首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
CO2浓度急剧上升成为一个很严峻的问题,因此,降低大气CO2浓度成为当务之急.目前涉及的方案中的海洋封存、地质封存,虽封存潜力巨大,但带来的负面影响也不容小觑.CO2矿化利用实质是模拟自然界岩石化学风化,作为一种新兴的减排方案,既能固定大气CO2,生成具有工业附加值的碳酸盐产品,又能实现环境友好.能够矿化利用的原材料包括天然富钙、镁硅酸盐矿物,工业碱性废固、液,盐湖中的氯化镁资源等,矿化利用的方法也不尽相同.虽然硅酸盐岩的风化是如何控制长时间尺度的气候变化的机制还没有定论,但风化过程中具有固定大量CO2的潜力这一认识已达成共识.对含有大量硅酸盐矿物的尾矿矿化CO2的研究是目前的热点,介绍了尾矿矿化CO2的研究现状及几种重要尾矿矿物的矿化应用潜力.   相似文献   

2.
A detailed experimental mineralogical and geochemical study on hydrothermal alteration processes of volcanic glasses with a different chemical composition and leucites sampled in the Roman Comagmatic Region was carried out. 2g samples of different grain sizes and 50 ml of deionized water or seawater were sealed in bronze Teflon-lined autoclaves and placed in a rotating sample-holder at 200°C. The internal pressure was 16.2 bars. At arbitrary intervals, the pressure vessel was quenched to room temperature and both solids and solutions were separated by filtration. The solids were used to identify possible alteration products by means of X-ray powder diffraction, SEM and microprobe analyses. In all deionized water systems the contact solution reached pH basic values, but in the various systems the consumption of H+ ions occurred in different ways. This is probably linked to different concentrations of released cations. In seawater systems, however, pH values initially fell sharply but subsequently increased slightly. After 2 days, cation concentrations were clearly buffered by reaction products in all solutions. These were mainly zeolites and clay minerals. The following crystallization sequences in all glass/deionized water experiments were observed: the first reaction product was represented by phillipsite, followed by analcime and illite in the alkali-trachytic run; chabasite and analcime in the phonolitic-tephritic run; analcime and finally feldspar in shoshonitic and trachytic runs. Phillipsite and smectite crystallized together only in the basaltic run. In leucite/deionized water systems, however, the first reaction phase was illite, followed by analcime and then phillipsite. The reaction products in glass/seawater systems were smectite and anydrite. The chemical composition of synthetic zeolites was clearly controlled by the chemistry of initial glasses. These synthetic zeolites are like the natural ones in volcaniclastic products from central and southern Italy. This suggests that extensive zeolitization processes of these volcaniclastic rocks may occur through interaction of volcanic glasses with fluids at a very low salinity and a temperature close to 200°C.  相似文献   

3.
An analytical artefact is reported here related to differences in instrumental mass fractionation between NIST SRM glasses and natural geological glasses during SIMS boron isotope determinations. The data presented demonstrated an average 3.4‰ difference between the NIST glasses and natural basaltic to rhyolitic glasses mainly in terms of their sputtering-induced fractionation of boron isotopes. As no matrix effect was found among basaltic to rhyolitic glasses, instrumental mass fractionation of most natural glass samples can be corrected by using appropriate glass reference materials. In order to confirm the existence of the compositionally induced variations in boron SIMS instrumental mass bias, the observed offset in SIMS instrumental mass bias has been independently reproduced in two laboratories and the phenomenon has been found to be stable over a period of more than one year. This study highlights the need for a close match between the chemical composition of the reference material and the samples being investigated.  相似文献   

