首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
川西木落寨稀土矿床年代学、地球化学与成矿特征   总被引:1,自引:1,他引:0  
付浩邦  刘琰  郑旭  贾玉衡  丁岩 《矿床地质》2019,38(3):491-508
木落寨矿床位于川西冕宁-德昌稀土成矿带的北部,郑家梁子矿段是该矿床的主要成矿段。野外勘查发现,郑家梁子矿段主要的赋矿岩石是大理岩,其中发育的张性断裂充填大量矿脉,与矿带中其他矿床以正长岩为赋矿围岩的特征明显不同,而大理岩是否是成矿物质的主要来源尚不清楚。为进一步明确大理岩、正长岩和稀土物质来源之间的关系,文章对相关岩石和矿石进行地球化学特征对比分析。正长岩全岩稀土元素含量为1211×10-6~2974×10-6,稀土元素配分曲线呈轻稀土元素富集,重稀土元素亏损的特征。近矿蚀变大理岩稀土元素配分曲线整体呈右倾,稀土元素总量为1131×10-6~1935×10-6,而远矿新鲜大理岩稀土元素总量为8.20×10-6~8.69×10-6,由此可见,大理岩很可能不是稀土物质的主要来源。新鲜大理岩的δ13CV-PDB变化范围为1.3‰~1.6‰,δ18OV-SMOW介于23.2‰~23.7‰之间,显示其是海相碳酸盐岩变质的产物,蚀变大理岩的δ13CV-PDB变化范围为0.4‰~0.7‰,δ18OV-SMOW介于15.7‰~16‰之间,显示其受热液蚀变影响,并经历碳酸盐的溶解作用。新鲜大理岩与蚀变大理岩的δ13CV-PDB值变化较小(0.4‰~1.6‰),说明这2种大理岩为同源,近矿大理岩可能只是碳酸盐岩溶解蚀变的产物。矿脉中的方解石δ13CV-PDB变化范围为-4.6‰~-4.7‰,δ18OV-SMOW介于11.8‰~12.5‰之间,显示出碳酸岩岩浆经历低温蚀变的过程,证明矿脉与大理岩没有明显物质来源关系。矿石中氟碳铈矿的206Pb/204Pb、207Pb/204Pb与208Pb/204Pb分别为18.3143~18.3629、15.6243~15.6349和38.6197~38.7309,正长岩的206Pb/204Pb、207Pb/204Pb和208Pb/204Pb分别为18.3233~18.3568,15.6298~15.6360和38.6664~38.6880。正长岩和氟碳铈矿的铅同位素特征一致,显示稀土的物质来源很可能是正长岩或隐伏的碳酸岩。本次研究选取典型矿石中与氟碳铈矿密切共生的金云母进行Ar-Ar同位素定年。鉴于矿石中的云母和氟碳铈矿并不存在多期次性,研究测得该矿段金云母的40Ar/39Ar坪年龄为(27.6±0.2)Ma,可以很好地代表成矿时代。  相似文献   

2.
川西冕宁-德昌喜马拉雅期稀土元素成矿带长约270 km,宽15 km,包括牦牛坪超大型、大陆槽大型、木落寨中型和里庄小型REE矿床以及一系列矿点和矿化点.该矿带在空间上位于攀西二叠纪古裂谷中,但岩体和矿体均形成于喜马拉雅期,年龄为40~10 Ma.REE成矿作用与喜马拉雅期碳酸岩-碱性杂岩体有关,受印度-亚洲大陆碰撞带东部一系列新生代走滑断裂系统控制.碳酸岩-碱性杂岩体主要侵位于元古代结晶基底和古生代-中生代沉积盖层内.矿区蚀变以霓长岩化为特征,在杂岩体和矿体中形成规模不等的霓长岩蚀变晕.REE成矿作用主要有3种样式,即大陆槽式、牦牛坪式和里庄式.大陆槽式以爆破角砾岩筒矿化为特征,牦牛坪式以典型的脉状矿化系统为标志,里庄式则以浸染状矿化为特色.主要矿石类型有伟晶岩型、碳酸岩型、角砾状和网脉状,矿物组合主要为重晶石 萤石 霓辉石 方解石 氟碳铈矿.流体包裹体和稳定同位素研究表明,成矿流体来源于碳酸岩-正长岩不混溶岩浆系统,但在流体演化的晚期阶段有外部流体的加入.根据综合分析研究,笔者提出了一个可能的REE成矿作用模式.该模式强调,成矿热液流体系统经历了一个复杂的演化过程:从不混溶碳酸岩-正长岩岩浆系统分离出高温、含硫酸盐富RISE的NaCl-KCl卤水,到流体沸腾导致REE-氟碳酸盐和硫酸盐有效沉淀,最后与雨水混合导致少量硫化物沉积.在空间上形成了一个"三层楼"式的REE成矿系统:在深部层位,形成细脉-浸染状矿体(如里庄式矿床);在中部层位,形成脉状矿体(如牦牛坪式矿床);在上部层位,形成角砾岩筒矿体(如大陆槽式矿床).成矿系统发生于喜马拉雅期大陆碰撞带从压扭向张扭转变过渡的构造背景下,新生代大规模走滑断裂及其派生的拉分构造和张性裂隙带促进了含REE岩浆-热液系统的形成.  相似文献   

