首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
南海北部陆缘地壳结构特征及其构造过程   总被引:5,自引:0,他引:5  
阎全人  王宗起 《地质论评》2000,46(4):417-423
根据“北部湾大陆缘地壳结构PS转换波测深”等地球物理测量结果,本文研究了南海北部陆缘的地壳结构特征,讨论了其白垩纪以来的构造过程。地球物理测量表明,由陆向海,南海北部陆缘地壳由陆壳、过渡壳变为洋壳,厚度由34km减薄至8km左右。垂向上地壳为3层结构模式。陆壳、过渡壳和洋壳的下地壳P波速度普遍较高。地壳伸展系数的计算表明南海北部陆缘伸展主要发育于陆坡地区。结合区域地质研究,本文认为:南海北部陆缘及  相似文献   

2.
邱燕  黄文凯  杜文波  韩冰 《地球科学》2021,46(3):899-915
南海中央海盆南、北两侧陆缘分布着面积较广的减薄陆壳,正确认识海盆减薄陆壳的成因是研究南海构造演化的重要一环.通过分析基于地壳伸展因子公式计算的南海地壳拉张伸展特征和解释中生代以来的陆壳隆升特征等,证实晚中生代以来至渐新世末,该区不仅发生了地壳拉张伸展作用,还发生了较长期的地壳隆升挤压作用,致使酸性侵入岩出露地表,减薄陆壳区的上地壳厚薄分布不均.始新世南海南部发育海陆过渡相和海相沉积、北部仅为陆相沉积,暗示始新世南海古地理格局是南、北陆缘具有不同沉积环境的盆地群,二者之间应该被隆起所隔.这些地质现象说明该区地壳隆升剥蚀与地壳拉张伸展活动时间有较长的重叠.南海中央海盆两侧减薄陆壳的成因不仅仅是地壳拉张伸展所致,而是拉张伸展与隆升剥蚀共同作用的结果,因此可以认为在曾经发生了地壳隆升挤压而遭受长期剥蚀的区域,如果用全地壳伸展因子的公式来估算地壳拉张伸展程度,将得出错误的结论.   相似文献   

3.
西北次海盆的深部地壳结构蕴含着南海北部陆缘拉张过程的重要信息.广角反射/折射测线(OBS2006-2)长386 km,是目前唯一的一条沿NEE向穿过西沙地块、并平行于西北次海盆扩张脊的深地震测线.通过射线追踪与走时模拟方法(RAYINVR),获得了OBS2006-2测线下方的速度结构.结果表明:西沙地块的沉积层厚度约为1~2 km,而西北次海盆的沉积层厚度大约为2~3 km;Moho界面从西沙地块的27 km逐步抬升到西北次海盆的12 km,Moho界面下方的速度为7.8~8.0 km/s;未发现壳内高速层和低速层.在西沙地块和西北次海盆的过渡区,有着较大量的岩浆活动信息,推测与西北次海盆的初始扩张有关.OBS2006-2测线中114.5°E以西的地区为减薄的陆壳,而114.5°E以东的地区为洋壳,莫霍面在陆壳与洋壳的结合处剧烈抬升,地壳厚度明显减薄.西北次海盆的扩张脊下方可能有残余岩浆的存在.   相似文献   

4.
南海中北部陆架-陆坡区新生代构造-沉积演化   总被引:1,自引:0,他引:1  
南海中北部陆架-陆坡区作为南海地区的一个重要地质构造单元,记录了大陆张裂到海盆扩张的丰富信息。通过对研究区地震剖面的解释,分析了该地区新生代的构造与沉积特征,同时通过平衡剖面恢复工作,建立了新生代演化模型。研究显示南海中北部陆架-陆坡区新生代构造演化可以分为三个阶段:古新世—始新世的裂陷阶段、渐新世—早中新世的裂陷-坳陷过渡阶段以及中中新世以来的坳陷阶段。沉积环境经历了河流-湖泊、浅海和深海的演化过程。南海北部陆缘下NW-SE方向流动的地幔流的存在使得伸展活动具有由北向南发育的机制。同时陆坡区盆地(如白云凹陷)显示出韧性伸展的特征,这与地幔上涌热岩石圈伸展引起的该区域地壳强烈韧性减薄和颈缩变形相关。  相似文献   

