore deposits.  相似文献   

8.
GRANITOIDS,VOLCANIC ROCKS AND CHERTS FROM NORTH ALTYN TAGH,NW CHINA: IMPLICATION FOR THE TECTONIC ENVIRONMENT DISCRIMINATIONtheNationalKeyProjectforBasicResearch (G19980 4 0 80 0 )andtheYoungGeologistsFoundationofthe MGMR(No.Qn979812 )  相似文献   

9.
Granitic rocks obtained during field excursions of the famed mineralized regions of the Erzgebirge, Germany (mainly tin‐bearing), and South China (mainly tungsten‐bearing) have been geochemically analyzed and their results are compared with similar (mainly tungsten‐bearing) granites in the island‐arc setting of Southwest Japan. The studied granitoids all belong to the ilmenite‐series. The collision‐related Erzgebirge granitoids are rich in K2O and P2O5, have high A/CNK ratios (1.11–1.24, i.e. S type), but are also high in Ga/Al ratio (i.e., having some A‐type characteristics). In South China, the Xihuashan granites, in contrast, are very low in P2O5, and have A/CNK slightly above 1.0 (1.01–1.05), indicative of I type granites. The (Sn‐) W‐related granites of southwest Japan have similarly low P2O5 and A/CNK ratios, indicative also of I‐type. Both in the Xihuashan and southwest Japan, the tungsten‐related granites have high whole‐rock δ18O values implying involvement of W‐rich crustal rocks. Sn and W contents of the unaltered granites are lowest in the island‐arc setting where the related Sn–W deposits are smallest in size relative to the collision and continental margin settings of the Erzgebirge and South China.  相似文献   

10.
The Guandishan granitoids consist mainly of various granitoid intrusions with different scales, including the Huijiazhuang intrusion, Shizhuang intrusion and Hengjian intrusion, which were formed between 1906 Ma and 1848 Ma. On the basis of geological and petrological characteristics, these granitoids can be classified into two groups: the earlier gneissic granodiorites and monzogranites, and the later massive leuco-monzogranites. Their geochemical and Nd isotopic features indicate that they could be derived from complicated partial melting of supracrustal rocks with an affinity of continental arc materials, such as sandy shale and pelite, and with garnet, pyroxene, hornblende and plagioclase as residual phases. Biotite, feldspar and other minerals were most likely fractionated during the magma evolution. Their source may have an affinity with continental arcs, and the granitoids could be derived from the main syn-collisional to late-orogenic tectonic environment, which may be related to the final amalgamation between the Eastern and Western continental blocks in the North China Craton.  相似文献   