3.
四川冕宁木落寨稀土矿床稀土矿化与围岩特征   总被引:1,自引:0,他引:1  
欧阳怀  刘琰 《地球学报》2018,39(3):329-341
木落寨矿床是冕宁—德昌稀土元素(REE)矿带内的主要稀土矿床,位于矿带北段,雅砻江断裂以西。该稀土矿床的形成与正长岩-碳酸岩杂岩体密切相关。与冕宁—德昌REE矿带中其它矿床例如牦牛坪、大陆槽矿床不同的是,牦牛坪和大陆槽矿床的围岩主要是石英闪长岩,而木落寨REE矿床中围岩较复杂,主要有大理岩、绿片岩、碱性花岗岩等。已有研究表明石英闪长岩并不是牦牛坪和大陆槽矿床稀土元素的主要来源,对木落寨矿床来说,围岩对成矿的作用还需进一步研究。采用ICP-MS与XRF,对大理岩和绿片岩这两种主要的围岩进行主微量元素分析,全岩稀土配分曲线显示轻稀土亏损(大理岩3×10~(–6)~20×10~(–6),绿片岩62×10~(–6)~74×10~(–6)),重稀土平坦,总稀土含量低(大理岩4×10~(–6)~21×10~(–6),绿片岩86×10~(–6)~97×10~(–6)),与本次研究的木落寨正长岩中稀土含量(592×10~(–6)~2 026×10~(–6))和以往研究的冕宁—德昌成矿带其他三个矿床的碳酸岩-正长岩杂岩体中稀土含量(碳酸岩2 470×10~(–6)~40 807×10~(–6),正长岩630×10~(–6)~3 233×10~(–6))相比,大理岩和绿片岩中稀土元素含量过低,显示在稀土物质来源上,这两种围岩可能对成矿贡献不大,根据剖面展示,矿体大部分出现在正长岩裂隙中,极少部分出现在正长岩和大理岩接触面中,大理岩可能提供碳酸根离子,促进交代和成矿作用的进行。木落寨矿石类型主要是细脉浸染型,少量为条带型。通过手标本、镜下和BSE图像观察,脉石矿物主要有萤石+方解石+重晶石+石膏+黄铁矿+方铅矿+石英+金云母等,矿石矿物为氟碳铈矿,氟碳铈矿叠加在已形成的脉石矿物之上,显示矿床主要形成于热液阶段最晚期。  相似文献   

4.
西藏雄村大型铜金矿床的特征、成因和动力学背景   总被引:18,自引:2,他引:18  
详细的蚀变矿化特征剖析揭示,雄村矿床的矿化样式可明显地区分为两种类型,即早期的细脉浸染状Cu-Au矿化和晚期的脉型金(银)-多金属矿化。早期细脉浸染状矿化的蚀变组合为:(钠长石化)-钾硅酸盐蚀变(局部)-红柱石化-广泛的绢英岩化-绿泥石化(青磐岩化?);晚期脉型金(银)-多金属矿化蚀变组合为:强烈硅化-绿泥石化-高岭石化。蚀变矿化组合、流体包裹体测试结果及稳定同位素(H、O、S)组成揭示,早期细脉浸染状Cu-Au矿化可能属于未发育成熟的斑岩型矿化,晚期脉型金(银)-多金属矿化为介于高硫型与低硫型之间的过渡型浅成热液矿化。雄村矿床可能为一套生矿床,是未发育成熟的斑岩型矿化与浅成热液型矿化套生的产物;成矿流体组成上的一致性,表明套生的两期矿化可能属于同一热液体系的两个连续的矿化阶段,只是在两个矿化阶段成矿环境发生了较大改变。热液绢云母40Ar/39Ar测年和似伟晶岩脉中的钾长石K-Ar测年,表明雄村成矿系统形成于47.62±0.7Ma~38.11±0.9Ma间,与喜马拉雅—青藏高原造山带52~40Ma间歇性松弛或N-S向伸展有关;但雄村矿床的最终套生定位,与造山带40~38Ma间的强烈挤压隆升有关。  相似文献   

