首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
在气候变化背景下,青藏高原多年冻土区生态环境发生着一系列变化并进一步影响土壤氮循环过程,但目前冻融循环及植被生长周期中土壤氮的动态变化还不清楚。以青藏高原腹地的风火山和特大桥地区的两种典型草地生态系统为研究对象,分析了土壤可利用氮(NH4+-N、NO3--N、DON)及微生物量氮(MBN)的季节变化。结果表明:土壤铵态氮(NH4+-N)及可溶性有机氮(DON)含量在非生长季高于生长季,土壤硝态氮(NO3--N)在生长季高于非生长季;风火山地区高寒草甸生态系统中土壤NH4+-N在融化期含量较高;土壤MBN在植被生长旺盛期降低,在植被生长后期升高;风火山地区高寒草甸生态系统中土壤MBN含量、特大桥地区高寒草原生态系统中土壤可利用氮总量与土壤全氮(TN)含量显著正相关。这表明,土壤全氮含量、植被吸收以及冻融作用均可引起土壤可利用氮及MBN的季节变化。  相似文献   

2.
长江源区作为亚洲第一长河的发源地,探究其氮沉降特征,对于保护我国水源地安全具有十分重要的意义.本文在野外采样、数理分析的基础上,利用氮源分析及后向轨迹模型判断氮沉降的环境意义.结果表明:(1)2016年4月-2018年7月,NO2--N、NO3--N、NH4+-N的平均浓度分别为1.01 mg/L、2.45 mg/L、1.30 mg/L;NO2--N、NO3--N、NH4+-N的平均沉降量分别为0.02 kg/hm2、0.09 kg/hm2、0.30 kg/hm2.曲麻莱氮浓度占源区比重最高,沱沱河次之,直门达最小,且春、夏季氮沉降量高于秋、冬季.(2)氮沉降浓度与降水量之间呈对数函数关系,沉降量与降水量之间呈正向幂函数关系;NO2  相似文献   

3.
利用太白山北麓2011年12月-2013年7月共39次降水样品数据资料, 定量分析了该区域降水化学的特征和时间变化规律. 结果表明: 太白山北麓地区降水中, 除常量离子Na+、NH4+、K+、Mg2+、Ca2+、F-、Cl-、SO42-、NO3-外, CO32-、HCO3-、PO43-及低分子有机酸也占有相当比例. 研究区降水常量离子浓度的顺序依次为: NH4+ > SO42- > Ca2+ > NO3- > Na+ > Cl- > Mg2+ > K+ > F-, 离子总浓度表现出明显的季节变化: 夏季(轻度污染) < 秋季(中等污染) < 春季(严重污染) < 冬季(极重污染). 利用因子分析法得出太白山北麓地区降水组分主要有三种来源; Na+、Cl-、Mg2+、Ca2+主要来自地壳源, SO42-、NO3-、NH4+主要来自人为源, K+和F-主要由海盐源和人为源共同贡献. 根据Hysplit 后向气流轨迹分析, 得出不同路径气团降水离子组分不同: 受地形等因素影响, 北方路径的气团比南方路径气团离子总浓度较高; 受土壤类型影响, 西北方向气团降水Na+、Mg2+、Ca2+浓度较高; 受人为活动影响, 东北方向SO42-、NO3-、NH4+浓度较高.  相似文献   

4.
中国第二次北极科学考察沿线气溶胶成分分析   总被引:7,自引:2,他引:5  
对2003年7月15~9月28日间中国第二次北极科学考察沿线所采集的气溶胶样品进行分析,获得了Na+、NH4+ 、Ca2+、Cl-、MSA、SO42- 等11种离子的浓度数据(文中使用当量浓度).根据相关分析, 可将11种离子分为3类: 海盐源离子, 包括Na+、Mg2+、K+、Ca2+、Cl-、SO42-; 人为源, 包括NH4+ 、NO3-; 其它源, 包括 CH3COO-、MSA、C2O42-. 气溶胶以海盐气溶胶为主, Cl-、Na+ 离子分别是阴阳离子中含量最大的离子, (Na+ +Cl-)对气溶胶载量(所测定的阴阳离子的总和)的贡献平均为60.2%, 占气溶胶总量的一半以上. NH4+ /SO42- 的比值的平均为0.45, 根据当地的大气环境和气溶胶的离子平衡, 认为气溶胶样品中NH4+ 和 SO42- 主要是以 NH4HSO4的形式结合. 根据考察沿线 NO3- 浓度的变化, 把考察沿线大致分为3个区: 日本海区, 中值为15.2 neq·m-3; 鄂霍次克海及白令海区, 中值为1.8 neq·m-3; 北冰洋区, 其浓度较低, 中值为0.4 neq·m-3. 考察沿线白令海是MSA的高产区.  相似文献   

