首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
舒小超  刘琰  李德良  贾玉衡 《岩石学报》2019,35(5):1372-1388
霓长岩化作用是指碳酸岩(或碱性岩)流体对围岩的交代蚀变,它是碳酸岩型稀土(REE)矿床常见的蚀变类型,其所形成的岩石即为霓长岩。对霓长岩的深入研究可以鉴别碳酸岩体的存在,厘定碳酸岩岩浆(或流体)的地球化学性质及源区特征,这对于找寻碳酸岩相关的矿产资源(尤其是REE)以及剖析矿床成因机制有着重要的地质意义。川西冕宁-德昌稀土矿带是中国最重要的轻稀土矿带之一,包括牦牛坪超大型、大陆槽大型、木落寨和里庄中小型REE矿床以及一系列矿点。REE矿化与碳酸岩-碱性岩杂岩体密切相关,受一系列新生代走滑断裂的控制。该矿带广泛发育霓长岩化蚀变带,尤以大陆槽及里庄矿床为显著。岩相学分析表明,大陆槽和里庄霓长岩中的矿物多呈他形粒状结构,主要由长石、黑云母、霓辉石以及少量副矿物组成;主微量元素分析表明,霓长岩的碱质(K_2O+Na_2O)、MgO、Fe_2O_3T含量较高,且富集REE、Sr、Ba等微量元素;电子探针分析表明,霓长岩中的霓辉石Fe OT含量较高,长石Na_2O及K_2O含量较高,Ca O含量极低。An-Ab-Or三角图解显示长石主要为透长石和钠长石,属碱性长石系列;黑云母的地球化学成分图解表明云母的成因类型为交代型且具有相对富镁、贫铁等特征,属镁质黑云母。霓长岩化作用的交代流体含有较高的CO_2组分,且富含碱质、Mg、Fe及REE、Sr、Ba等元素。对比霓长岩与原岩的主微量元素发现:相比于正长岩原岩,在主量元素中,霓长岩的Fe、Mg、Ca等元素含量增加,Si、Al等元素含量降低;微量元素中,霓长岩的REE及Sr、Ba等元素显著增加。这意味着交代流体含有的Fe_2O_3T、MgO、CaO等组分在霓长岩化过程中被带进了围岩,而SiO_2和Al_2O_3等从围岩中被逐出。大陆槽及里庄矿区发育的角砾岩指示了矿区曾经历过频繁的角砾岩化事件,这提高了霓长岩作用的强度,并且为矿脉的穿插及REE矿物的沉淀提供了空间。在霓长岩化过程中,流体-围岩的组分交换反复发生,这削弱了REE络合物的稳定性,伴随多期次的热液活动及构造事件,最终完成REE活化→迁移→沉淀的过程。  相似文献   

2.
During alkali metasomatism of the country-rock associated with ijolite-carbonatite complexes the development of sodic amphibole and/or pyroxene is characteristic. In this paper, some new chemical analyses of these minerals, together with published analyses from fenites of Kenya, Uganda and Tanzania, include those of co-existing pairs of amphibole and pyroxene. The common amphiboles of the fenites are magnesioarfvedsonites with 100 Mg: Mg+Fe+Mn ranging from 67 to 36. They co-exist with aegirines having 0.75 to 0.89 ions Fe+3. Most of these minerals are poor in Ca; co-existing pairs tend to show corresponding increases in Ca and in Fe+2. In the syenitic fenites of Tororo and Budeda, considered to have formed at higher temperatures, the stable mineral is aegirine-augite. New analyses of richterite, magnesioarfvedsonite and aegirine from carbonate-rich rocks are also presented, and the relation between fenites and carbonatites is discussed.  相似文献   

3.
The crystal structure and chemical composition of crystals of (Mg1?x Cr x )(Si1?x Cr x )O3 ilmenite (with x = 0.015, 0.023 and 0.038) synthesized in the model system Mg3Cr2Si3O12–Mg4Si4O12 at 18–19 GPa and 1,600 °C have been investigated. Chromium was found as substitute for both Mg at the octahedral X site and Si at the octahedral Y site, according to the reaction Mg2+ + Si4+ = 2Cr3+. Such substitutions cause a shortening of the <X–O> and a lengthening of the <Y–O> distances with respect to the values typically observed for pure MgSiO3 ilmenite and eskolaite Cr2O3. Although no high Cr contents are considered in the pyrolite model, Cr-bearing ilmenite may be the host for chromium in the Earth’s transition zone. The successful synthesis of ilmenite with high Cr contents and its structural characterization are of key importance because the study of its thermodynamic constants combined with the data on phase relations in the lower-mantle systems can help in the understanding of the seismic velocity and density profiles of the transition zone and the constraining composition and mineralogy of pyrolite in this area of the Earth.  相似文献   