11.
The widely distributed late‐collisional calc‐alkaline granitoids in the northern Arabian–Nubian Shield (ANS) have a geodynamic interest as they represent significant addition of material into the ANS juvenile crust in a short time interval (∼630–590 Ma). The Deleihimmi granitoids in the Egyptian Central Eastern Desert are, therefore, particularly interesting since they form a multiphase pluton composed largely of late‐collisional biotite granitoids enclosing granodiorite microgranular enclaves and intruded by leuco‐ and muscovite granites. Geochemically, different granitoid phases share some features and distinctly vary in others. They display slightly peraluminous (ASI = 1–1.16), non‐alkaline (calc‐alkaline and highly fractionated calc‐alkaline), I‐type affinities. Both biotite granitoids and leucogranites show similar rare earth element (REE) patterns [(La/Lu)N = 3.04–2.92 and 1.9–1.14; Eu/Eu* = 0.26–0.19 and 0.11–0.08, respectively) and related most likely by closed system crystal fractionation of a common parent. On the other hand, the late phase muscovite granites have distinctive geochemical features typical of rare‐metal granites. They are remarkably depleted in Sr and Ba (4–35 and 13–18 ppm, respectively), and enriched in Rb (381–473 ppm) and many rare metals. Moreover, their REE patterns show a tetrad effect (TE1,3 = 1.13 and 1.29) and pronounced negative Eu anomalies (Eu/Eu* = 0.07 and 0.08), implying extensive open system fractionation via fluid–rock interaction during the magmatic stage. Origin of the calc‐alkaline granitoids by high degree of partial melting of mafic lower crust with subsequent crystal fractionation is advocated. The broad distribution of late‐collisional calc‐alkaline granitoids in the northern ANS is related most likely to large areal and intensive lithospheric delamination subsequent to slab break‐off and crustal/mantle thickening. Such delamination caused both crustal uplift and partial melting of the remaining mantle lithosphere in response to asthenospheric uprise. The melts produced underplate the lower crust to promote its melting. The presence of microgranular enclaves, resulting from mingling of mantle‐derived mafic magma with felsic crustal‐derived liquid, favours this process. The derivation of the late‐phase rare‐metal granites by open system fractionation via fluid interaction is almost related to the onset of extension above the rising asthenosphere that results in mantle degassing during the switch to post‐collisional stage. Consequently, the switch from late‐ to post‐collisional stage of crustal evolution in the northern ANS could be potentially significant not only geodynamically but also economically. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
The East Kunlun Orogenic Belt(EKOB) provides an important link to reconstruct the evolution of the Proto-Tethys and Paleo-Tethys realm. The EKOB is marked by widespread Early Paleozoic magmatism.Here we report the petrology, bulk geochemistry, zircon Ue Pb dating and, Lue Hf and SreN d isotopic data of the Early Paleozoic granitic rocks in Zhiyu area of the southern EKOB. Based on the zircon U-Pb dating, these granitoids, consisting of diorite, granodiorite and monzogranite, were formed during 450 -430 Ma the Late Ordovician to Middle Silurian. The diorite and granodiorite are high Sr/Y ratio as adakitic affinities, and the monzogranite belongs to highly fractionated I-type. Their(~(87)Sr/~(86)Sr)ivalues range from 0.7059 to 0.7085, εNd(t) values from -1.6 to -6.0 and the zircon εHf(t) values show large variations from +9.1 to -8.6 with Hf model ages(T_(DM2)) about 848 Ma and 1970 Ma. The large variations of whole-rock Nd and zircon Hf isotopes demonstrate strong isotopic heterogeneity of the source regions which probably resulted from multi-phase underplating of mantle-derived magmas. Geochemical and isotopic studies proved that the diorite and granodiorite had been derived from partial melting of heterogeneous crustal source with variable contributions from ancient continental crust and juvenile components, and the monzogranites were representing fractional crystallization and crustal contamination for arc magma. The Early Paleozoic adakitic rocks and high-K calc-alkaline granitoids in the southern EKOB were likely emplaced in a continental marginal arc setting possibly linked to the southwards subduction of the Paleo Kunlun Ocean and the magma generation is linked to partial melting of thickened continental crust induced by underplating of mantle-derived magmas.  相似文献   

13.
Central Amapá, northern Brazil is located at the boundary between: (a) a northern Paleoproterozoic domain, consisting mainly of granite-greenstones terrains and (b) a southern Archean continental block (Amapá block), including an Archean basement reworked during the Transamazonian orogeny (2.26–1.95 Ga). Field investigations, Pb–Pb zircon and Sm–Nd whole rock geochronology supported by geochemical data on granitoids brought further constraints on Paleoproterozoic crustal growth in the southeastern Guyana Shield. A first magmatic episode, dated at 2.26 Ga, is marked by the crystallization of metaluminous low-K tholeiitic tonalites and quartz-diorites, which geochemical affinity with volcanic arc and association with T-MORB amphibolites suggest that they formed in a back-arc basin – island arc system. This event is coeval to the oceanic stage registered in French Guyana during the Eorhyacian (2.26–2.02 Ga). A second magmatic episode is represented by peraluminous, medium- to high-K calc-alkaline tonalite and granodiorite, which revealed some similarities with Mesorhyacian TTG rocks of French Guyana. For granitoids of both episodes, TDM and εNd values indicate the contribution of some Archean crustal component, probably by assimilation or contamination. This second magmatic episode occurred at 2.10 Ga, indicating that the period of successive calc-alkaline magmatic arcs formation may have extended until the Neorhyacian. Meanwhile, during this time, tectonic accretion by collision of the newly formed continental landmass was the prevailing process in French Guyana. The latter magmatic episode, even though poorly constrained, was registered around 2.08–2.02 Ga in central Amapá. It corresponds to the emplacement and solidification of high-K collisional granitoids, produced by partial melting of the Archean continental crust, as testified by the Archean TDM, inherited Pb–Pb zircon ages and strongly negative εNd values. Our results point toward the existence of a protracted episode of crustal growth during the Neorhyacian in the southeastern Guyana Shield. This episode has been predominantly driven by magmatic arc accretion during, at least, 160 My, along the period of 2.26–2.10 Ga. This cycle ended with diachronic closure of the oceanic basins and arc–continent collision.  相似文献   