5.
东窝东铜多金属矿床位于羌塘地体南缘,多龙铜金矿集区东侧。该矿床尚未开展矿化蚀变时限、成矿作用中元素迁移特征等问题的研究。为确定矿床的蚀变矿化作用时限,本文对东窝东矿床的黄铁绢英岩化蚀变带中的蚀变绢云母进行了~(40)Ar-~(39)Ar年代学测试,获得~(40)Ar-~(39)Ar坪年龄为122.20±0.84 Ma,该年龄与已有的斑岩体侵位时代(122 Ma)一致,说明东窝东矿床黄铁绢英岩化蚀变与斑岩体侵位有密切联系。此外,对比分析地表弱蚀变和钻孔中强黄铁绢英岩化花岗闪长斑岩的岩石地球化学结果,运用"等浓度线(isocon)方程"及其推导方程,探讨黄铁绢英岩化蚀变过程中的不同元素的带入、带出特点及元素迁移特征。结果表明:高场强元素质量基本守恒;轻稀土元素较重稀土元素迁移量较大,但总体上稀土元素的迁移程度较弱;主要的成矿元素Cu、Pb、Zn为带入元素。东窝东矿床含矿斑岩侵位时代和热液蚀变时限均与多龙矿集区内多不杂、波龙、铁格隆南等多个超大型-大型铜金矿床一致,说明东窝东矿床和多龙矿集区内的多个矿床受控于同一构造-岩浆成矿背景,东窝东矿区具有重要的找矿潜力。  相似文献   

6.
小赛什腾铜矿受控于加里东期花岗闪长斑岩及细粒闪长岩体,在岩体内部的构造裂隙系统中发育钾长石化、硅化、绢云母化、绿泥石化、碳酸盐化等围岩蚀变,矿体主要赋存在钾长石硅化带内;共有3个铜矿体,矿化以铜为主,伴有金钼矿化;矿石类型主要为细脉状、细脉浸染状及浸染状.矿床具有斑岩型矿床的特征,预测可达中型规模.  相似文献   

7.
冕宁-德昌稀土(REE)矿带位于青藏高原东部,受川西一系列走滑断裂控制,大陆槽矿床是矿带中唯一位于南部的大型REE矿床。在前人研究基础上,结合近年来对整个稀土矿带地质填图和室内研究,重点对大陆槽矿床的成矿特征、赋矿围岩及其蚀变、矿石类型、成矿流体来源和流体包裹体演化等方面与同一矿带内的其它矿床进行了详细对比,进一步总结了碳酸岩型(含碳酸岩-正长岩杂岩体)REE矿床的成矿过程。大陆槽矿床的No.1号和No.3号矿体均位于碳酸岩-正长岩杂岩体内,分别由不同隐爆角砾岩筒所控制。以往研究认为两个矿体的碳酸岩-正长岩杂岩体侵位的年龄都在12Ma左右,本次研究发现在26.49±0.63Ma已经存在碳酸岩-正长岩杂岩体岩浆活动。大陆槽REE矿床受隐爆角砾岩构造活动和风化作用的影响,矿石类型以角砾岩型和风化型为主,脉石矿物和矿石矿物在手标本尺度和镜下很难辨认。通过野外观察、镜下矿物共生组合、包裹体显微测温等研究发现,大陆槽矿化过程和牦牛坪矿床相似,只是矿化规模较小,矿化阶段分为岩浆岩阶段-伟晶岩阶段(600℃)-高温热液阶段(450~350℃)-低温热液阶段(350℃),氟碳铈矿形成于热液阶段的晚期。根据伟晶岩阶段至热液阶段氟碳铈矿中流体包裹体的特征,发现多期次隐爆角砾活动导致大气降水和碳酸岩中脱出的CO_2的加入,使得成矿流体的密度(0.732~0.631g/cm~3)、压力(2436~101bar)逐渐降低,直至成矿。此外,岩相学观察和拉曼测试分析也表明包裹体从熔融包裹体过渡到含重晶石、萤石、天青石子晶的富CO_2包裹体、气液两相包裹体,显示了成矿流体由岩浆至热液的转化过程。大陆槽矿床中的包裹体阴离子以SO_4~(2-)为主,气体以CO_2为主,成矿流体中阳离子主要为K~+、Na~+、Ca~(2+)、Sr~(2+)、Ba~(2+)和稀土元素阳离子,表明流体属于SO_4~(2-)-CO_2-H_2O体系,与矿带中其它矿床的成矿流体体系一致。成矿流体的主要成分是岩浆水、大气水和碳酸岩脱碳作用形成的CO_2,后者导致热液方解石和氟碳铈矿的O同位素(氟碳铈矿和方解石:δ~(18)O=5.8‰~12.5‰)值升高。已有研究显示矿带中不同矿床的脉石矿物如重晶石、天青石的Sr-Nd-Pb同位素与碳酸岩-正长岩杂岩体的相关数值基本一致,表明这些脉石矿物来源于碳酸岩-正长岩杂岩体。多期次隐爆角砾岩化作用及大陆槽断裂相关的构造活动促进了成矿流体的循环,直接或间接导致了大陆槽隐爆角砾岩型和风化型矿石的形成。尽管在大陆槽和牦牛坪矿床可以识别出表生氧化阶段,但这一过程并不伴随稀土矿化,热液阶段才是稀土沉淀的主要阶段。研究还强调了碳酸岩发育的大陆槽No.3矿体和里庄矿床主要出现的霓长岩化与矿化无关,而牦牛坪矿床地表并无霓长岩化蚀变。在以往和本次研究的基础上,建立了川西碳酸岩-正长岩型稀土矿床的成矿模式。  相似文献   