4.
Anomalous and natural concentrations of Cr6+, occasionally exceeding the permitted limit for human consumption (0.05 mg/L), have been detected in groundwater in the northwestern region of the state of São Paulo. As part of a water-rock interaction investigation, this article describes the chemical and mineralogical characterization of rock samples taken from boreholes in the municipality of Urânia, with the objective of identifying Cr-bearing minerals and determining how chromium is associated with these minerals. Rock sample analysis were performed using X-ray Fluorescence, X-ray Diffraction, Scanning Electron Microscopy, electron microprobe and sequential extraction techniques. Chemical analyses indicated that the quartzose sandstones show a geochemical anomaly of chromium, with an average content of 221 ppm, which is higher than the reported chromium content of generic sandstones (35 ppm). Diopside was identified as the primary Cr-bearing mineral potentially subject to weathering processes, with a chromium content of up to 1.2% as Cr2O3. Many of the diopside grains showed dissolution features, confirming the occurrence of weathering. Sequential extraction experiments indicated that 99.3% of the chromium in samples is tightly bonded to minerals, whereas 0.24% is weakly bonded via adsorption. Assuming hypothetically that all adsorbed chromium is released via desorption, the theoretical Cr concentration in water would be one order of magnitude higher than the concentrations of Cr6+ detected in groundwater.  相似文献   

5.
The Khaluta carbonatite deposit located in the western Transbaikal region was formed during the Late Mesozoic rifting in the southern framework of the Siberian Craton. Carbonatite is associated with shonkinite and syenite and is accompanied by fenitization. The composition of mica in more than 160 samples of country rocks, carbonatites, silicate rocks, and fenites was studied. The Fe3+ and Fe2+ contents, as well as oxygen isotopic composition, were determined. The Mg and Fe contents increase, whereas the Ti and Al contents decrease in micas when passing from silicate rocks and fenites to carbonatites. Micas from carbonatites are depleted in Al, enriched in Fe3+, and distinguished by high Si and F contents. According to our calculations, in some cases Al replaces Si in the tetrahedral site instead of replacement of Fe3+ as is characteristic of tetraferriphlogopite. Formally, the mica from carbonatites falls within the tetraferriphlogopite field, but typical inverse pleochroism is not always observable. The δ18O values of micas from carbonatite, shonkinite, syenite, and fenite are similar to those of mantle-derived silicate minerals. The δ18O values in the minerals coexisting with phlogopite testify to their isotopic equilibrium and make it possible to calculate the crystallization temperature of carbonatite.  相似文献   

6.
The effect of crystal structure relaxation in oxygen-based Cr3+-containing minerals on the crystal field stabilization energy (CFSE) is considered. It is shown that the dependence of \textCFSE\textCr 3+ {\text{CFSE}}_{{{\text{Cr}}^{ 3+ } }} , which is found from optical absorption spectra, on the average interatomic distances is described by the power function with a negative exponent c \mathord
/ \vphantom c [`(R)]n [`(R)]n {c \mathord{\left/ {\vphantom {c {\bar{R}^{n} }}} \right. \kern-\nulldelimiterspace} {\bar{R}^{n} }} , where n approaches 5, as predicted theoretically, for pure Cr3+ compounds, but decreases to 1.0–1.5 for Cr3+-containing oxide and silicate solid solutions. The deviation of the experimental dependence for solid solutions from the theoretical curve is due to structure relaxation, which tends to bring the local structure of Cr3+ ions closer to the structure in the pure Cr compound, thus producing changes in interatomic distances between the nearest neighbors with respect to those in the average structure determined by X-ray diffraction. As a consequence, the mixing enthalpy of Cr3+-bearing solid solutions can be represented by the sum of contributions from lattice strain and CFSE. The latter contribution is most often negative in sign and, therefore, brings the Al–Cr solid solutions close to an ideal solid solution. It is supposed that the increased Cr content in minerals from deep-seated mantle xenoliths and mineral inclusions in diamonds results from the effect of \textCFSE\textCr 3+ {\text{CFSE}}_{{{\text{Cr}}^{ 3+ } }} enhanced by high pressure.  相似文献   

7.