5.
秦岭太白山南麓降水中常量无机离子特征及其来源研究   总被引:1,自引:0,他引:1  
以2011年11月至2014年9月连续采集的74个有效降水样品为研究载体,运用趋势分析法和相关分析法分析太白山南麓黄柏塬地区降水中常量无机离子(NH4+、Ca2+、Na+、K+、Mg2+、SO42-、NO3-、Cl-、F-)的化学特征,并结合富集因子法、端源贡献法及后向气流轨迹模型探究其来源。结果表明:研究区降水中各离子浓度大小顺序为Ca2+ > SO42- > NH4+ > NO3- > K+ > Na+ > Mg2+ > Cl- > F-,主要阳离子是Ca2+和NH4+,共占阳离子总量的76.21%,主要阴离子是SO42-和NO3-,共占阴离子总量的90.83%。降水总离子年平均浓度为404.64 μeq·L-1,相对于国内外已研究的其他高山站点偏高,表现出典型的大陆型及人为源干扰的特征。受排放源、气象因子、植被、降水量等因素影响,降水总离子浓度表现出显著的季节差异,依次为冬季 > 春季 > 秋季 > 夏季。源解析结果显示降水中SO42-和NO3-95%以上由人为源贡献,Ca2+和Mg2+主要来源于地壳风化,Na+海盐源和非海盐源贡献约各占一半,K+主要来自于非海盐贡献,而F-和NH4+则几乎全部由人为源贡献。不同路径气团影响下的降水离子组分具有明显不同,北方气团途径太原、石家庄、北京、兰州等工业发达城市,工业燃煤交通废气排放量大,降水中SO42-、NO3-浓度均偏高,离子总浓度也明显高于南方气团。  相似文献   

6.
为了研究湿地香蒲种群对不同水深环境的生态响应规律和特征,分别于2018-06-30,2018-07-30,2018-08-29,2018-09-28进行野外采样,通过调查和室内化学分析,探讨了7个不同淹水深度下香蒲种群生长指标、水质因子和底泥因子的变化情况。结果表明:在不同淹水深度下,香蒲的生长指标差异显著,当淹水深度为50 cm时,香蒲的生长状态最优;4个采样日石佛寺水库水样大体呈弱碱性,底泥类型为中性偏酸性;随着淹水深度的增加,水样中的溶解氧(DO)、硝态氮(NO3-)和亚硝态氮(NO2-)质量浓度逐渐减小,总氮(TN)和氨氮(NH4+)质量浓度增大,底泥中氨氮(NH4+)和有机碳(SOC)质量分数总体增大,总氮(TN)、硝态氮(NO3-)和亚硝态氮(NO2-)质量分数逐渐减小,电导率总体逐渐降低,总磷(TP)和速效磷(AP)的质量分数基本呈波动状态。底泥和水体中氮元素的含有量对香蒲的生长影响较大。  相似文献   

7.
中国首次北极科学考察沿线气溶胶可溶性成分的分析   总被引:6,自引:3,他引:3  
孙俊英 《冰川冻土》2002,24(6):744-749
中国首次北极科学考察沿线采集的大气气溶胶样品可溶性成分分析表明,大气气溶胶的平均载量为195neq·m-3,Na+和Cl-的贡献为0%,NH4+和SO42-的贡献为27%,nssSO42-对SO42-的贡献为8%.气溶胶中阴、阳离子总量基本相当,大气环境呈中性.气溶胶中可溶性成分具有较强的纬度变化特征.根据离子的变化态势可将离子分为3大类,即1)Na+,Cl-,SO42-,K+,Mg2+,Ca2+;2)NH4+,NO3-;3)MSA.Na+和Cl-具有较好的线性关系,Cl-/Na+的当量浓度比为1.01,小于其在海水中的比值1.1.NH4+和NO3-的浓度随纬度的增加呈现减少的趋势,说明在低纬度近海岸地区人类活动的污染相当强烈.MSA的浓度在白令海区出现高值,与Shemya(52°N,174°E)站夏季浓度1.79±0.83neq·m-3(170±79ng·m-3)相当.通过与不同海区夏季释放DMS的通量对比,进一步证明了低温有利于DMS向MSA的转化.  相似文献   