8.
小赛什腾铜矿受控于加里东期花岗闪长斑岩及细粒闪长岩体,在岩体内部的构造裂隙系统中发育钾长石化、硅化、绢云母化、绿泥石化、碳酸盐化等围岩蚀变,矿体主要赋存在钾长石硅化带内;共有3个铜矿体,矿化以铜为主,伴有金钼矿化;矿石类型主要为细脉状、细脉浸染状及浸染状。矿床具有斑岩型矿床的特征,预测可达中型规模。  相似文献   

9.
多彩铜铅锌矿床位于"三江"多金属成矿带北段青海省南部的治多县,是目前该地区新发现的唯一一个与古特提斯火山作用有关的大型矿床。矿体产于晚三叠世巴塘群火山岩地层中,直接赋矿围岩为英安质凝灰岩。矿区内主要发育硅化、绢云母化、黄铁矿化、绿泥石化、重晶石化、白云石化、方解石化等蚀变,矿化类型以块状及浸染状铜铅锌矿化和纹层状及星点状铜矿化为主,其次为细脉状铜铅锌矿化等。蚀变矿化在空间上具有明显分带性,以白云石-重晶石固结壳为界,下盘依次出现硅化-重晶石化-块状及细脉状矿化带、硅化-黄铁矿化-稠密浸染状矿化带、黄铁矿化-硅化-绢云母化-稀疏浸染状矿化带、硅化-弱绿泥石化带、绿泥石化带。上盘则多为成矿后中低温蚀变组合,如弱硅化-弱绢云母化-绿泥石化等。成矿演化上,矿床经历了3期主要成矿作用:火山沉积-气液矿化期、海底喷流热液矿化期及表生期。矿床地质特征、蚀变矿化分带及成矿演化等的综合分析表明,多彩铜铅锌矿床与日本黑矿及同一构造带的"三江"中段川西呷村VMS矿床极为相似,属于火山岩容矿的块状硫化物矿床。  相似文献   

10.
三道明水矿床位于北山成矿带的西部,是近年来新发现的一个中型Cu-Zn矿。为了解该矿床成因类型及主要控矿因素,本文在前期勘探工作的基础之上,对其矿床地质特征,特别是蚀变矿化特征开展了野外及室内研究。根据热液蚀变、矿物组合及脉体间穿插关系的不同,可将三道明水矿床的蚀变和矿化划分为早、中、晚3期。其中,早期矿化以黄铁矿±黄铜矿±闪锌矿、黄铁矿-闪锌矿±黄铜矿组合,以及零星浸染状黄铁矿-黄铜矿-闪锌矿组合为特征,相关的热液蚀变为绿泥石±绢云母,显示出块状硫化物矿床的蚀变矿化特征;中期矿化为该矿床的主要成矿阶段,以浸染状黄铜矿-闪锌矿-黄铁矿组合为特征,相关蚀变为绢英岩化,含Cu、Zn矿物(黄铜矿、闪锌矿)形成于韧性变形过程中;晚期矿化主要以石英±黄铜矿±辉钼矿脉±黄铁矿脉、方解石脉发育为特征,蚀变不明显。基于上述蚀变矿化特征的观察,并通过与区域成矿作用的综合对比,认为三道明水矿床早期可能为块状硫化物型(VMS)矿化,中期经历了韧性剪切变形驱动下的热液改造,在主剪切带富集形成了工业矿体,晚期叠加了岩浆热液有关的Cu-Mo矿化。  相似文献   

11.
川西冕宁-德昌REE成矿带是中国最重要的REE成矿带之一,包括牦牛坪超大型REE矿床、大陆槽大型REE矿床:木落寨中型REE矿床和里庄小型REE矿床等。REE成矿作用与碳酸岩-碱性杂岩体有关,受印度-亚洲大陆碰撞带的一系列新生代走滑断裂系统控制。碳酸岩-碱性岩杂岩体主要侵位于元古代结晶基底岩石和古生代-中生代沉积盖层。碳酸岩主要为方解石碳酸岩,碱性正长岩以英碱正长岩为主,两者微量元素分布模式及Sr-Nd同位素组成特征相一致,表明两者为岩浆不混溶产物,因此两者的成岩时代应该基本相近。然而,前人研究成果表明,牦牛坪碳酸岩中钠铁闪石K-Ar年龄为31.7Ma,正长岩全岩K—Ar年龄为40.8Ma,两者相差10Ma。此外,研究表明,大陆槽、木落寨和里庄REE矿床碳酸岩-正长岩杂岩体成岩年龄与其相应的成矿年龄基本一致,而牦牛坪REE矿床两者相差甚远。本文利用碳酸岩中方解石进行了Sm—Nd等时线年龄测定,结合前人资料,重新厘定了牦牛坪REE矿床碳酸岩的成岩年龄和矿床的成矿年龄,分别为29.9Ma和26~27Ma,两者在误差范围内相一致。  相似文献   