4.
矿物法--环境污染治理的第四类方法   总被引:26,自引:0,他引:26  
鲁安怀 《地学前缘》2005,12(1):196-205
总结介绍了近10年开展环境矿物材料研究所取得的较为系统的研究成果。新提出环境矿物材料基本性能,包括矿物表面效应、孔道效应、结构效应、离子交换效应、结晶效应、溶解效应、水合效应、氧化还原效应、半导体效应、纳米效应及矿物生物交互效应等。展示环境矿物材料开发应用方面的崭新成就,包括利用天然铁的硫化物矿物强还原性,发明一步法还原Cr(Ⅵ)与沉淀Cr(Ⅲ)废水处理新工艺;利用天然锰的氧化物矿物强氧化性,发明处理高浓度与强污染的印染和酚类废水新方法;利用天然钛的氧化物矿物日光催化性,发明光催化降解卤代有机污染物新方法;利用天然蛭石高温脱水膨胀热效应,发明能大幅度提高型煤固硫率与除尘新方法;利用天然钙基蒙脱石低成本制备出同时防止水体与无机和有机污染物渗漏的自愈性强的填埋场衬层建造用新型防渗材料,发明生活垃圾尤其是危险废物填埋场衬层建造新工艺;发现凝灰岩与花岗岩中长石类矿物发育有良好的孔道结构,核素进入可发生固定化作用,成为有效阻滞核素迁移的天然屏障;利用天然纳米管状纤蛇纹石成功制备二氧化硅纳米管,接枝有机物可由亲水性变为疏水性;利用黄钾铁矾的胶体特征作为多金属矿山废石堆隔离防渗层,防止金属硫化物矿物氧化分解与矿山酸性废水污染等。着重指出今后环境矿物?  相似文献   

5.
The most common and difficult of all hazardous waste sites are those that historically produced artificial (manufactured) gas; for gas-making was international in scope and at the very core of the industrial revolution. With former manufactured gas plants (FMGPs), virtually no geologic region in the industrialized or urbanized world or its trade centers and ports escaped the gas industry. These plants applied pyrolysis of organic matter (roasting to drive off volatiles in the form of useful gases) to illuminate the world and to fuel all manner of progress.

Gas was and is the universal fuel. Its prominence stemmed from the omnipresence of organic matter and the universal process for the extraction of its volatile contents to manufacture useful gas. Furthermore, for most of the century and a half-long history of manufactured gas, natural gas was unavailable to slow or daunt the production of man-made gas and the universal creation of its toxic tar residues and other harmful waste residuals.

Today we face the presence of toxic organic gas manufacturing residuals as a unique threat to both the health and welfare of contemporary society, as well as being a long-term threat to the environment that is dominantly geologic in character. Most of these tar residuals are highly resistant to natural degradation or attenuation in the environment and their lives, therefore, they are measured in geologic time. Given its environmental persistence, potential problems associated with tar may exist centuries to thousands of years.

Engineering geologists and geological engineers are, by training and experience, particularly well equipped to plan, manage and conduct site and waste characterization efforts for FMGPs and related coal-tar sites.  相似文献   


6.
Safe storage of radioactive waste is a major challenge for the nuclear industry. Mineralogy is a good basis for designing ceramics, which could eventually replace nuclear glasses. This requires a new storage concept: separation-conditioning. Basic rules of crystal chemistry allow one to select the most suitable structures and natural occurrences allow assessing the long-term performance of ceramics in a geological environment. Three criteria are of special interest: compatibility with geological environment, resistance to natural fluids, and effects of self-irradiation. If mineralogical information is efficient for predicting the behaviour of common, well-known minerals, such as zircon, monazite or apatite, more research is needed to rationalize the long-term behaviour of uncommon waste form analogs.  相似文献   