8.
为探讨河西走廊地下水“三氮”的污染现状和个人健康风险。本文以酒泉东盆地为例,通过数据统计、空间分布趋势、污染源和影响因素分析的手段,从“三氮”分布、迁移和影响因素及其健康风险评价进行研究。结果表明:在其独特的地形地貌、氧化还原环境、包气带和含水层岩性、潜水的埋深、酸碱环境和地下径流条件等自然因素以及生态环境的破坏和城市化的发展等人为因素影响下,研究区地下水“三氮”总体含量较低,污染相对较轻,仅有一处NO3--N含量超过标准限值;区域分布上,“三氮”含量具有明显的北高南低的规律,NO3--N和NO2--N含量东、西两侧高,中间低,NH4+-N含量由西北向东南逐渐减少。“三氮”个人年健康风险的整体分布趋势基本一致,由西部人口密集区域向东部人口非密集区域逐渐递减。  相似文献   

9.
张艳阁  徐建中  余光明 《冰川冻土》2017,39(5):1022-1028
为了研究青藏高原东北缘老虎沟地区大气颗粒物中水溶性无机离子组分的变化特征,于2016年7月16日至8月11日共采集13个PM2.5样品和4套粒径分级样品。研究结果显示:非沙尘期间,水溶性离子总质量浓度为2.35 μg·m-3,主要离子SO42-、Ca2+、NH4+和NO3-的浓度分别为1.28、0.33、0.32和0.28 μg·m-3,约占水溶性离子浓度总和的94%;沙尘期间,水溶性无机离子总质量浓度为12.63 μg·m-3,是非沙尘期间浓度的5倍,主要离子SO42-、Ca2+、Cl-、Na+和NO3-的浓度依次为5.36、4.77、0.80、0.62和0.61 μg·m-3,约占水溶性离子浓度总和的96%。分级样品分析结果表明,NO3-主要分布在粗颗粒模态,可能是前体物在粉尘表面发生非均相反应产生。在沙尘时期,SO42-主要为粉尘贡献,集中分布在粗颗粒模态。在非沙尘时期,SO42-在粗颗粒模态和积聚模态都有较多的分布。积聚模态的SO42-主要是通过前体物与NH3发生均相反应产生。据估算,非沙尘时期的二次反应对PM2.5中SO42-的贡献约为80%。  相似文献   

10.
在分析岩溶地下河系统范围内水源、污染源特性的基础上,建立了双源调查、源汇追踪和源头阻控为主要内容的岩溶地下河污染修复治理模式——三源模式。以遵义市坪桥地下河系统为例,利用三源模式对该地下河污染进行修复治理实践。结果表明:研究区分布有各类水点25处,以钻孔、岩溶泉点、地下河出口为主,特征污染物为以NH4+、NO3-、SO42-、Mn2+、Se2+为主;分布有各类污染源点15处,以工业废渣堆放场为主,主要分布在地下河系统下游坪桥工业园区一带,特征污染物同样为以NH4+、NO3-、SO42-、Mn2+、Se2+为主;地下河系统范围内有3条地下水污染通道,均分布在地下河出口与坪桥工业园区Z1(1#、2#)废渣处置场之间;通过对2#废渣处置场排洪竖井-地下河出口这一污染通道上游段进行帷幕工程修复后,地下河出口可减排污水排放量47 244...  相似文献   

11.
放牧强度对高寒杂草类草甸群落结构及生物量的影响   总被引:4,自引:1,他引:3  
分析了不同放牧强度下青藏高原高寒杂草类草甸植物群落种类组成与结构、物种多样性、生物量的变化状况.结果表明:重牧(HG)条件下草层垂直分化不明显,仅1层结构,而轻牧(LG)和中牧(MG)与对照(CK)条件下禾草和矮嵩草能得到较好的生长,草场垂直结构分异为2层;不同放牧强度下莎草科、禾本科和杂类草的重要值变化趋势不尽相同,HG会导致种类组成的下降,CK和适度放牧下种类组成仍保持较高的水平;尽管短期过度放牧抑制了优良牧草的生长和发育,种类组成降低,但因放牧时间短,组成群落的主要优势种具有较强的耐牧性以及植物生态-生物学特性和遗传性,其群落结构是稳定的;植物地上生物量表现出MG >LG >CK >HG,即适度放牧可提高地上生物量;地下生物量在CK条件下最高,其次为MG、HG和LG,CK、MG与LG、HG有显著性差异.植物根冠比从大到小依次为HG、CK、MG、LG,HG的根冠比显著大于LG.  相似文献   

