首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
北大巴山早古生代地层广泛出露一套超基性、基性岩墙和碱质火山杂岩(包括碱性玄武岩和粗面岩),为研究北大巴山早古生代构造演化提供了重要的载体。本文通过利用锆石U-Pb定年和金云母~(40)Ar/~(39)Ar同位素定年方法对它们的形成时代进行了系统研究,结合地球化学特征探讨它们的成因及构造意义。通过对岚皋县和镇坪县的两个辉绿岩墙开展锆石U-Pb定年,分别获得它们的年龄为399±1Ma和451±4 Ma,是研究区目前已报道的有关超基性、基性岩墙最年轻和最老的就位时代。地球化学分析结果表明,它们的主量元素与区内其他基性岩墙位于同一演化趋势线上,微量和稀土元素地球化学特征相似,类似于OIB的特征,表明它们来自相同的地幔源区。因此,研究区内基性岩墙侵入事件最早开始于晚奥陶世中期(约450Ma),结束于早泥盆世晚期(约400 Ma),期间经历了多次岩浆侵入活动。对与碱性玄武岩共生的火山碎屑岩中金云母晶屑进行~(40)Ar/~(39)Ar同位素定年,获得年龄446±3Ma,代表了火山喷发时间,表明碱性玄武质岩浆喷发活动与基性岩浆侵入事件大致同时发生。对粗面岩进行SHRIMP锆石U-Pb定年虽未获得准确的岩浆结晶年龄,但较年轻锆石年龄(165±3Ma和229±2Ma)的存在,暗示其形成时代可能属于中生代。系统的年代学研究表明,北大巴山地区早古生代地层中的超基性、基性岩墙和碱性玄武质火山杂岩为同期岩浆活动的产物,最早开始于450Ma,经历了多期火山喷发和岩浆侵入活动(450~400 Ma),结束于早泥盆世晚期(~400Ma)。而粗面岩与上述岩石不是同一期岩浆活动产物,研究区不存在双峰式火成岩组合,它们可能形成于中生代,属于南秦岭中生代岩浆活动的产物,为南秦岭、北大巴山中生代成矿作用提供物源。  相似文献   

2.
张英利  王宗起  闫臻  王涛 《地质学报》2014,88(10):1970-1980
库鲁克塔格地区早志留世地层主要由灰绿色砂岩和粉砂岩组成,为浊流成因,沉积环境为海底扇。运用LA-ICP-MS U-Pb方法,对早志留世2件砂岩碎屑锆石进行U-Pb年龄测定,共获得了89组U-Pb有效年龄,获得了地层的物源、研究区区域对比和早古生代的构造演化资料。碎屑锆石的谐和年龄表明,689~836Ma为早志留世地层的主要物源区,866~986Ma、1055~1463Ma和1708~2490Ma为次要物源区,部分为二次搬运。志留纪碎屑锆石的年龄概率图指出,早志留世可能为岩浆活动的安静期,早志留世之后,库鲁克塔格地区中—晚奥陶世岩石大规模隆升。碎屑锆石年龄和CL图像揭示,新元古代时期发育大量岩浆活动,可能与南天山洋向塔里木板块俯冲相关。区域变质作用同样在碎屑锆石中有所反映。  相似文献   

3.
张辰昊  寇晓威  颜林杰  徐备 《地质通报》2015,34(8):1482-1492
对科尔沁右翼中旗地区晚古生代地层进行碎屑锆石U-Pb定年研究。样品130909-01为凝灰质砂岩,130910-15为岩屑石英砂岩。碎屑锆石年龄可分为4组,由新到老依次为:252~278Ma、286~359Ma、381~462Ma和500Ma之前。碎屑锆石的最小年龄(256.5±1.7Ma)限定了地层沉积下限为晚二叠世。样品中出现大量残留锆石,记录了前寒武纪基底、早古生代岛弧岩浆岩和石炭纪—二叠纪岩浆活动事件。  相似文献   

4.
张英利  王宗起  闫臻  王涛 《地质学报》2012,86(4):548-560
库鲁克塔格地区是土什布拉克组的命名地和典型剖面分布区,主要由灰绿色砂岩及粉砂岩组成。运用LA-ICP-MS U-Pb方法,对土什布拉克组3件砂岩碎屑锆石进行U-Pb年龄测定,共获得了183组U-Pb有效年龄,既限定了地层的最早形成时代,同时又获取研究区早古生代的演化资料。获得14个较年轻锆石年龄表明,土什布拉克组形成于中—晚志留世。碎屑锆石的谐和年龄表明,物源主要集中在422~537 Ma、559~999 Ma、1018~1574Ma和1604~2498Ma。碎屑锆石年龄394~537Ma和CL图像揭示,在早古生代时期发育大量岩浆岩,但目前地表仅有少量的岩浆岩记录。研究区新元古代的岩浆锆石年龄值,可能与罗迪尼亚超大陆的聚合-裂解有关。碎屑锆石也表明研究区发育区域变质作用,部分与哥伦比亚超大陆有关。  相似文献   