5.
盆地的形成是深部过程的浅部响应,其中不同尺度拉张因子的变化能够反映岩石圈的伸展特征。运用基于弹性梁模型和挠曲均衡原理的2D构造模拟软件对横穿南海东北部地区的两条地震-地质剖面进行模拟,计算上地壳、全地壳和岩石圈尺度拉张因子。结果表明,南海东北部岩石圈伸展存在横向非均质性和深度相关的伸展现象:(1)不同坳陷中心的拉张因子从陆架-陆坡-海盆区有变大的趋势;(2)三种尺度的拉张因子之间存在明显差异,并且这种岩石圈深度相关的伸展现象在陆架和陆坡地区表现不同:陆架范围内上地壳和全地壳尺度的拉张因子在数值上相近,而在陆坡向洋壳方向,岩石圈、全地壳尺度拉张因子在数值上比上地壳尺度拉张因子大的差别趋势越来越明显。分析认为南海东北部岩石圈深度相关的伸展模式与海底扩张早期温度较高且黏滞性较小的下地壳在陆坡向海盆方向的流动性大于陆架地区有关。南海东北部伸展盆地的形成经历了岩石圈在陆内裂谷阶段均匀伸展以及大陆边缘裂谷阶段深度相关的伸展作用过程。  相似文献   

6.
南海东北部下地壳高速层的成因探讨   总被引:2,自引:0,他引:2  
刘安  武国忠  吴世敏 《地质论评》2008,54(5):609-616
通过对南海北部大陆边缘地壳结构分析,指出南海东北部存在下地壳高速层,大致分布在112°E~120°E,19°N~22°N的陆坡和拉张程度大的陆架地区,呈NEE向延伸,在海底地震仪剖面上最大的厚度有8km,向南海海盆方向减薄。通过对比综合分析认为,高速层物质组成是底侵作用形成的熔岩垫,由于伸展作用,南海海底扩张(30Ma)前后底侵作用形成了熔岩垫,并促使南海北部大陆边缘地壳抬升,导致区域性抬升剥蚀。  相似文献   

7.
青藏高原东北缘六盘山—鄂尔多斯盆地深地震测深剖面沿近东—西向布设长约420km,跨越鄂尔多斯盆地、六盘山和秦祁地块。本文根据沿测线爆破地震的6炮记录截面图中,6个震相的到时资料,结合地震记录中的振幅信息,确定了沿剖面的二维纵波地壳速度结构。鄂尔多斯盆地的地壳平均速度为6.38~6.40km/s,地壳厚度为41.7~48.2km。六盘山地区的地壳平均速度最高为6.40~6.42km/s,地壳厚度最大为53~54km。六盘山以西秦祁地块的地壳平均速度最低为6.32~6.40km/s,地壳厚度为50.3~53km。整个莫霍面形态东浅西深,明显向西倾斜。鄂尔多斯盆地东侧的莫霍面深度最浅为41.7km,六盘山下方莫霍面的深度最深为54km。莫霍面首波Pn在220km之后出现,速度为7.8~8.1km/s。最后讨论了本区的深部特征和盆山结构关系。  相似文献   

8.
南海北部陆缘的磁异常特征及居里面深度   总被引:4,自引:0,他引:4  
为了研究南海北部张裂大陆边缘的地壳热结构,利用船载测量磁力数据,通过功率谱方法反演南海北部陆缘居里等温面,并结合深地震剖面、区域断裂及大地热流分布,讨论了深部热结构状态.结果显示研究区居里面深度在13~26 km之间,在上下陆坡转换带处与莫霍面相交,北东向断裂多位于居里面梯度带上,北西向断裂多具有分割、错断的特点,居里面深度和大地热流值具有相关性.结果揭示了陆架、上陆坡地区磁性体可能主要位于上地壳和下地壳上部,下陆坡及洋壳区地壳与地幔顶部有被磁化的迹象.磁静区位于居里面上隆区边缘,F3断裂和F4断裂之间可能是残留古洋壳.潮汕凹陷和台西南盆地中央隆起是发生底侵的主要区域,F2断裂为其北界.   相似文献   