12.
The Dalucao deposit, located in western Sichuan Province, southwestern China, in the western part of the Yangtze Craton, is one of the largest and most extensive rare earth element (REE) deposits in the Himalayan Mianning–Dechang REE belt. Moreover, the Dalucao deposit is the only deposit identified in the southern part of the belt. The Dalucao deposit contains the No. 1, 2, and 3 orebodies; the No. 1 and 3 orebodies are both hosted in two breccia pipes, located in syenite–carbonatite host rocks. Both pipes have elliptical cross-sections at the surface, with long-axis diameters of 200–400 m and short-axis diameters of 180–200 m; the pipes extend downwards for > 450 m. No. 1 and No. 3 have total thickness varying between 55 and 175 m and 14 to 58 m respectively. The REE mineralization is associated with four brecciation events, which are recorded in each of the pipes. The ore grades in the No. 1 and 3 orebodies are similar, and consist of 1.0%–4.5% rare earth oxides (REOs). The No. 1 orebody is characterized by a Type I mineral assemblage (fluorite + barite + celestite + bastnäsite), whereas the No. 3 orebody is characterized by a Type II assemblage (fluorite + celestite + pyrite + muscovite + bastnäsite + strontianite). Argon (40Ar/39Ar) dating of hydrothermal muscovite intergrown with REE minerals in typical ores from the No. 1 and 3 orebodies yielded similar ages of 12.69 ± 0.13 and 12.23 ± 0.21 Ma, respectively, which suggest that both mineral assemblages formed coevally, rather than in paragenetic stages. Both ages are also similar to the timing of intrusion of the syenite–carbonatite complex (12.13 ± 0.19 Ma). The ore-mineral assemblages occur in breccias, veinlets, and in narrow veins. The ore veinlets, which usually show a transition to mineralized breccia or brecciated ores, are commonly enveloped by narrow veins and stringer zones with comparable mineral assemblages. The brecciated ores form 95% of the volume of the deposit, whereas brecciated ores are only a minor constituent of other deposits in the Mianning–Dechang REE belt. The carbonatite in the syenite–carbonatite complexes contains high concentrations of S (0.07–2.32 wt.%), Sr (16,500–20,700 ppm), Ba (3600–8400 ppm), and light REEs (LREE) (2848–10,768 ppm), but is depleted in high-field-strength elements (HFSE) (Nb, Ta, P, Zr, Hf, and Ti). The syenite is moderately enriched in large-ion lithophile elements (LILE), Sr (155–277 ppm), and Ba (440–755 ppm). The mineralized, altered, and fresh syenites and carbonatites exhibit similar trace element compositions and REE patterns. Brecciation events, and the Dalucao Fault and its secondary faults around the deposit, contributed to the REE mineralization by facilitating the circulation of ore-forming fluids and providing space for REE precipitation. Some hydrothermal veins composed of coarse-grained fluorite and quartz are distributed in the syenite–carbonatite complex. The oxygen isotope compositions of ore-forming fluids in equilibrium with quartz at 215 °C are − 4.95‰ to − 7.45‰, and the hydrogen isotope compositions of fluid inclusions in coarse-grained quartz are − 88.4‰ to − 105.1‰. The syenite–carbonatite complex and carbonatite are main contributors to the mineralization in the geological occurrence. Thus, the main components of the ore-forming fluids were magmatic water, meteoric water, and CO2 derived from the decarbonation of carbonatite. According to the petrographic studies, bastnäsite mineralization developed during later stages of hydrothermal evolution and overprinted the formation of the brecciated fluorite–quartz hydrothermal veins. As low-temperature isotope exchange between carbonates of the carbonatite and water-rich magmatic fluids will lead to positive shifts in δ18O values of the carbonates, C–O isotopic compositions from the bulk primary carbonatite to hydrothermal calcite and bastnäsite changed (δ18OV-SMOW from 8.0‰ to 11.6‰, and δ13C V-PDB from − 6.1 to − 8.7‰). According to the chemical composition of syenite and carbonatite, REE chloride species are the primary complexes for the transport of the REEs in the hydrothermal fluids, and the presence of bastnäsite and parisite means the REE were precipitated as fluorocarbonates. High contents of Sr, Ba and S in the syenite–carbonatite complex led to the deposition of large amount of barite and celestite.  相似文献   