14.
The Yangchang granite‐hosted Mo deposit is typical of the Xilamulun metallogenic belt, which is one of the important Mo–Pb–Zn–Ag producers in China. A combination of major and trace element, Sr, Nd and Pb isotope, and zircon U–Pb age data are reported for the Yangchang batholith to constrain its petrogenesis and Mo mineralization. Zircon LA‐ICPMS U–Pb dating yields mean ages of 138 ± 2 and 132 ± 2 Ma for monzogranite and granite porphyry, respectively. The monzogranites and granite porphyries are calc‐alkaline with K2O/Na2O ratios of 0.75–0.92 and 1.75–4.42, respectively. They are all enriched in large‐ion lithophile elements (LILEs) and depleted in high‐field‐strength elements (HFSEs) with negative Nb and Ta anomalies in primitive‐mantle‐normalized trace element diagrams. The monzogranites have relatively high Sr (380–499 ppm) and Y (14–18 ppm) concentrations, and the granite porphyries have lower Sr (31–71 ppm) and Y (5–11 ppm) concentrations than those of monzogranites. The monzogranites and granite porphyries have relatively low initial Sr isotope ratios of 0.704573–0.705627 and 0.704281, respectively, and similar 206Pb/204Pb ratios of 18.75–18.98 and 18.48–18.71, respectively. In contrast, the εNd(t) value (−3.7) of granite porphyry is lower than those of monzogranites (−1.5 to −2.7) with Nd model ages of about 1.0 Ga. These geochemical features suggest that the monzogranite and granite porphyries were derived from juvenile crustal rocks related to subduction of the Paleo‐Pacific plate under east China. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
Late Mesozoic granitoids are widely distributed in southern Anhui Province, southeastern China, which also contains significant W–Mo–Cu mineralization. This study presents new geochronological and geochemical data that reveal the petrogenesis and tectonic affinity of the granitoids in this region. These granitoids can be divided into a high-K calc-alkaline and peraluminous I-type granodiorites, and an alkaline and metaluminous A-type granites, with zircon U–Pb dating indicating that they formed at 150–138 and 133–124 Ma, respectively. The early stage I-type granodiorites are adakitic, enriched in the light rare earth elements, and depleted in Nb, Ta, P, and Ti. They have negative zircon εHf(t) values (–19.8 to –2.5) that correspond to Hf crustal model ages of 2.4–1.4 Ga. These early stage granodiorites were derived from partial melting of thickened Palaeoproterozoic–Mesoproterozoic lower crust. The late-stage A-type granites with strong depletion in Sr, P, and Ti, contain higher Zr, Y, and Yb contents, higher zircon εHf(t) values (–1.5 to +2.1), and younger zircon Hf model ages (1.1–1.3 Ga) than the early stage granodiorites. The geochemistry of these A-type granites indicates they were likely generated by the reworking of Mesoproterozoic to Neoproterozoic juvenile crustal material that experienced the fractional crystallization of plagioclase and accessory minerals. Combining these data with other geological data from the study area indicates that the early stage granodiorites formed in a continental arc setting, whereas the late-stage granites formed in an extensional setting associated with roll-back of the subducted Palaeo-Pacific slab. The results indicate that zircon Ce4+/Ce3+ value can provide useful insight into oxygen fugacity conditions during magmatism.  相似文献   

16.
阿尔金山北缘早古生代岩浆活动的构造环境   总被引:17,自引:0,他引:17  
阿尔金山北缘地处塔里木盆地和柴达木盆地之间的阿尔金断裂的西北,是青藏高原北部边界地区。该区花岗岩类主要形成于早古生代以来,为钙碱性岩系(碱性程度不高),发育Ⅰ型和A型两种花岗岩类,缺少S型花岗岩。早古生代与蛇绿岩伴生的双峰式火山岩系属于亚碱性系列,其中的玄武岩主要为拉斑系列,流纹岩属钙碱系列。花岗岩类构造环境分析和判别结果表明,阿尔金山北缘早古生代处在破坏性活动板块边缘,构造环境可能经历了早古生代活动陆缘的(火山)岛弧、中生代大陆造陆抬升以至新生代的后造山作用演化过程。火山岩类的构造环境分析结果表明,玄武岩类可能具有洋脊区、岛弧区和板内区各种构造环境,流纹岩类则主要处在板内区。以上分析说明早古生代"阿尔金洋"的存在。   相似文献   