9.
南海北部陆缘发育独特的远端带结构,以“裂谷宽、基底厚和地貌起伏”为主要特点,显著有别于经典贫岩浆型和富岩浆型张裂陆缘.为了解释陆缘结构的成因,综合已有研究进展和国际大洋发现计划(IODP)的钻探成果,对南海北部陆缘基底性质进行了调研,探讨了拆离断层和岩浆作用的特点以及两者间的相互作用.结果表明,在38 Ma之前南海北部大范围发育核杂岩构造,并伴随大量岩浆侵入到中下地壳;岩浆作用一方面加剧了地壳的韧性变形,导致应变无法集中而在多个地方同时发育大型拆离,另一方面对拆离面和减薄的基底进行了强烈改造.最终提出同张裂期就位的岩浆作用和中下地壳的韧性流动是形成南海北部宽裂谷陆缘的关键,深化了对陆缘结构、变形过程和岩石圈减薄机制的理解.   相似文献   

10.
岩浆在被动大陆边缘的张-破裂过程中起到决定性作用.南海东北部陆缘发育厚度达10 km的下地壳高速体,其成因机制长期存在争议,影响了对南海东北部陆缘构造归属的界定.为了分析南海共轭陆缘的张破裂机制,本文调研了国内外最新研究进展,系统分析了南海南北陆缘的地壳结构和岩浆活动特点,提出:南海陆缘和海盆中发育有大量岩浆活动,但东西陆缘存在较大差异,底侵高速体东厚西薄,推测为同张裂成因.根据地壳结构与底侵岩浆的量,将被动陆缘划分为5个子类,南海陆缘东侧为多岩浆型,向西变为少岩浆型.东西差异除与伸展速率有关,可能还与东侧陆缘发生了板缘破裂,而西侧陆缘发生了板内破裂有关.   相似文献   

11.
客观评价城市区域地壳稳定性,对于城市安全与可持续发展有着极其重要的意义.哈尔滨城市地质调查系统地研究了哈尔滨地区的莫霍面深度、地球物理场、火成岩特征及历史地震记录,并开展大地电磁测深、钻探及汞气测量研究,认为哈尔滨地区地壳结构连续、完整、稳定,不会发生中等强度及以上地震活动.  相似文献   

12.
大别造山带地壳的元素丰度   总被引:5,自引:1,他引:4  
郭福生 《地质论评》1998,44(2):172-180
大别造山带具板片叠覆式构造形态。区域地壳具3个结构层,中地壳存在地震低速层和电性低阻层。地壳总体成分为花岗闪长岩质,深部地壳成分为中性。地壳稀土总量偏高、轻重稀土分馏程度高,铁族元素偏低、亲石元素富集。造山带内部横向不均一性明显,而地壳纵向演化分异程度低于一般大陆地壳。  相似文献   

13.
Tectonic models for the Late Cretaceous/Tertiary evolution of the West Antarctic Rift System range from hundreds of kilometres of extension to negligible strike-slip displacement and are based on a variety of observations, as well as kinematic and geodynamic models. Most data constraining these models originate from the Ross Sea/Adare Trough area and the Transantarctic Mountains. We use a new Antarctic continental crustal-thinning grid, combined with a revised plate-kinematic model based on East Antarctic – Australia – Pacific – West Antarctic plate circuit closure, to trace the geometry and extensional style of the Eocene – Oligocene West Antarctic Rift from the Ross Sea to the South Shetland Trench. The combined data suggest that from chron 21 (48 Ma) to chron 8 (26 Ma), the West Antarctic Rift System was characterised by extension in the west to dextral strike-slip in the east, where it was connected to the Pacific – Phoenix – East Antarctic triple junction via the Byrd Subglacial Basin and the Bentley Subglacial Trench, interpreted as pullapart basins. Seismic-reflection profiles crossing the De Gerlache Gravity Anomaly, a tectonic scar from a former spreading ridge jump in the Bellingshausen Sea, suggest Late Tertiary reactivation in a dextral strike-slip mode. This is supported by seismic-reflection profiles crossing the De Gerlache Gravity Anomaly in the Bellingshausen Sea, which show incised narrow sediment troughs and vertical faults indicating strike-slip movement along a north – south direction. Using pre-48 Ma plate circuit closure, we test the hypothesis that the Lord Howe Rise was attached to the Pacific Plate during the opening of the Tasman Sea. We show that this plate geometry may be plausible at least between 74 and 48 Ma, but further work especially on Australian – Antarctic relative plate motions is required to test this hypothesis.  相似文献   