13.
《地学前缘(英文版)》2019,10(2):769-785
The Weishan REE deposit is located at the eastern part of North China Craton (NCC), western Shandong Province. The REE-bearing carbonatite occur as veins associated with aegirine syenite. LA-ICP-MS bastnaesite Th-Pb ages (129 Ma) of the Weishan carbonatite show that the carbonatite formed contemporary with the aegirine syenite. Based on the petrographic and geochemical characteristics of calcite, the REE-bearing carbonatite mainly consists of Generation-1 igneous calcite (G-1 calcite) with a small amount of Generation-2 hydrothermal calcite (G-2 calcite). Furthermore, the Weishan apatite is characterized by high Sr, LREE and low Y contents, and the carbonatite is rich in Sr, Ba and LREE contents. The δ13CV-PDB (−6.5‰ to −7.9‰) and δ13OV-SMOW (8.48‰–9.67‰) values are similar to those of primary, mantle-derived carbonatites. The above research supports that the carbonatite of the Weishan REE deposit is igneous carbonatite. Besides, the high Sr/Y, Th/U, Sr and Ba of the apatite indicate that the magma source of the Weishan REE deposit was enriched lithospheric mantle, which have suffered the fluid metasomatism. Taken together with the Mesozoic tectono-magmatic activities, the NW and NWW subduction of Izanagi plate along with lithosphere delamination and thinning of the North China plate support the formation of the Weishan REE deposit. Accordingly, the mineralization model of the Weishan REE deposit was concluded: The spatial-temporal relationships coupled with rare and trace element characteristics for both carbonatite and syenite suggest that the carbonatite melt was separated from the CO2-rich silicate melt by liquid immiscibility. The G-1 calcites were crystallized from the carbonatite melt, which made the residual melt rich in rare earth elements. Due to the common origin of G-1 and G-2 calcites, the REE-rich magmatic hydrothermal was subsequently separated from the melt. After that, large numbers of rare earth minerals were produced from the magmatic hydrothermal stage.  相似文献   

14.
四川德昌大陆槽稀土矿床地质特征   总被引:10,自引:5,他引:5  
李小渝 《矿床地质》2005,24(2):151-160
为查明德昌大陆槽稀土矿床的成矿地质特征和稀土元素的赋存状态,通过对大量岩石、矿石光(薄)片的观察鉴定以及对矿体形态、矿石的物质组分、结构构造的研究,表明该矿床受喜马拉雅期富稀土碱性杂岩的构造控制,成矿地质特征与牦牛坪矿床极为相似。大陆槽稀土矿床为攀西稀土成矿带上最年轻的稀土矿床,矿床类型新,稀土品位高,主要稀土矿物氟碳铈矿粒度较粗,可选冶。  相似文献   

15.
The Himalayan Mianning–Dechang (MD) rare earth element (REE) belt in western Sichuan Province, southwestern China, is approximately 270 km long and 15 km wide, and contains total reserves of more than 3 Mt of light REEs (LREEs), comprising one giant (Maoniuping), one large (Dalucao), two small–medium-sized (Muluozhai and Lizhuang), and numerous smaller REE deposits. The belt occurs within the eastern Indo-Asian collision zone (EIACZ), where its location is controlled by large-scale strike-slip faults and tensional fissure zones. Himalayan carbonatite–syenite complexes consist predominantly of alkaline syenite stocks and carbonatite sills or dikes that host REE mineralization. Previous studies have reported inconsistent ages for alkaline magmatism syenite formation and REE mineralization. Here, we present new results of sensitive high-resolution ion micro-probe U–Pb dating of zircons from syenites from the Dalucao, Maoniuping, Lizhuang and Diaoloushan areas, the first systematic and precise age determinations for these rocks in the MD belt. The new data give concordant ages of 12.13 ± 0.19 and 11.32 ± 0.23 Ma for the Dalucao deposit, 22.81 ± 0.31 and 21.3 ± 0.4 Ma for Maoniuping, 26.77 ± 0.32 Ma for Muluozhai, and 27.41 ± 0.35 Ma for Lizhuang. These ages, which should be regarded as maximum ages for the REE mineralization in the study area, can be split into two groups, i.e. 11–12 Ma in the southern part of the MD belt and 12–27 Ma in the northern part, suggesting a progression of magmatism from north to south. These data suggest that the majority of carbonatite–syenite magmatism within the EIACZ occurred during the main stage of Himalayan metallogenesis. The ages presented in this study suggest that strike-slip shear along the MD belt was initiated at ca. 27 Ma and ended ca. 12 Ma. This timing is consistent with movements along the adjacent Ailaoshan–Red River strike-slip fault in southeastern Tibet (to the south of the MD belt) and one of the three Cenozoic strike-slip faults in eastern Tibet. Ascent of an asthenospheric mantle diapir beneath the EIACZ in the Cenozoic may have provided a thermal mechanism for the generation of magmas that formed the carbonatite–syenite complexes in the study area. Alternatitvely, the magmas may have been generated by decompression melting associated with the transition from a transpressional to a transtensional regime at 38–40 Ma. The precise age results for syenite magmatism in the study area indicate that this transition occurred prior to carbonatite–syenite magmatism and the formation of the MD REE belt, which is consistent with the regional tectonic model.  相似文献   