The chemical composition and origin of major REE minerals of aegirine, aegirine–arfvedsonite, arfvedsonite, and annite–riebeckite–arfvedsonite granites are studied for the Katugin Ta–Nb–Zr–Y deposit with cryolite in the southwestern part of the Aldan Shield. The REE mineralization of granites includes two types: (i) disseminated grains of pyrochlore and, to a lesser extent, other Nb–Ln oxides, Ln phosphates, and Ln–F carbonates in association with zircon, ilmenite, sphalerite, and other minerals and (ii) interstitial intergrowths of Ln fluorides.

  相似文献   

8.
High-alumina fenites in the Mont Saint-Hilaire alkaline complex, Québec, Canada, form bodies at the contact of peralkaline nepheline syenite. Fenites are subdivided into four types: corundum-spessartine-biotite-feldspar, muscovite-corundum-hercynite-biotite-feldspar, carbonated muscovite-biotite-hercynite-feldspar, and spessartine-hercynite-feldspar. Accessory minerals of the ilmenite-pyrophanite series, columbites, zircon, thorite, pyrrhotite, Fe, Mn, Mg, Ca, Ba, and REE carbonates, uedaite-(Ce), etc. are identified. Three stages are suggested in the formation of these rocks. In mineralogy and geochemistry, the Mont Saint-Hilaire high-alumina fenites are similar to Al-rich fenites replacing xenoliths in the Khibiny alkaline complex, Russia. In both cases, fenites are related to peralkaline rocks and replace high-alumina protoliths: granite at Mont Saint-Hilaire and metapelites in the Khibiny Mountains. These fenites are regarded as a specific type of fenites with rock-forming Mg-depleted hercynite.  相似文献   

9.
New members of the crichtonite mineral series are described in which K, Ba, Ca and REE are in significant concentrations (5 wt% oxides) filling the A formula position in AM21O38. These phases are chromium (16 wt% Cr2O3) titanates (58 wt% TiO2) enriched in ZrO2 (5 wt%) and constitute a mineral repository for refractory and large ion lithophile elements in the upper mantle. The mineral senes coexists with Mg-Cr-ilmenite, Nb-Cr-rutile, and Ca-Cr (NbZr) armalcolite that have equally unusual chemistries. Kimberlitic crichtonites are depleted in the intermediate lanthanides but highly enriched in LREE and HREE with chondrite normalized abundances of 103 to 105. Crichtonite, armalcolite, and Nb-Cr-rutile occupy a compositional range in TiO2 contents bridging the gap between ilmenite and rutile, two minerals having a widespread distribution in kimberlites and mantle-derived nodule suites.In common with other associations, and based on similarities in mineral chemistry, it is concluded that these minerals formed at P = 20–30 kb, 900–1100°C by reaction of peridotite with metasomatizing fluids. Kimberlitic crichtonite may be expressed as spinel + Cr-ferropseudobrookite, and armalcolite is equivalent to Cr-geikielite + rutile in the system (FeMg)-TiO2-Cr2O3. This system contains a number of Cr-Ti compounds not found as minerals but it is proposed that the ubiquitous occurrence of ilmenite intergrowths in kimberlitic rutile results from decomposition of high pressure αPbO2-type crystallographic shear structures. The new minerals have exotic chemistries and the high K-affinities broaden the scope for the origin of alkalic rocks, the generation of highly potassic magmas in the upper mantle, and suggest that alkali metasomatism may be pervasive.  相似文献   

10.
Plants and soils from central Euboea, were analyzed for Cr(totai), Cr(VI), Ni, Mn, Fe and Zn. The range of metal concentrations in soils is typical to those developed on Fe-Ni laterites and ultramafic rocks. Their bioavailability was expressed in terms of concentrations extractable with EDTA and 1 M HNO3, with EDTA having a limited effect on metal recovery. Cr(VI) concentrations in soils evaluated by alkaline digestion solution were lower than phytotoxic levels. Chromium and Ni — and occasionally Zn — in the majority of plants were near or above toxicity levels. Cr(VI) concentrations in plants were extremely low compared to total chromium concentrations. Cr(total) in ground waters ranged from <1 μg.L?1 to 130 μg.L?1, with almost all chromium present as Cr(VI). With the exception of Cr(total) and in some cases Zn, all elements were below regulatory limits for drinking water. On the basis of Ca, Mg, Cr(total) and Si ground waters were classified into three groups: Group(I) with Cr concentrations less than 1 μg.L?1 from a karstic aquifer; Group(II) with average concentrations of 24 μg.L?1 of Cr and relatively high Si associated with ophiolites; and Group(III) with Cr concentrations of up to 130 μg.L?1, likely due to anthropogenic activity. Group(III) is comparable to ground waters from Assopos basin, characterized by high Cr(VI) concentrations, probably due to industrial actrivities.  相似文献   