5.
库鲁克塔格地区是土什布拉克组的命名地和典型剖面分布区,主要由灰绿色砂岩及粉砂岩组成.运用LA-ICP-MS U-Pb方法,对土什布拉克组3件砂岩碎屑锆石进行U-Pb年龄测定,共获得了183组U-Pb有效年龄,既限定了地层的最早形成时代,同时又获取研究区早古生代的演化资料.获得14个较年轻锆石年龄表明,土什布拉克组形成于中—晚志留世.碎屑锫石的谐和年龄表明,物源主要集中在422~537 Ma、559~999 Ma、1018~1574 Ma和1604~2498Ma.碎屑锆石年龄394~537Ma和CL图像揭示,在早古生代时期发育大量岩浆岩,但目前地表仅有少量的岩浆岩记录.研究区新元古代的岩浆锆石年龄值,可能与罗迪尼亚超大陆的聚合-裂解有关.碎屑锆石也表明研究区发育区域变质作用,部分与哥伦比亚超大陆有关.  相似文献   

6.
大兴安岭南部扎赉特旗地区分布着一套晚古生代地层,由砂岩、粉砂岩和泥岩组成,由于缺乏古生物化石和年代学证据,前人依据地层对比将其定为晚二叠世林西组。本次工作在详细地野外地质调查基础上,运用锆石LA-ICP-MS U-Pb测年技术,对三个砂岩样品(样品号:18TF-01、18YSL-04和18XBL-01)中的碎屑锆石进行了测定,共获得219颗碎屑锆石U-Pb年龄值,其主要分布在243~269Ma,273~298Ma,305~339Ma,350~377 Ma,445~507 Ma和754~1053 Ma六个年龄区间。其中获得最年轻的一组锆石的谐和年龄为245 Ma,并结合区域上侵入该地层花岗岩的年龄,限定其沉积时代可能为中三叠世。根据碎屑锆石的年龄值特征反映出该地层具有多物源供给的特点,其中年龄为243~269Ma的碎屑物质源区主要来自于古亚洲洋闭合及碰撞造山相关的岛弧花岗岩类;年龄为273~298 Ma主要来自于大石寨组火山岩;年龄为305~339 Ma可能主要来自于格根敖包组火山岩;350~377 Ma的碎屑锆石可能源于北部大民山组火山岩;年龄为754~1053 Ma的碎屑锆石与漠河杂岩、兴华渡口群及佳木斯微陆块中元古代的岩浆事件有关;较古老~1800 Ma的碎屑锆石可能来自于古亚洲洋中微陆块或结晶基底。砂岩中锆石的形成年龄与地层沉积年龄较为相近,显示出汇聚背景下的特征。因此,综合砂岩物质组成、锆石年龄特征及弧-盆之间时空关系,显示中三叠世该地区可能形成于汇聚背景下的弧前盆地。  相似文献   

7.
高福红  杨扬  王枫  许文良 《地球科学》2014,39(5):499-508
通过研究黑龙江省东部早古生代地层晨明组和宝泉组碎屑锆石的U-Pb定年结果,讨论了晨明组和宝泉组的所属时代和物源.大多数锆石呈自形-半自形晶,显示出典型的岩浆生长环带或条痕状吸收,暗示其岩浆成因,极少数的锆石具有经变质作用形成的暗色增生边.定年结果表明:采自晨明组上部长石石英砂岩中碎屑锆石59个分析点产生了以下年龄组:561 Ma、621 Ma、683 Ma、752 Ma、803 Ma、822 Ma、851 Ma、900 Ma、922 Ma、954 Ma、1 781 Ma、1 865 Ma和1 933 Ma,这表明晨明组沉积于561 Ma之后.而以不整合接触关系覆盖于晨明组之上的宝泉组底部泥质板岩中碎屑锆石60个分析法点产生了425 Ma、450 Ma、485 Ma、900 Ma和1 750 Ma年龄众数.由上述地质关系和年代学测定结果,结合晚古生代地层中碎屑锆石的年龄组合,可以判定位于黑龙江省东部地区晨明组的形成时代介于561~510 Ma之间,这是首次在黑龙江省东部确定的具有确切年代学证据的早古生代地层.上述年龄组碎屑锆石的存在,表明其物源主要为该区新元古代和古元古代的地质体,这进一步揭示在早古生代期间,松嫩-张广才岭地块东缘可能存在前寒武纪残片.   相似文献   