16.
全球范围内出露的碳酸岩大多为钙质、镁质、铁质碳酸岩,少量为钠质和硅质碳酸岩,极少有富Sr碳酸岩的报道,其岩石成因、资源意义及对碳酸岩岩浆演化的指示意义尚不清楚。本次在四川省牦牛坪稀土矿区南部包子山稀土矿床的露天采坑中发现了超级富Sr的碳酸岩,其呈不规则的脉状侵入到构造角砾岩中。岩石呈紫色-淡紫色,微晶-斑状结构,斑晶主要为萤石,基质主要为菱锶矿、方解石、氟碳铈矿、氟碳钙铈矿、金云母、重晶石并含少量的金属硫化物和氧化物。全岩的微量元素分析表明,其稀土元素总量(∑REE)达3.5%~6.1%,Sr含量达19.0%~27.7%,已超过稀土矿床和锶矿床的工业品位要求。岩石中的中、重稀土元素含量占稀土元素总量的1.14%~1.77%,一些高价值稀土元素含量较高,如Pr(939×10~(-6)~1399×10~(-6))、Nd(2783×10~(-6)~3937×10~(-6))、Gd(237×10~(-6)~320×10~(-6)),因此除轻稀土元素外,中、重稀土和锶元素也具有重要的资源意义。岩石强烈富集REE、Sr、Ba,而明显亏损P、Nb、Ta、Zr、Hf元素,可能与岩浆演化过程中锆石和其它基性矿物的结晶分离有关。全岩的Sr-Nd同位素组成与牦牛坪、里庄稀土矿床的碳酸岩相似,表明它们为同源岩浆产物。笔者认为,富Sr的碳酸岩代表了碳酸岩岩浆演化晚期的产物,REE、Sr、Ba、F和S元素均在岩浆演化晚期的碳酸岩中高度富集。碳酸岩岩浆超浅成侵位至构造角砾岩中,并与下渗的大气水相遇导致岩浆的淬冷和微晶-斑状结构的形成。早期基性矿物(如霓辉石、黑云母)及碳酸盐矿物(如方解石、白云石等)的结晶分离是造成晚期碳酸岩中稀土元素富集的重要原因。富Sr碳酸岩中石英斑晶的发现和其较低的SiO_2含量表明碳酸岩岩浆演化晚期可能是硅饱和的,且这种岩浆具有很低的SiO_2溶解能力。以菱锶矿(体积分数 50%)为主要碳酸盐矿物的稀土碳酸岩可能代表了一种新的碳酸岩类型,明显不同于已知的钙质、镁质、铁质和钠质碳酸岩。  相似文献   

17.
庙垭稀土矿床位于北大巴山东北缘和武当隆起西部边缘接触处的过渡带中,是一个与正长岩碳酸岩杂岩体有关的特大型铌稀土矿床。以酸性火山岩为主体的武当隆起,其时代属性和构造属性也是该区的重要基础问题,与庙垭稀土矿床的形成有着密切的关系。庙垭杂岩体沿着耀岭河群与下志留统梅子垭组之间的断裂构造脆弱带分布,矿区北西向和北西西向断裂和褶皱均较发育,为碳酸岩岩浆从地幔向地壳浅部侵入提供了便利的通道和定位空间,并对铌、稀土矿的分布起一定的控制作用。杂岩体由北向南由边缘相、过渡相及中心相3个相带组成,表现有碳酸岩化、绢云母化、黑云母化、钠长石化、萤石化等围岩蚀变。结合区域地质背景和矿床地质特征,认为在正长岩之后形成的碳酸岩,与正长质岩浆有着密切关系。认为矿化物质来源应为正长岩浆侵入带来,后经岩浆期后气水热液交代作用,即各种碳酸岩化促使铌、稀土元素富集沉淀。杂岩体形成前后受构造作用控制明显,先期形成的岩石冷缩裂缝和构造破碎为后期气热交代创造了良好条件,矿化多侵位于耀岭河群的糜棱岩中。庙垭稀土矿床就是在火山岩喷发时所产生的正长岩碳酸岩与震旦系-古生界岩石地层逆冲推覆过程中相互耦合形成的。  相似文献   