11.
Based on the results of more than 600 electron microprobe analyses of 25 minerals the distribution pattern of the Cr6+ impurity in vanadates, phosphates, and arsenates collected in oxidation zones of six ore deposits of the Urals was studied. Among them are Pb minerals of the brackebuschite, apatite, adelite, and tsumcorite groups and alunite supergroup, as well as carminite, cornwallite, and bayidonite. Vanadates and arsenates with brackebuschite-type structures show a high affinity to Cr6+. The maximum content of the Cr6+ impurity is characteristic of minerals with specified Fe3+ trivalent cations (ferribushmakinite, arsenbrackebuschite, and gartrellite) or Al3+ (plumbogummite and bushmakinite). The prevailing scheme of isomorphous substitution, according to which chromium enters into the compositions of these minerals, is heterovalent: Cr6+ + M 2+Т 5+ + M 3+ (where Т = V, As, P; M 3+ = Fe, Al; M 2+ = Сu, Zn), whereas the role of isovalent substitutions Cr6+ → S6+ and Cr6+ → Mo6+ in oxosalts that formed in mineral occurrences of the Urals is insignificant.  相似文献   

12.
Olivine phenocrysts in microporphyritic xenoliths in the St. Mesmin chondrite (LL-breccia) show parallel rimward variations of FeO (10 to > -30wt.%), CaO (0·1–0·4%), MnO (0·2–0·8%) and Cr2O3 (0·2–0·7%). Aluminum is near background levels and does not vary systematically with iron. Titanium, sodium and nickel are below the limit of detection. Covariation of Fe and Cr in this olivine distinguishes it from the olivines in lunar mare basalts, in which Cr varies inversely with Fe.Transmission electron microscopy of the St. Mesmin olivine suggests that it is free of submicroscopic inclusions and exsolution lamellae and that the chromium present occurs in solid solution in the olivine. Charge balance and ionic radius considerations suggest that it occurs as Cr2+, whose effective ionic radius is nearly identical to that of Mn2+.The different Fe-Cr relationships observed in the lunar basaltic and St. Mesmin olivines reflect different crystallization sequences. Chromian spinel coprecipitated with olivine in the lunar basalts, reducing the activity of chromium in the melt and leading to the observed anticorrelation of Fe and Cr in olivine (butler, 1972). By contrast, olivine precipitated first in the St. Mesmin microporphyry and was the only solid phase present until more than half of the rock had crystallized. Parallel variation of Fe and Cr reflects crystallization from a melt in which the activity of chromium was increasing.  相似文献   

13.
Subsolidus phase relations have been determined in the systems SiO2-Cr-O and MgO-SiO2-Cr-O in equilibrium with metallic Cr, at 1100 to 1500℃ and 0 to 2.88 GPa. The results show that there are no ternary phases in the SiO2-Cr-O system at these conditions, i.e., only the assemblage eskolaite-Cr-metal-quartz (or tridymite) is found. In the MgO-containing system, however, extensive substitution of Cr2+ for Mg is observed in (Mg, Cr2+)2SiO4 olivine, (Mg, Cr2+)2Si2O6 pyroxene, and (Mg, Cr2+)Cr2O4 spinel. Cr3+ levels in olivine and pyroxene are below detection limits. The pyroxene is orthohombic at XCrPx2+ < 0.2, monoclinic at higher XCrPx2+ . Thestructure of the spinels becomes tetragonally distorted at XCr2+Sp >0.2. The experimental datahave been fitted to a thermodynamic model, and the authors obtained the mixing parameter (W) of Mg-Cr2+ in olivine, pyroxene and spinel, and the relation between temperatures and free energies of formation for the end-members: Cr2+-olivine (Cr2SiO4), Cr2+-pyroxene (Cr2Si2O6)  相似文献   