12.
牧压梯度下高寒杂草类草甸土壤持水能力及影响因素分析   总被引:2,自引:0,他引:2  
以祁连山南麓坡地夏季牧场高寒杂草类草甸为研究对象,进行了封育对照(CK,禁牧)、轻度放牧(LG)、中度放牧(MG)和重度放牧(HG)下土壤持水能力及影响因素的分析. 结果表明:牧压梯度下0~10 cm层土壤最大持水量和毛管持水量均在LG最大,土壤自然贮水量LG略小于HG;而在10~20 cm和20~40 cm持水量均在HG最大,说明放牧对表层土壤的持水能力影响比深层更明显. 0~10 cm层土壤容重随牧压强度增加而增大,较深层次土壤容重基本一致,表明放牧对较深层土壤容重造成的影响远小于表层. 牧压梯度下植被地上地下生物量、枯落物、地表半腐殖质随放牧强度增大而减少;0~10 cm土壤有机质含量在MG最大,CK最小,10~20 cm和20~40 cm层土壤的有机质含量CK最大,说明不同土层有机质含量对牧压梯度的响应有所不同. 土壤持水量与多种因素有关,主要受到地下生物量、有机质和容重等因素的影响,表明随放牧强度增大,践踏使土壤表面硬度增加,土壤空隙度减少,同时家畜过度采食使地面植被覆盖降低而增加土壤水分的蒸发. 这些综合作用下引起放牧地土壤持水能力降低.  相似文献   

13.
周玮  严敏  苏春花  李玲  雷章琴 《中国岩溶》2018,37(2):168-174
碳酸盐岩发育土壤的厚度变幅大,通过野外挖掘调查,在贵阳市花溪区分薄土、中土及厚土3种土层类型研究喀斯特地区不同土层厚度下微生物数量及生物量,结果表明:随着土层厚度的增加,土壤的细菌、真菌、放线菌及微生物总数逐渐增加;细菌在土壤微生物中占据了绝对优势,在石灰岩及白云岩发育土壤的各土层中分别占88.13%、85.71%、87.36%、85.00%及77.78%;石灰岩发育的土壤从薄土到厚土微生物量碳(C)、氮(N)、磷(P)的含量逐渐增加,分别增加15.15 mg·kg-1、2.82 mg·kg-1、0.18 mg·kg-1,白云岩从薄土到中土微生物量C、N、P的含量分别增加5.13 mg·kg-1、0.39 mg·kg-1、0.10 mg·kg-1;在同等厚度下石灰岩发育的土壤微生物量N、P含量明显低于白云岩发育的土壤,中土中差异最大,分别相差0.90 mg·kg-1和0.21 mg·kg-1,而石灰岩发育土壤的中土中微生物量C的含量则高于白云岩发育的土壤,高17.31 mg·kg-1;探讨相关性,pH值对微生物量C、P有显著影响(p<0.05),全P含量对微生物量P有极显著影响(p<0.01)。   相似文献   

14.
祁连山森林草原带为典型的山地森林和草原镶嵌景观,带内植被呈显著的斑块状分布格局,与地形因子密切相关。探究森林草原带内地形因子与土壤和植被的关系,对该区生态恢复具有重要意义。采用样地-样方调查法,研究了祁连山森林草原带土壤属性和植被生物量随坡向(南、西南、西和北)和坡位(山顶、上坡、中坡、下坡和山谷)的变化特征及其与水热因子的关系。结果表明:坡向梯度上,北坡土壤有机碳含量为50.79 g·kg-1,全氮含量为2.82 g·kg-1,土壤含水量为32.86%,地上和地下生物量为5.09和6.39 kg C·m-2,分别为南坡的2.54、3.97、2.07、24.62和149.30倍。坡位梯度上,土壤有机碳、全氮、全磷、土壤含水量在山谷最大,分别为50.23 g·kg-1、3.47 g·kg-1、0.80 g·kg-1和32.01%,是山顶的1.73、1.69、1.56和1.30倍,山坡的1.92、2.85、1.74和1.46倍。回归分析显示,土壤含水量是限制祁连山森林草原带土壤碳氮含量和草地生物量分布的主要环境因子,复相关系数在0.74~0.93之间。  相似文献   