18.
舒小超  刘琰  李德良  贾玉衡 《岩石学报》2019,35(5):1372-1388
霓长岩化作用是指碳酸岩(或碱性岩)流体对围岩的交代蚀变,它是碳酸岩型稀土(REE)矿床常见的蚀变类型,其所形成的岩石即为霓长岩。对霓长岩的深入研究可以鉴别碳酸岩体的存在,厘定碳酸岩岩浆(或流体)的地球化学性质及源区特征,这对于找寻碳酸岩相关的矿产资源(尤其是REE)以及剖析矿床成因机制有着重要的地质意义。川西冕宁-德昌稀土矿带是中国最重要的轻稀土矿带之一,包括牦牛坪超大型、大陆槽大型、木落寨和里庄中小型REE矿床以及一系列矿点。REE矿化与碳酸岩-碱性岩杂岩体密切相关,受一系列新生代走滑断裂的控制。该矿带广泛发育霓长岩化蚀变带,尤以大陆槽及里庄矿床为显著。岩相学分析表明,大陆槽和里庄霓长岩中的矿物多呈他形粒状结构,主要由长石、黑云母、霓辉石以及少量副矿物组成;主微量元素分析表明,霓长岩的碱质(K_2O+Na_2O)、MgO、Fe_2O_3T含量较高,且富集REE、Sr、Ba等微量元素;电子探针分析表明,霓长岩中的霓辉石Fe OT含量较高,长石Na_2O及K_2O含量较高,Ca O含量极低。An-Ab-Or三角图解显示长石主要为透长石和钠长石,属碱性长石系列;黑云母的地球化学成分图解表明云母的成因类型为交代型且具有相对富镁、贫铁等特征,属镁质黑云母。霓长岩化作用的交代流体含有较高的CO_2组分,且富含碱质、Mg、Fe及REE、Sr、Ba等元素。对比霓长岩与原岩的主微量元素发现:相比于正长岩原岩,在主量元素中,霓长岩的Fe、Mg、Ca等元素含量增加,Si、Al等元素含量降低;微量元素中,霓长岩的REE及Sr、Ba等元素显著增加。这意味着交代流体含有的Fe_2O_3T、MgO、CaO等组分在霓长岩化过程中被带进了围岩,而SiO_2和Al_2O_3等从围岩中被逐出。大陆槽及里庄矿区发育的角砾岩指示了矿区曾经历过频繁的角砾岩化事件,这提高了霓长岩作用的强度,并且为矿脉的穿插及REE矿物的沉淀提供了空间。在霓长岩化过程中,流体-围岩的组分交换反复发生,这削弱了REE络合物的稳定性,伴随多期次的热液活动及构造事件,最终完成REE活化→迁移→沉淀的过程。  相似文献   

19.
萤石是四川牦牛坪稀土矿床主要的脉石矿物之一,其形成贯穿了整个稀土成矿过程,因此同位素的研究对探讨萤石和稀土成矿流体的来源具有重要的价值。矿区6件萤石样品的Sr、Nd同位素组成没有明显差异,结合围岩(碳酸岩-正长岩,花岗岩)同位素组成特征研究表明,不同颜色、来自不同矿石类型、具有不同REE类型的萤石为同源产物,稀土成矿流体来源于富集地幔,与区内碳酸岩-正长岩岩浆活动密切相关。  相似文献   

20.
The Maoniuping REE deposit, located about 22 km to the southwest of Mianning, Sichuan Province, is the second largest light REE deposit in China, subsequent to the Bayan Obo Fe-Nb-REE deposit in the Inner Mongolia Autonomous Region. Tectonically, it is located in the transitional zone between the Panxi rift and the Longmenshan-Jinpingshan orogenic zone. It is a carbonatite vein-type deposit hosted in alkaline complex rocks. The bastnaesite-barite, bastnaesite-calcite, and bastnaesite-microcline lodes are the main three types of REE ore lodes. Among these, the first lode is distributed most extensively and its REE mineralization is the strongest. Theδ34Sv-CDT values of the barites in the ore of the deposit vary in a narrow range of +5.0 to +5.1‰in the bastnaesite-calcite lode and +3.3 to +5.9‰in the bastnaesite-barite lode, showing the isotopic characteristics of magma-derived sulfur. Theδ13Cv-PDB values and theδ518OV-SMOW values in the bastnaesite-calcite lode range from -3.9 to -6.9‰and from +7.3 to +9.7‰, respectively, which fall into the range of "primary carbonatites", showing that carbon and oxygen in the ores of the Maoniuping deposit were derived mainly from a deep source. Theδ13Cv-PDB values of fluid inclusions vary from -3.0 to -5.6‰, with -3.0 to -4.0‰in the bastnaesite-calcite lode and -3.0 to -5.6‰in the bastnaesite-barite lode, which show characteristics of mantle-derived carbon. TheδDv-SMOW values of fluid inclusions range from -57 to -88‰, with -63 to -86‰in the bastnaesite-calcite lode and -57 to -88‰in the bastnaesite-barite lode, which show characteristics of mantle-derived hydrogen. Theδ18OH2OV-SMOW values vary from +7.4 to +8.6‰in the bastnaesite calcite lode, and +6.7 to +7.8‰in the bastnaesite-barite lode, almost overlapping the range of +5.5 to +9.5‰for magmatic water. The 4He content, R/Ra ratios are (13.95 to 119.58×10-6 (cm3/g)STP and 0.02 to 0.11, respectively, and 40Ar/36Ar is 313±1 to 437±2. Considering the 4He increase caused by high contents of radioactive elements, a mantle-derived fluid probably exists in the inclusions in the fluorite, calcite and bastnaesite samples. The Maoniuping deposit and its associated carbonatite-alkaline complex were formed in 40.3 to 12.2 Ma according to K-Ar and U-Pb data. All these data suggest that large quantities of mantle fluids were involved in the metallogenic process of the Maoniuping REE deposit through a fault system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号