17.
《地学前缘(英文版)》2020,11(5):1763-1787
The southern portion of the Sao Francisco Palaeocontinent in Brazil is denoted by Archean nuclei and Paleoproterozoic magmatic arcs that were amalgamated during Siderian to Orosirian orogenic processes(ca.2.4-2.1 Ga).New isotopic U-Pb in zircon and Sm-Nd whole rock combined with major and trace element composition analyses constrain the crystallization history of the Neoarchean Piedade block(at ca.2.6 Ga) and the Paleoproterozoic Mantiqueira Complex(ca.2.1-1.9 Ga).These therefore display quite different magmatic histories prior to their amalgamation at ca.2.05 Ga.Sm-Nd and Rb-Sr isotopes imply a mixed mantle-crustal origin for the samples in both units.A complete Palaeoproterozoic orogenic cycle,from subduction to collision and collapse,is recorded in the Piedade Block and the Mantiqueira Complex.Rhyacian to Orosirian subduction processes(ca.2.2-2.1 Ga) led to the generation of coeval(ca.2.16 Ga)TTG suites and sanukitoids,followed by late(2.10-2.02 Ga) high-K granitoids that mark the collisional stage.The collisional accretion of the Mantiqueira Complex against the Piedade Block at 2.08-2.04 Ga is also recorded by granulite facies metamorphism in the latter terrane,along the Ponte Nova suture zone.The collisional stage was closely followed by the emplacement of within-plate tholeiites at ca.2.04 Ga and by alkaline rocks(syenites and enriched basic rocks) at ca.1.98 Ga,marking the transition to an extensional tectonic regime.The discovery of two episodes of TTG and sanukitoid magmatism,one during the Neoarchean in the Piedade Complex and another during the Rhyacian in the Mantiqueira Complex,indicates that the onset of subduction-related melting of metasomatized mantle was not restricted to Neoarchean times,as generally believed,but persisted much later into the Paleoproterozoic.  相似文献   

18.
The Itapetim Complex is a multiple facies intrusion of porphyritic monzogranite hosting isolated, or swarms of, dioritic enclaves and cut by late dikes of biotite granodiorite. It is a syn-tectonic intrusion in relation to the D3 regional deformation phase of the Brasiliano Orogeny. The complex has contacts with metagreywackes and gneissic granites associated with the Mesoproterozoic Cariris Velhos event and, to the northwest, with a belt of gneisses of Paleoproterozoic ages. At least two different sources seem to be involved in the evolution of the Itapetim Complex. The diorite source appears to be a depleted mantle that underwent some small degree of mixture with a Paleoproterozoic enriched mafic crust. The monzogranite source is probably metagreywacke, a mixture of enriched crust of Paleoproterozoic age and volcanic rocks related to the Cariris Velhos event. The granodiorites were generated by partial melting of a source compositionally similar to those suggested for the monzogranite. U–Pb in zircon gave a crystallization age of 638±4.9 Ma for the porphyritic monzogranites and associated mafic rocks. The granodiorite dikes represent a late magmatic event, under intermediate fO2 conditions. The dikes, intruded into brittle fractures, are probably related to 570 Ma intrusions within the Pajeú Paraı́ba Terrane.  相似文献   