14.
David E. James  Fenglin Niu  Juliana Rokosky   《Lithos》2003,71(2-4):413-429
High-quality seismic data obtained from a dense broadband array near Kimberley, South Africa, exhibit crustal reverberations of remarkable clarity that provide well-resolved constraints on the structure of the lowermost crust and Moho. Receiver function analysis of Moho conversions and crustal multiples beneath the Kimberley array shows that the crust is 35 km thick with an average Poisson's ratio of 0.25. The density contrast across the Moho is 15%, indicating a crustal density about 2.86 gm/cc just above the Moho, appropriate for felsic to intermediate rock compositions. Analysis of waveform broadening of the crustal reverberation phases suggests that the Moho transition can be no more than 0.5 km thick and the total variation in crustal thickness over the 2400 km2 footprint of the array no more than 1 km. Waveform and travel time analysis of a large earthquake triggered by deep gold mining operations (the Welkom mine event) some 200 km away from the array yield an average crustal thickness of 35 km along the propagation path between the Kimberley array and the event. P- and S-wave velocities for the lowermost crust are modeled to be 6.75 and 3.90 km/s, respectively, with uppermost mantle velocities of 8.2 and 4.79 km/s, respectively. Seismograms from the Welkom event exhibit theoretically predicted but rarely observed crustal reverberation phases that involve reflection or conversion at the Moho. Correlation between observed and synthetic waveforms and phase amplitudes of the Moho reverberations suggests that the crust along the propagation path between source and receiver is highly uniform in both thickness and average seismic velocity and that the Moho transition zone is everywhere less than about 2 km thick. While the extremely flat Moho, sharp transition zone and low crustal densities beneath the region of study may date from the time of crustal formation, a more geologically plausible interpretation involves extensive crustal melting and ductile flow during the major craton-wide Ventersdorp tectonomagmatic event near the end of Archean time.  相似文献   

15.
本文在Agterberg和Divi(1978)的地壳丰度地质统计模型(CrustalAbundanceGeostastics,简称CAG)的基础上,提出了一种成矿省成矿元素区域背景值下限的简易计算方法。在区域背景值未知的情况下,根据成矿省某成矿元素的截切品位和金属量,可由此法计算出其地壳平均丰度最小值,以此作为成矿省中该元素区域背景值。将这一方法运用于华南Sb成矿省所得Sb元素区域背景值与通过区域地球化学方法得到的华南地区Sb的地壳平均丰度值相近,这充分说明这种地壳平均丰度最小值法的可靠性。  相似文献   

16.
刘敦一  耿元生  宋彪 《地球学报》1997,18(3):226-232
冀西北地区出露的太古宙变质岩系是华北地台北缘麻粒岩相带的重要组成部分。详细的同位素地质年代学研究表明,本区古老的地壳形成于2900Ma左右,为玄武质成分。古老地壳的熔融再造作用主要有两期,一期发生在2780~2761Ma期间,产生了研究区西部广泛分布的英云闪长质片麻岩,另一期发生在2561~2503Ma期间,形成在宣化-赤城一带广泛分布的花岗闪长质片麻岩。此后,在2500~2400Ma期间发生了区域麻粒岩相变质改造,使部分岩石的同位素体系重新设置。  相似文献   