7.
Environmental Mineralogy has developed over the past decade in response to the recognition that minerals are linked in many important ways with the global ecosystem. Minerals are the main repositories of the chemical elements in Earth's crust and thus are the main sources of elements needed for the development of civilization, contaminant and pollutant elements that impact global and local ecosystems, and elements that are essential plant nutrients. These elements are released from minerals through natural processes, such as chemical weathering, and anthropogenic activities, such as mining and energy production, agriculture and industrial activities, and careless waste disposal. Minerals also play key roles in the biogeochemical cycling of the elements, sequestering elements and releasing them as the primary minerals in crustal rocks undergo various structural and compositional transformations in response to physical, chemical, and biological processes that produce secondary minerals and soils. These processes have resulted in the release of toxic elements such as arsenic in groundwater aquifers, which is having a major impact on the health of millions of people in South and Southeast Asia. The interfaces between mineral surfaces and aqueous solutions are the locations of most chemical reactions that control the composition of the natural environment, including the composition of natural waters. The nuclear fuel cycle, from uranium mining to the disposition of high-level nuclear waste, is also intimately related to minerals. A fundamental understanding of these processes requires molecular-scale information about minerals, their bulk structures and properties such as solubility, their surfaces, and their interactions with aqueous solutions, atmospheric and soil gases, natural organic matter, and biological organisms. Gaining this understanding is further complicated by the presence of natural, incidental, and manufactured nanoparticles in the environment, which are becoming increasingly important due to the rapidly developing field of nanotechnology. As a result of this complexity, Environmental Mineralogy requires the use of the most modern molecular-scale analytical and theoretical methods and overlaps substantially with closely related fields such as Environmental Sciences, low-temperature Geochemistry, and Geomicrobiology. This paper provides brief overviews of the above topics and discusses the complexity of minerals, natural vs. anthropogenic inputs of elements and pollutants into the biosphere, the role of minerals in the biogeochemical cycling of elements, natural nanoparticles, and the Environmental Mineralogy of three major potential pollutant elements (Hg, As and U).  相似文献   

8.
Lithium is an important geochemical tracer for fluids or solids. However, because the electron microprobe cannot detect Li, variations of Li abundance at the micrometric scale are most often estimated from bulk analyses. In this study, the Li intense emission line at 670.706 nm in optical emission spectroscopy was used to perfect the analysis of Li at the micrometric scale by means of laser-induced breakdown spectroscopy (LIBS). To estimate lithium content for different geological materials, LIBS calibration of the emission line at 670.706 nm was achieved by use of synthetic glasses and natural minerals. The detection limit for this method is ∼5 ppm Li. Three applications to geological materials show the potential of LIBS for lithium determination, namely for Li-bearing minerals, melt inclusions, quartz, and associated fluid inclusions.For spodumene and petalite from granite pegmatite dikes (Portugal), the Li2O concentrations are 7.6 ± 1.6 wt% and 6.3 ± 1.3 wt%, respectively, by use of LIBS. These values agree with ion microprobe analyses, bulk analyses, or both. For eucryptite crystals, the Li concentrations are scattered because grain size is smaller than the LIBS spatial resolution (6 to 8 μm). Lithium concentrations of melt inclusions from the Streltsovka U deposit (Siberia) are in the range of 2 to 6.2 wt% (Li2O) for Li-rich daughter minerals. Lithium estimations on silicate glasses display values between 90 and 400 ppm.Lithium was also analyzed as a trace element in quartz. Transverse profiles were performed in hydrothermal barren quartz veins from the Spanish Central System (Sierra de Guadarrama). The highest Li concentrations (250 to 370 ppm) were found in specific growth bands in conjunction with the observed variation in optical cathodoluminescence intensity. Considering the fluid inclusion analysis, the source of fluid responsible to the Li enrichment in quartz is probably high-salinity fluids derived from sedimentary basins.  相似文献   

9.
Shidiya Phosphorites, Southeast Jordan, provide a typical example of natural geological materials depleted with potentially toxic elements as compared to other phosphate deposits from all over the World. Nevertheless, the environmental concern as to whether processing and fertilizer production might affect the potentially toxic element concentrations in these phosphates positively or negatively has to be avoided. In order to do so, this study was designed to provide information on the redistribution pathways of the measured toxic elements during the several processing steps, including crushing, screening, washing, flotation and drying processes. It aimed also at providing information on the redistribution pathways during the different phosphate fertilizer production steps. The bioavailability of potentially toxic elements in acidic and alkaline environments has also been assessed.  相似文献   