15.
为了阐明高寒草甸退化过程中植物群落物种多样性、生产力与土壤特性的关系, 在青藏高原东缘的玛曲县沿着高寒草甸退化梯度选取了轻度退化草甸、中度退化草甸、重度退化草甸和沙化草甸, 测定了高寒草甸退化过程中植物群落物种多样性、生产力与土壤理化性状. 结果表明: 从轻度退化到中度、重度和沙化草甸, 植被地下生物量分别降低了36%、48%和91%, 总生物量分别降低了34%、47%和91%, 土壤有机碳分别下降了18%、81%和97%, 全N分别下降了25%、82%和95%, 全P含量分别下降了14%、33%和41%. 随着高寒草甸的退化, 植被群落的生物多样性和地上生物量呈先稳定后降低的趋势, 土壤砂粒含量、pH值和全K含量呈增加趋势, 黏粉粒呈降低趋势, 速效N、速效P和速效K呈先增加后降低的趋势. 相关分析表明, 群落物种多样性和生产力与土壤有机碳、全N、全P、速效N、速效P、速效K、黏粒含量、粉粒含量、水分含量均呈显著正相关(P<0.01), 而与土壤砂粒、全K和pH值均呈显著负相关(P<0.05). 因此, 高寒草甸退化过程中, 土壤质地、养分和水分等的复杂变化及其相互关系共同决定着高寒草甸群落物种多样性和生产力的变化. 同时, 植被生产力和土壤碳、氮的降低产生明显的正反馈效应, 导致在重度退化阶段和沙化阶段, 植被生产力和土壤碳氮的急剧下降.  相似文献   

16.
The study of temporal and spatial variations of nitrate in groundwater under different soil nitrogen environments is helpful to the security of groundwater resources in agricultural areas. In this paper, based on 320 groups of soil and groundwater samples collected at the same time, geostatistical analysis and multiple regression analysis were comprehensively used to conduct the evaluation of nitrogen contents in both groundwater and soil. From May to August, as the nitrification of groundwater is dominant, the average concentration of nitrate nitrogen is 34.80 mg/L; The variation of soil ammonia nitrogen and nitrate nitrogen is moderate from May to July, and the variation coefficient decreased sharply and then increased in August. There is a high correlation between the nitrate nitrogen in groundwater and soil in July, and there is a high correlation between the nitrate nitrogen in groundwater and ammonium nitrogen in soil in August and nitrate nitrogen in soil in July. From May to August, the area of low groundwater nitrate nitrogen in 0–5 mg/L and 5–10 mg/L decreased from 10.97% to 0, and the proportion of high-value area (greater than 70 mg/L) increased from 21.19% to 27.29%. Nitrate nitrogen is the main factor affecting the quality of groundwater. The correlation analysis of nitrate nitrogen in groundwater, nitrate nitrogen in soil and ammonium nitrogen shows that they have a certain period of delay. The areas with high concentration of nitrate in groundwater are mainly concentrated in the western part of the study area, which has a high consistency with the high value areas of soil nitrate distribution from July to August, and a high difference with the spatial position of soil ammonia nitrogen distribution in August.  相似文献   

17.
重庆丰都岩溶区植烟土壤肥力特征及综合评价研究   总被引:3,自引:2,他引:1  
兰木羚  高明 《中国岩溶》2014,33(2):216-222
以重庆市丰都县植烟区石灰岩土壤为研究对象,通过野外调查采样和室内分析方法,并采用主成分分析法和模糊数学隶属度函数模型估算出土壤适宜性指数(SFI),进而对土壤养分状况进行综合评价。结果表明:(1)该岩溶区植烟土壤pH多呈弱酸性至中性,有23.08 %的土壤样品pH低于5.00,这些土壤酸化问题较为突出;(2)有机质和氮含量丰富,78.85 %的土样有机质含量处在植烟所需的最适宜范围(15~30 g/kg)内,全部土样的碱解氮含量均在植烟所需的适宜范围(65~100 mg/kg)内,且变异系数仅为0.92 %;(3)土壤全磷表现出中至高含量水平(>0.6 g/kg),但土壤有效磷供应不足,20.93 %土样有效磷含量处在缺乏水平(<10 mg/kg)以下;(4)土壤钾元素供应充足,全钾含量全部处于丰富或极丰富水平(>25 g/kg),超过81.84 %土样其速效钾含量处于植烟所需的适宜范围(>150 mg/kg)内;(5)该岩溶区土壤肥力整体水平不高,仅15.38 %土样的综合肥力为较高水平(0.70>SFI≥0.60),57.69 %为中低等水平(0.60>SFI≥0.40),26.93 %为低水平(SFI≤0.40),这与岩溶地区土壤贫瘠且侵蚀退化严重、施肥不合理等因素有关。为此,建议科学耕作,抑制土壤侵蚀退化,同时通过撒施生石灰等调节土壤pH,并适当提高复合肥中磷素比例。   相似文献   