19.
辽东黄花甸地区古元古代花岗质岩浆作用及其地质意义   总被引:5,自引:4,他引:1  
胶-辽-吉古元古代造山/活动带的辽东黄花甸地区出露大量古元古代花岗质岩石,前人将该区的花岗质岩石统称为花岗质混杂岩。本文通过详细的野外地质调查和室内综合研究,将该套花岗质混杂岩解体为时代及性质完全不同的两类花岗岩——黑云母二长花岗岩和花岗闪长岩。其中黑云母二长花岗岩具有块状、条痕状、片麻状的不同构造类型,均显示富SiO_2(72.37%~77.44%)、贫Al_2O_3(11.69%~13.21%)、富K_2O(3.97%~5.11%)的特征,Na_2O/K_2O=0.64~1.08,TiO_2含量在0.18%~0.34%之间,MnO、MgO和P_2O_5的含量较低,分别为0.01%~0.07%、0.12%~0.32%和0.01%~0.06%,铝饱和指数A/CNK集中分布在1.33~1.45之间,A/NK在1.49~2.60之间,属于过铝质高钾钙碱性系列;微量元素Sr、Ba、Ti、P强烈亏损,具有明显的Eu负异常,具有A型花岗岩的特征。黑云母二长花岗岩的锆石大部分为具有清晰震荡环带结构的岩浆锆石,从3个样品获得LA-ICP-MS锆石U-Pb谐和年龄分别为2185±29Ma、2183±13Ma、2166±10Ma,据目前所获得南辽河群碎屑锆石年龄(1.95~2.15Ga),本文认为黑云母二长花岗岩的侵位时代要早于南辽河群地层沉积的时间,构成了南辽河群地层沉积的基底。花岗闪长岩呈岩枝状侵入黑云母二长花岗岩和里尔峪组地层中,富SiO_2(72.54%~74.31%)、Al_2O_3(15.01%~16.17%),全碱(K_2O+Na_2O)平均7.77%,相对富钠(Na_2O/K_2O=1.27~2.82),贫钙、镁,MgO平均为0.26%,CaO平均为1.59%,Mg#值平均为54.0,铝饱和指数A/CNK集中分布在1.61~1.78之间,A/NK在1.49~2.60之间,属于过铝质钙碱性系列,具明显的Eu正异常,Y/Yb低,Sr/Y高,而且强烈亏损Th、Ta、Nb、Ti等高场强元素,富集Ba、K、Rb、Sr等低场强元素,具有埃达克质花岗岩的特征。花岗闪长岩的锆石大部分为具有清晰震荡环带结构的岩浆锆石,从2个样品获得LAICP-MS锆石U-Pb年龄分别为1995±18Ma、1995±13Ma。可以推断花岗闪长岩的侵位时代为2.0Ga左右。本文认为具有A型特征的黑云二长花岗岩是陆块内部拉伸减薄-裂解过程中下部地壳部分熔融的产物,具有埃达克质特征的花岗闪长岩是俯冲过程中所形成火山弧或活动大陆边缘岩浆活动的产物。以上研究表明胶-辽-吉古元古代造山/活动带可能经历了在2.2~2.15Ga左右的拉伸裂解过程和2.0Ga左右俯冲挤压的构造演化过程。  相似文献   

20.
The Late Triassic igneous rocks in the Yidun terrane can provide vital insights into the evolution of Plaeo-Tethys in western China. We present new zircon U-Pb, whole-rock geochemistry, and Sr-Nd-Pb-Hf isotopic data for the Litang biotite monzogranites, Yidun terrane. The biotite monzogranites have a zircon U-Pb age of 206.1±1.0 Ma(MSWD=1.9,n=30), which indicates Late Triassic magmatism. The biotite monzogranites display I-type affinity, high Na_2O(3.38-3.60 wt%) contente,medii SiO_2(67.12-69.13 wt%), and low P_2 O_5 contents(0.10~0.12 wt%). They enriched in Rb,and Ba and depleted in Nb and Ta, with negative Eu anomalies(Eu/Eu*=0.74—0.81). They have evolved Sr-Nd-Pb-Hf isotopic composition, i.e.,(~(87) Sr/~(86 )Sr)i=0.714225 to 0.714763, negative ?_(Nd(t)) values of -2.0 to-2.6 with two-stage Nd model ages ranging from 1.01 to 1.05 Ga, negative ?_(Ht)(t)) values o f-3.4 to-4.1 with two-stage Hf model ages of 1.85 to1.88 Ga, suggesting a matured crustal sources. Their low Al_2O_3/TiO_2 ratios and medium Cao/Na_2O ratios, medium Mg~# and SiO_2 contents, low [molar Al_2O_3/(MgO+FeO~T)] values, and high [molar Cao/(MgO+FeO~T)] values indicate that the Litang biotite monzogranite was formed by partial melting of metabasaltic rocks. Based on the previous studies, we propose that the Litang biotite monzogranite derived from the westward subduction and closure of the Ganzi-Litang ocean during the Late Triassic-The mantle wedge-derived mafic melts provided sufficient heat for partial melting of ancient metabasalt protolith within the middle-lower crust.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号