10.
Reprocessing of spent nuclear fuel (SNF) for recovery of fissionable elements is a precondition of long-term development of nuclear energetics. Solution of this problem is hindered by the production of a great amount of liquid waste; 99% of its volume is low- and intermediate-level radioactive waste (LILW). The volume of high-level radioactive waste (HLW), which is characterized by high heat release, does not exceed a fraction of a percent. Solubility of glasses at an elevated temperature makes them unfit for immobilization of HLW, the insulation of which is ensured only by mineral-like matrices. At the same time, glasses are a perfect matrix for LILW, which are distinguished by low heat release. The solubility of borosilicate glass at a low temperature is so low that even a glass with relatively low resistance enables them to retain safety of under-ground LILW depositories without additional engineering barriers. The optimal technology of liquid confinement is their concentration and immobilization in borosilicate glasses, which are disposed in shallow-seated geological repositories. The vitrification of 1 m3 liquid LILW with a salt concentration of ~300 kg/m3 leaves behind only 0.2 m3 waste, that is, 4–6 times less than by bitumen impregnation and 10 times less than by cementation. Environmental and economic advantages of LILW vitrification result from (1) low solubility of the vitrified LILW in natural water; (2) significant reduction of LILW volume; (3) possibility to dispose the vitrified waste without additional engineering barriers under shallow conditions and in diverse geological media; (4) the strength of glass makes its transportation and storage possible; and finally (5) reliable longterm safety of repositories. When the composition of the glass matrix for LILW is being chosen, attention should be paid to the factors that ensure high technological and economic efficiency of vitrification. The study of vitrified LILW from the Kursk nuclear power plant with high-power channel reactors (HPCR; equivalent Russian acronym, RBMK) and the Kalinin nuclear power plant with pressurized water reactors (PWR; equivalent Russian acronym VVER) after their 14-yr storage in the shallow-seated repository at the MosNPO Radon testing ground has confirmed the safety of repositories ensured by confinement properties of borosilicate matrix. The most efficient vitrification technology is based on cold crucible induction melting. If the content of a chemical element in waste exceeds its solubility in glass, a crystalline phase is formed in the course of vitrification, so that the glass ceramics become a matrix for such waste. Vitrified waste with high Fe; Na and Al; Na, Fe, and Al; Na and B is characterized. The composition of frit and its proportion to waste depends on waste composition. This procedure requires careful laboratory testing.  相似文献   

11.
张统得  蒋炳  严君凤 《探矿工程》2020,47(4):134-139
废弃冲洗液无害化处理是落实绿色勘查理念的一项重要工作。通过室内测试分析与现场调研,对地质钻探不同领域的钻孔废弃冲洗液进行污染特性研究,了解其基本性质以及对环境的影响方式。结合湘桃地2井废弃冲洗液开展脱稳技术室内研究,对破胶剂及絮凝剂进行了优选,并获得了脱稳处理的基础配方。实验结果表明,经过处理后废弃冲洗液能实现快速脱稳絮凝,COD、悬浮物、色度等污染指标大幅下降,为下一步深度处理实现无害化排放创造了有利条件。  相似文献   

12.
A UV laser ablation microprobe coupled to an ICPMS has been used to determine trace element concentrations in solids with a spatial resolution of 50 microns and detection limits ranging from 2 μg/g for Ni to 50 ng/g for the REE, The, and U. Experiments designed to optimize laser operating conditions show that pulse rates of 4 Hz produce a steady state signal with less inter-element fractionation per unit time than higher pulse rates (10–20 Hz). Comparisons of laser microprobe analyses of garnets and pyroxenes using the NIST 610 and 612 glasses as calibration standards, with proton microprobe, solution ICPMS, INAA and XRF data show no significant matrix effects. Laser microprobe analyses of the NIST 610 and 612 glasses have a precision and accuracy of 2–5%, and error analysis shows that counting statistics and the precision on the internal standard concentration accounts for the analytical uncertainty. The NIST glasses appear to be useful calibration materials for trace element analysis of geological materials by laser microprobe.  相似文献   