14.
Experiments have been performed on the system MgO-SiO2-Cr-O at 0-2.88 GPa and 1100-1450℃,focusing on the stability of Cr^2 in olivine(O1),orthopyroxene(Opx) and spinel(Sp) and its partitioning between these phases.Analytical reagent grade chemicals,MgO,SiO2,Cr2O3.and Cr were used to make starting mixtures.Excess Cr(50%) was then added in these mixtures to ensure that the resultant phases were in equilibrium with the metal Cr.Flux of BaO B2O3(%) was added for facilitating experimental equilibrium and crystal growth.Cr was used as capsule material.All phases in the product were identified by X-ray and analyzed by electron microprobe,The contents of CrO in the different phases(O1,Opx and Sp)were calculated according to stoichiometry.The obtained results of calculation indicate that Cr^3 in Ol and Opx is negligible.The experimental results show;(a) with increasing temperature and decreasing pressure,Cr^2 solubility in Ol,Opx and Sp increases;(b) with in creasing temperature,the partitioning coefficient of Mg and Cr^2 between Ol and Opx decreases,that between Opx and Sp increases,and that between Ol and Sp remains almost unchanged;(c) the effect of pressure on all partitioning coefficients is negligible.  相似文献   

15.
Electron paramagnetic resonance (EPR) study of single crystals of chromium-doped forsterite grown by the Czochralski method in two different research laboratories has revealed, apart from the known paramagnetic centers Cr3+(M1), Cr3+(M2) and Cr4+, a new center \textCr 3+ (M 1)-V\textMg 2+ (M 2) {\text{Cr}}^{ 3+ } (M 1){-}V_{{{\text{Mg}}^{ 2+ } }} (M 2) formed by a Cr3+ ion substituting for Mg2+ at the M1 structural position with a nearest-neighbor Mg2+ vacancy at the M2 position. For this center, the conventional zero-field splitting parameters D and E and the principal g values and A values of the 53Cr hyperfine splitting have been determined as follows: D = 33.95(3) GHz, E = 8.64(1) GHz, g = [1.9811(2), 1.9787(2), 1.9742(2)], A = [51(3), 52(2), 44(3)] MHz. The center has been identified by comparing EPR spectra with those of the charge-uncompensated ion Cr3+(M1) and the ion pair Cr3+(M1)–Li+(M2) observed in forsterite crystals codoped with chromium and lithium. It has been found that the concentration of the new center decreases to zero, whereas that of the Cr3+(M1) and Cr3+(M1)–Li+(M2) centers increases with an increase of the Li content from 0 up to ~0.03 wt% (at the same Cr content ~0.07 wt%) in the melt. The known low-temperature luminescence data pertinent to the centers under consideration are also discussed.  相似文献   

16.
《Lithos》2007,93(1-2):126-148
Fenite aureoles around carbonatite dykes, and alteration associated with Fe–REE–Nb ore bodies at Bayan Obo, Inner Mongolia, China, show alkali silicate assemblages containing aegirine–augite, (magnesio-)riebeckite, (magnesio-)arfvedsonite, and phlogopite, accompanied by varying amounts of apatite, albite and quartz. In both fenites and orebodies simple thermodynamic constraints indicate mineral parageneses are consistent with rock buffered cooling accompanied by the infiltration of a range of externally buffered hydrothermal fluids. Statistical analysis of amphibole chemistry indicates that even in apparently texturally well constrained paragenetic stages wide variations in chemistry occur in both the ore bodies and fenites. Much of this variation is attributable to the Mg and F content of amphibole, and is therefore interpreted as a result of variation in externally controlled variables (P, T, initial fluid composition) rather than internally controlled variables such as protolith composition. Similarities in chemistry exist between fenite and some ore body amphiboles. Thermodynamic analysis of the composition of biotite and apatite allows constraints to be placed on the F-content of hydrothermal fluids, and indicates relatively consistent compositions in fenites and orebodies (log aHF/aH2O =  3.8 to − 3.6 at 300 °C and 1 kbar). Amphibole and biotite associated with niobate mineralization are both enriched in fluorine relative to the rest of the paragenesis, and biotite compositions indicate significantly higher HF activities in the hydrothermal fluid (log aHF/aH2O =  2.6 at 300 °C and 1 kbar). The data presented here reinforce previous interpretations of the complex, multistage nature of mineralisation at Bayan Obo, but are still consistent with a direct involvement of carbonatite derived fluids during ore genesis.  相似文献   