8.
江西宜春武功山地区出露的震旦纪老虎塘组由薄层状的砂岩、粉砂岩和泥岩组成,岩石普遍经历了强烈的变形和变质作用。由于缺乏古生物化石和年龄值,其沉积时代和源区存在着争议。本文运用LA-ICP-MS技术,对老虎塘组两件变砂岩中的碎屑锆石进行了U-Pb和Hf同位素测定,共获得187个U-Pb年龄值,主要位于423~537 Ma和660~1 280 Ma两段。两个样品中最年轻的碎屑锆石年龄为(432.7±1.8)Ma,结合区域地质资料限定老虎塘组形成时代为志留纪。锆石U-Pb年龄和Hf同位素表明,年龄为423~537 Ma的碎屑锆石主要来源于华夏板块北缘加里东期的花岗岩,而年龄为660~1 280 Ma碎屑锆石显示物源主要来自钦—杭结合带,而其它少量的古元古代和太古代物质可能主要来源于华夏板块基底或者再循环的物质。因此,碎屑锆石年龄显示老虎塘组物源主要来源于华夏板块北緣加里东期岩浆岩和钦—杭结合带。大量的早古生代碎屑锆石数据反映了华夏板块北緣加里东期的造山事件,这次造山事件为早古生代晚期沉积盆地提供了大量的物质来源。  相似文献   

9.
采用LA-ICP-MS方法对青藏高原祁漫塔格山西部枯草沟地区花岗岩和闪长岩进行锆石U-Pb测年,获得405.7±1.3Ma、420.8±1.6Ma、423.9±1.5Ma和421.0±1.7Ma四个年龄,属于晚志留世—早泥盆世。这些锆石具有高Th/U值,是典型的岩浆锆石,其结晶年龄代表岩石形成年龄。综合统计目前已有锆石U-Pb年龄数据表明,该地区主要存在2期岩浆活动:350~500Ma和200~350Ma,分别对应早古生代和晚古生代—早中生代。祁漫塔格早古生代岩浆活动年龄数量占统计的60%以上,为主要岩浆活动期,主要分布于祁漫塔格北部和西部。东昆仑晚古生代—早中生代的岩浆约占古生代以来岩浆总量的77%以上,为东昆仑主要岩浆活动期。祁漫塔格晚古生代—早中生代岩浆活动主要分布于其东南部,靠近东昆仑山,暗示其可能受东昆仑主要岩浆活动的影响。以上结果暗示,早古生代期间祁漫塔格洋的活动性强于东昆仑洋的活动性,祁漫塔格和东昆仑可能自晚古生代以来才逐步形成统一的造山带。  相似文献   

10.
滇西潞西地区位于青藏高原东南缘,大地构造位置上属于保山地体。由于新生代强烈的陆内变形作用,保山地体与青藏高原腹地体的对应关系难以确定。野外观察及LA-ICP-MS锆石U-Pb测年结果表明,潞西新元古代—早古生代地层(震旦系—寒武系蒲满哨群及下奥陶统大矿山组)大部分碎屑锆石Th/U0.1,说明其大多为岩浆成因。U-Pb年龄跨度较大,太古宙—早古生代都有分布,且具有明显的562Ma、892Ma及2265Ma年龄峰,以及较弱的1680Ma和2550Ma年龄峰。保山地体潞西地区沉积岩碎屑锆石年龄分布特征与特提斯喜马拉雅、南羌塘沉积地层碎屑锆石年龄分布特征相似,说明其具有相同的物源——冈瓦纳大陆北部的印度大陆。在新元古代晚期—早古生代,保山地体位于印度大陆北缘,与南羌塘、喜马拉雅地体相邻。伴随着俯冲相关的增生造山过程,保山地体形成相应的新元古代末期—早古生代沉积地层。  相似文献   

11.
Research on geomagnetic reversal chronology has established the existence of two superchrons, one during the Cretaceous and the other (Kiaman) during the Late Paleozoic.Over the past few years, we have performed several magnetostratigraphic studies on Early Paleozoic (Cambrian and Ordovician) sedimentary sequences from Siberia. Our results show high magnetic reversal frequencies during the Middle Cambrian. In contrast, several records show the occurrence of a -20 Myr long reversed polarity interval in the Lower and Middle Ordovician, suggesting the presence of a third superchron. We propose to give the name of “Moyero” to this new superchron; this name is attributed to the Siberian section which first yielded a complete record of this reversed polarity interval.  相似文献   