13.
Infrared (IR) and Raman spectroscopic methods are important complementary techniques in structural studies of aluminosilicate glasses. Both techniques are sensitive to small-scale (<15 Å) structural features that amount to units of several SiO4 tetrahedra. Application of IR spectroscopy has, however, been limited by the more complex nature of the IR spectrum compared with the Raman spectrum, particularly at higher frequencies (1200–800 cm?1) where strong antisymmetric Si-O and Si-O-Si absorptions predominate in the former. At lower frequencies, IR spectra contain bands that have substantial contributions from ‘cage-like’ motions of cations in their oxygen co-ordination polyhedra. In aluminosilicates these bands can provide information on the structural environment of Al that is not obtainable directly from Raman studies. A middle frequency envelope centred near 700 cm?1 is indicative of network-substituted AlO4 polyhedra in glasses with Al/(Al+Si)>0·25 and a band at 520–620cm?1 is shown to be associated with AlO6 polyhedra in both crystals and glasses. The IR spectra of melilite and melilite-analogue glasses and crystals show various degrees of band localization that correlate with the extent of Al, Si tetrahedral site ordering. An important conclusion is that differences in Al, Si ordering may lead to very different vibrational spectra in crystals and glasses of otherwise gross chemical similarity.  相似文献   

14.
《Applied Geochemistry》2003,18(8):1165-1184
The thermodynamic stability of products obtained from the high-temperature treatment of municipal solid wastes and their associated residues (bottom ash, fly ash, filter cake, optional additives) can be estimated by calculation of their free energy of hydration ΔGhydr by a polyhedral approach. This approach has been applied on a series of 23 samples originating from high-temperature treatment processes operated under a range of conditions, and 3 thoroughly characterised standards. For vitreous or vitrocrystalline samples, it is demonstrated that Si and Ca contents clearly control their thermodynamic stability, and that the type of incineration process plays only a minor role. Silicon directly influences the durability of the samples, while Ca governs the pH during corrosion, which in turn affects the thermodynamic stability. It is also shown that there is a tight inverse relationship between the calculated thermodynamic stability of the samples and their rates of dissolution under aggressive conditions of corrosion. Attempts to compare the results to the large literature database of results obtained from nuclear high-level waste glasses, their proxies and other analogs (ancient and commercial glasses) are limited by sample preparation constraints. It is however concluded that the calculated thermodynamic stability of these “waste glasses” offers a valid estimate for their relative quality and, in turn, for their durability.  相似文献   

15.
We have developed a new database named GeoReM ( http://georem.mpch-mainz.gwdg.de ) for reference materials and isotopic standards of geochemical and mineralogical interest. Reference samples include rock powders originating from the USGS, GSJ, GIT-IWG, synthetic and natural reference glasses originating from NIST, USGS, MPI-DING, as well as mineral (e.g., 91500 zircon), isotopic (e.g., La Jolla, E&A, NIST SRM 981), river water and seawater reference materials. GeoReM is a relational database, which strongly follows the concept of the three EARTHCHEM databases. It contains published analytical and compilation values (major and trace element concentrations, radiogenic and stable isotope ratios), important metadata about the analytical values, such as uncertainty, uncertainty type, method and laboratory. Sample information and references are also included. Three different ways of interrogating the database are possible: (1) sample names or material types, (2) chemical criteria and (3) bibliography. Some typical applications are described. GeoReM currently (October 2005) contains more than 750 geological reference materials, 6000 individual sets of results and references to 650 publications.  相似文献   

16.
汪名鹏 《岩土工程技术》2011,25(2):106-108,F0003
正确分析评价垃圾填埋场的地质特征和防渗方案,对垃圾填埋场的选址、设计以及施工运营极为重要。从自然环境、地层结构及岩性特征等方面阐述了淮安市某垃圾填埋场的地质特征,分析了填埋区含水层分布、厚度、赋水性等水文地质条件;结合室内试验和野外试验,综合确定了填埋区岩土层渗透系数大于1×10^-7cm/s,表明填埋区不具备天然防渗的条件,需采用人工防渗系统才能有效的阻滞垃圾渗滤液对周边环境的影响。  相似文献   