18.
研究目的】为仁怀市农业生产中土壤养分的合理利用、农业结构调整及土地利用价值的提升等提供科学依据。【研究方法】本文利用电感耦合等离子体发射光谱法、容量法及电位法获取了5486件表层土壤样品氮磷钾(全量和有效态)及有机质的含量,系统研究了其地球化学特征及含量影响因素。【研究结果】仁怀市耕地土壤氮、磷、钾、有机质、碱解氮、速效磷及速效钾的平均值分别为1.74 g/kg、0.75 g/kg、19.90 g/kg、30.90 g/kg、100.28 mg/kg、10.40 mg/kg和101.03 mg/kg。其中,氮、碱解氮、磷、钾及有机质的含量及分布与地层关系密切;速效磷及速效钾的含量及分布与地层关系较差。仁怀市耕地土壤肥力较好,以较丰富等级为主,较丰富及丰富等级占比为57.6%。其中,氮、磷及钾皆处于丰富水平;碱解氮及有机质处于中等水平;速效磷及速效钾处于缺乏水平。【结论】仁怀市耕地土壤养分的含量及分布不仅受地质背景、土壤类型、海拔高度、酸碱度及土壤深度等自然因素影响,还与土地利用方式等人为活动有关。创新点:系统统计了仁怀市耕地土壤氮磷钾(全量和有效态)及有机质的含量,对其地球化学等级开展了评价,并系统分析了它们的含量影响因素。耕地土壤养分的含量及分布不仅受地质背景、土壤类型等自然因素影响,还与土地利用方式等人为活动有关。  相似文献   

19.
任梦梦  黄芬  胡晓农  曹建华  张鹏 《地球科学》2020,45(5):1830-1843
以漓江流域境内地表河和地下河为研究对象,通过测定、分析水体中的水化学组成以及δ13CDIC、δ15N-NO3-、δ18O-NO3-等,利用同位素质量平衡混合模型,初步探讨了漓江流域境内DIC、硝酸盐的分布特征及其来源.结果表明:漓江流域DIC(即HCO3-)浓度和无机碳稳定同位素(δ13CDIC)分别在12.20~402.60 mg·L-1和-17.29‰~-10.01‰,平均值分别为140.3 mg·L-1和-13.06‰.NO3-浓度在2.37~35.38 mg·L-1,δ15N-NO3-在0.99‰~11.09‰,均展现出明显的空间变异特征.有机肥和污水对漓江流域硝酸盐的贡献最为显著,贡献比达57.00%.其次是化肥、降雨中的NH4+和土壤N,贡献比分别是36.45%,6.55%.流域内DIC主要来源于碳酸盐岩的风化和土壤CO2的溶解,同时也受硝酸溶蚀碳酸盐岩和大气CO2的影响.结果可为定制有效的控制硝酸盐的输入途径,净化水质测略提供依据.   相似文献   

20.
This study was directed toward a preliminary assessment of nitrate degradation in northeast Iowa soils. Soil experimental plots were created with variable combinations of fertilizers, ethanol, irrigation, and plant growth. The maximum average concentration of nitrate was much higher in the chemically fertilized plots (500 mg/km) than those fertilized organically (120 mg/kg). This was attributed to the excessive ammonia volatilization from the applied cow manure. Soil nitrate dropped from 155 to 50 mg/kg in a matter of 3 weeks in the deep samples of the intermittently irrigated plots. This is because higher soil moisture lowered the oxygen level, which favored denitrification. Although ethanol seemed to have restricted the release of nitrate in the manure-treated plots, the data are not conclusive. The highest degradation of soil-nitrate (lowest recovered 38 mg/kg) was observed in the plots that simultaneously grew corn, received cow manure, and were not irrigated. Soils in these plots were depleted of nitrogen by ammonia volatilization from manure, and through the uptake by corn plants. Nitrification of organic nitrogen to nitrate was restricted in plots that were left without irrigation. Rain events helped nitrification on the surface, but promoted denitrification at depth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号