17.
The Precambrian migmatitic gneisses at Alnö have been altered to fenite by fluids emanating from alkaline and carbonatitic magmas intruded during early to middle Cambrian times. Fenitization, related to carbonatitic sources, was promoted by peralkaline, carbonate-rich fluids, in which the main chemical components and REE were mobile. Composition-volume relationships of progressively fenitized protolith suggest mainly isovolumetric equilibration, but a modest decrease of volume (6%) did occur in the highest grade of the process. The fenitizing fluids introduced essentially CaO, CO2, Na2O, and K2O while removing SiO2 and Al2O3. Different trends of fenitization, defined as sodic, potassic and intermediate, show differing REE distribution and abundance patterns. The sodic carbonate-rich fluid introduced all the REE, but the La/Lu ratio was high. The extreme REE enrichments of high-grade fenites are associated with the widespread formation of calcite, apatite and possibly titanite. The potassic carbonaterich fluid introduced essentially light REE, but produced also the redistribution of heavy REE in the high-grade fenites. REE distribution patterns of intermediate fenites suggest the re-equilibration of fenite with a highly oxidizing alkaline fluorine-rich fluid, possibly in a later post-magmatic episode.  相似文献   

18.
Olivine inclusions in diamonds from kimberlites originating from the deep Upper Mantle contain significant amounts of chromium. It has been suggested that divalent chromium occurs in these olivines. This hypothesis is supported by recent Mössbauer and electronic spectral measurements at high pressures, which demonstrate that pressure-induced reduction takes place in compounds and minerals initially containing Fe3+, Mn3+, and Cu2+ ions. The process is facilitated at high temperatures. Low oxidation states of other metals such as Cr(II) are expected to be stabilized under the very high pressures and elevated temperature conditions in the Mantle. Since Cr2+ ions are susceptible to the Jahn-Teller effect, they are predicted by crystal field theory to be stabilized in certain distorted coordination sites, such as the olivine Ml site, all three sites of the -spinel phase, and the 7-coordinated site of the strontium plumbate structure-type. The Cr2+ ions in olivines are stabilized in kimberlites intruded into the Crust by the high confining pressures in the diamond inclusions.  相似文献   

19.
This work presents the results of the first comprehensive study of PGE mineralization from massive chromitites of the Iov dunite body (Northern Urals). The chromitites are composed of chromespinelides with a higher content of Cr2O3 with respect to those from other zonal clinopyroxenite–dunite massifs of the Urals. However, the composition of chromespinelides fits the trend that is characteristic of the dunite–clinopyroxenite–gabbro formation. PGE minerals, in particular Pt–Fe solid solutions, were identified in chromitites and in chromespinelides in the form of crystals and aggregates of a complex non-crystallographic habit and less often of an idiomorphic cubic habit. In terms of stoichiometry, Pt–Fe minerals correspond to ferroplatinum (Pt2Fe) and isoferroplatinum (Pt3Fe). The minerals of the isomorphic tetraferroplatinum–tulameenite–nickelferroplatinum series are widely distributed. Thus, the PGE mineralization of the Iov dunite body has features that are characteristic of clinopyroxenite–dunite massifs of the Urals.  相似文献   

20.
The magnetic fractions of ilmenite from the beach placer deposit of Chavara, southwest India have been studied for mineralogical and chemical composition to assess the range of their physical and chemical variations with weathering. Chavara deposit represents a highly weathered and relatively homogenous concentration. Significant variation in composition has been documented with alteration. The most magnetic of the fractions of ilmenite, separated at 0.15 Å, and with a susceptibility of 3.2 × 10?6 m3 kg?1, indicates the presence of haematite–ilmenite intergrowth. An iron-poor, titanium-rich component of the ilmenite ore has been identified from among the magnetic fractions of the Chavara ilmenite albeit with an undesirably high Nb2O5 (0.28%), Cr2O3 (0.23%) and Th (149 ppm) contents. The ilmenite from Chavara is compared with that from the nearby Manavalakurichi deposit of similar geological setting and provenance. The lower ferrous iron oxide (2.32–14.22%) and higher TiO2 (56.31–66.45%) contents highlight the advanced state of alteration of Chavara. This is also evidenced by the relatively higher Fe3+/Fe2+ ratio compared to Manavalakurichi ilmenite. In fact, the ilmenite has significantly been converted to pseudorutile/leucoxene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号