17.
Micro- and non-crystalline opals, chalcedony and flint show diffuse small angle neutron scattering (SANS). Precious opals give rise to two additional intensity maxima at very small scattering angles which are due to Bragg reflections from the closest packed non-crystalline silica spheres. A small angle texture diagram reveals that the closest packing is faulty. Synthetic non-crystalline opals yield much less intense small angle scattering due to lower contrast between silica spheres and interstitial cement or particles; in this case intensity maxima were not observed. The outer part of the scattering curves of opal-CT and microcrystalline quartz deviates from Porod's law. The specific surface of natural non-crystalline opals ranges from 0.006 to 0.018 nm–1. In microcrystalline opals, the specific surface is about 10 times larger than in non-crystalline opals.  相似文献   

18.
Performance studies of a microscope‐camera system (MCS) and a laser ablation/ionisation mass spectrometer (LIMS) instrument (referred to here as a laser mass spectrometer or LMS) are presented. These two instruments were designed independently for in situ analysis of solids on planetary surfaces and will be combined to a single miniature instrument suite for in situ chemical and morphological analysis of surface materials on planetary bodies. LMS can perform sensitive chemical (elemental, isotope and molecular) analyses with spatial resolution close to micrometre‐sized grains. It allows for studies with mass resolution (MM) up to 800 in ablation mode (elemental composition) and up to 1500 in desorption mode (molecular analysis). With an effective dynamic range of at least eight orders of magnitude, sensitive and quantitative measurements can be conducted of almost all elements and isotopes with a concentration larger than a few ppb atoms. Hence, in addition to the major element composition, which is important for the determination of mineralogical constituents of surface materials, trace elements can also be measured to provide information on mineral formation processes. Highly accurate isotope ratio measurements can be used to determine in situ geochronology of sample material and for investigations of various isotope fractionation processes. MCS can conduct optical imagery of mm‐sized objects at several wavelengths with micrometre spatial resolution for the characterisation of morphological surface details and to provide insight into surface mineralogy. Furthermore, MCS can help in the selection of sample surface areas for further mass spectrometric analysis of the chemical composition. Surface auto‐fluorescence measurements and images in polarised light are additional capabilities of the MCS, to identify either fluorescing minerals or organic materials, if present on the analysed surface, for further investigation by LMS. The results obtained by investigations of NIST reference materials, amino acid films and a natural graphite sample embedded in silicate rock are presented to illustrate the performance of the instruments and their potential to deliver chemical information for mineral and organic phases in their geological context.  相似文献   

19.
There are three important ecological aspects to be considered regarding economic development in covered karst terrain: (1) natural karst processes, and karst-suffosion processes in particular, are very responsive to technogenic effects, (2) possibility of intensive and deep pollution of the geological environment and (3) risk of ecological disasters caused by karst collapses on the sites of ecologically dangerous industrial and transport objects. In view of these aspects, a number of Russian standards and normative documents on construction are analysed. Some methodological approaches to practical application of the guidelines stated in the documents are offered.  相似文献   

20.
Raman microprobe spectra were made on three post shock, diaplectic plagioclase feldspars. Optical and X-ray diffraction studies indicated that feldspars maintained a partially or totally crystalline state after having passed through the mixed phase zone of Hugoniot response to shock waves (15–38 GPa). The appearance of uniquely glass-type spectra occurs at different shock pressures for each specimen according to its atomic structural arrangement, below 38 GPa for mosaic structured labradorite, near 40 GPa for anorthite and above 50 GPa for the highly ordered low albite. The diaplectic anorthite and labradorite glasses give spectra which indicate the presence of two glass types. Shifts in the band envelope frequencies compared to spectra of fused glass and statically pressure densified glass suggest that these glasses have specific structural arrangements. These differences suggest that the shock and fusion glass-forming processes are not exactly identical. The results from material shocked in the mixed phase region of Hugoniot response show that the phase transitions are effected at different pressures depending upon the feldspar structural type.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号