17.
2008年5.12汶川地震发生后,对于龙门山地壳结构及其与汶川地震的成生联系成为构造地质学研究极为关注的科学问题。然而,现有的多种龙门山地壳结构模式在综合解释表层构造变形及深部构造时与调查和探测资料均有不符。利用前人地球物理探测成果,结合穿过龙门山主要发震构造单元彭灌杂岩及雪隆包岩体的综合构造剖面,将地表构造与深部地壳探测资料结合进行了综合解释,认为龙门山逆冲构造带中的多重冲断推覆构造由约10 km深处的拆离断层分隔,因而应该只是浅层次构造变形的组合样式;在中、下地壳韧性流壳层的主导下,扬子地块基底被动?入并形成多层拆离的韧性流变构造组合。5.12汶川地震及余震是由于以彭灌杂岩和雪隆包岩体为代表的刚性体,在上部韧性流壳层前端的持续推挤作用下,发生破裂而形成的。  相似文献   

18.
本文报道了鞍山地区新厘定的一套始—古太古代片麻岩杂岩的岩石学特征及锆石U-Pb年代学数据,以探讨太古宙早期地壳的形成及演化过程。杂岩在全区广泛分布,野外以包体形式产于约3.1Ga细粒奥长花岗岩之中。主要包括始太古代奥长花岗岩/石英闪长岩和古太古代片麻岩杂岩两个岩石单元,前者呈透镜体产出于后者之中。始太古代奥长花岗岩/石英闪长岩部分遭受变质作用改造,但整体较好地保留了岩浆结构及构造,其年龄为3.77~3.81Ga,锆石εHf(t)值大于0,表明其为玄武质岩石经部分熔融形成的新生地壳。古太古代片麻岩杂岩由条带状片麻岩、浅色奥长花岗质片麻岩、黑云母片岩及少量斜长角闪岩等组成,岩石类型多样且组构复杂、不均一,受到塑性流变变形作用的改造,为地壳深部层次下变质-深熔作用的产物,各岩石锆石U-Pb年龄相近,为3.29~3.36Ga,锆石εHf(t)值小于0,表明其来源于始太古代古老地壳的重熔。杂岩记录了~3.8Ga、3.7~3.4Ga以及~3.3Ga等多期岩浆-构造热事件,其中~3.8Ga和~3.3Ga分别代表本区主要的两期地壳生长和地壳重熔事件。多期次地壳生长和重熔可能是早期地壳演化的主要机制及过程,这与全球多个太古宙地体类似。  相似文献   

19.
珠江三角洲地壳稳定性分区及其特征   总被引:3,自引:0,他引:3  
分析研究珠江三角洲地区的新构造运动、活动断裂、地壳厚度、地壳沉降、地热分布、地震活动等资料,其呈现出比较明显的空间分异。认为珠江三角洲区域稳定性划分为稳定区和次稳定区,区域地壳稳定性活动程度中等,次稳定区主体在地质构造区划上属于珠江三角洲断陷区及三角洲沿海区域,次稳定区范围之外的相对隆起地带为稳定区。  相似文献   

20.
中国东北地区处于古亚洲洋构造域和古太平洋构造域的结合部位,地质演化历史复杂,岩浆构造活动发育。本文选取吉黑东部延边地区的东宁、福洞两个侏罗纪岩体,对其成因及成矿潜力进行了分析。研究表明,东宁花岗岩(198.6±2.6 Ma)具有较高的SiO2含量和较低的MgO含量,富集LILEs和LREEs,亏损HFSEs和HREEs,此外显示亏损的Hf同位素组成(εHf(198.6 Ma)=+1.0^+6.0),具有较高的锆石饱和温度(796~902℃),推测其为玄武质岩浆底侵新生下地壳发生部分熔融而成。福洞黑云母石英闪长岩(173.6±2.8 Ma)和其内部的暗色包体(173.8±7.4 Ma)形成年龄一致,但具有不同的Hf同位素组成,表明福洞岩体为壳幔两端元岩浆混合成因。东宁和福洞岩体的形成与古太平洋板块在侏罗纪时期向东亚大陆边缘俯冲有关,分别代表了地壳重熔和地壳增生的两种过程。与中亚造山带内大型斑岩型矿床的成矿岩浆相比,延边地区的岩体普遍具有较低的锆石Ce4+/Ce3+比值,指示岩浆偏低的氧逸度可能是导致区内不发育大规模斑岩成矿的制约因素。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号