12.
The variations in source rocks and melting conditions of granites can provide essential clues for the crustal magmatic response in orogenic process. Based on geochronology, whole-rock and mineral chemistry, this paper reveals two different granites in the Northern Qinling migmatite complex, which reveal obvious differences in source region and melting condition. The older granodiorite (402 ± 0.8 Ma) displays typical Na-rich adakite affinity, i.e., high Na2O/K2O (2.04 to 2.64) and Sr/Y (96 to 117) ratios, they have relative evolved isotopic compositions (εNd(t) = ?0.52 to ?0.04; zircon εHf(t) = ?0.06 to +7.78). The younger leucogranite (371 ± 2 Ma) displays higher SiO2 (72.32 to 73.45 wt%), lower (TFeO + MgO + CaO + TiO2) contents (<2 wt%) and depleted Sr-Nd-Hf isotopic compositions (i.e., εNd(t) = +2.6 to +3.0; zircon εHf(t) = +5.94 to +14.12), as well as high 10000 × Ga/Al and TFeO/MgO ratios, indicating that they represent highly fractionated I-type granites that derived from melting of juvenile crust. The variations in source rocks and melting condition of the two granites indicating a tectonic switch from compression to extension in 400 to 370 Ma, this switch is later than that in the eastern section of the North Qinling, indicating a scissor collision process between the South Qinling and North China Craton (NCC) in Devonian era.  相似文献   

13.
秦岭褶皱带位于华北板块和扬子板块结合部位,其在河南省内的部分多划为东秦岭。东秦岭以商南-镇平缝合带分为东秦岭北部和东秦岭南部。东秦岭古生代生物古地理演变可以划分为6个阶段。在寒武纪至中奥陶世早期,东秦岭北部二郎坪海槽的寒武纪放射虫和早奥陶世牙形石与东秦岭南部淅川陆棚北部的寒武纪三叶虫、早奥陶世牙形石和头足类属华南生物省,而淅川陆棚南部的寒武纪三叶虫和早奥陶世牙形石属于华南生物省,兼有华北生物省分子。在中奥陶世晚期至奥陶纪末,二郎坪海槽的腹足类、头足类和珊瑚与淅川陆棚的牙形石、珊瑚、腕足类、头足类和三叶虫均属华北生物省。在早志留世,二郎坪海槽的珊瑚与淅川陆棚的笔石属华南生物省。在中志留世至早泥盆世,东秦岭未发现古生物化石,很可能为陆地,并与华北陆块联为一体。在中泥盆世至早石炭世,东秦岭北部柿树园海槽与东秦岭南部南湾海槽的孢子及淅川陆棚的晚泥盆世珊瑚、腕足类和古植物及早石炭世蜓属华南生物省。晚石炭世至二叠纪末,柿树园海槽的孢子见于华北生物省,东秦岭南部缺乏海相沉积。总之,在古生代,东秦岭经历了由华南生物省→华北生物省→华南生物省→华北陆→华南生物省→华北生物省6个阶段,组成3个演变旋回。东秦岭北部和南部生物古地理具有明显的演变方向的统一性和演变时间的相似性。  相似文献   

14.
鄂尔多斯盆地晚古生代基底继承了奥陶纪中部高、东部和西部低及西陡东缓的古构造面貌。利用大量钻井分层数据,绘制了晚古生代各个时期残存地层厚度图,其空间变化反映了鄂尔多斯盆地晚古生代古构造格局特征。结合东西向及南北向地层厚度对比、演化剖面的研究,认为晚古生代鄂尔多斯盆地的沉积在本溪期—太原期主要受中央古隆起的控制,地层空间展布东西分带明显;山西期中央古隆起对沉积作用的控制不是很明显,地层从东西分异逐渐过渡到南北分异,这种沉积格局的转变与古地理演化具有一致性,从而说明了古构造对沉积的控制作用。  相似文献   

15.
Five deformationphases occurring on a regional scale have been found in the Paleozoic sequence of the Pyrenees. The first phase was responsible for the development of large concentric folds in the southern and northern borders of the axial zone. The second or main phase has lead to the differentiation in suprastructure and infrastructure. Folds have E-W axes and are accompanied by cleavage or schistosity. The next phase has N-S axes and its occurrence is restricted to the infrastructure. The third cleavage phase is a conjugate system with vertical NW and NE striking axial planes of folds. Like the N-S phase it indicates E-W compression. The fourth cleavage phase has again an E-W direction like the main phase. The intrusion of the granites can be related to this structural history. A final phase consists of tilting and fanning of the cleavage of the suprastructure, accompanied by the formation of knickzones.
Zusammenfassung Im Paläozoikum der Pyrenäen konnten fünf verschiedene Deformationsphasen über große Gebiete hinweg festgestellt werden. Die erste hat im Süden und Norden der Axialzone sehr große N-S bis NE-SW gerichtete Biegefalten verursacht. Die zweite, aber erste Schieferurigsphase ist in dem epizonalen Schiefergebirge oder Oberbau und in dem meso- bis katazonalen Unterbau verschiedenartig entwickelt. In beiden Fällen streichen jedoch die Faltenachsen E-W, und es liegt eine N-S-Einengung vor. Die folgende Phase ist auf die metamorphen Gebiete beschränkt und wird von N-S gerichteten Falten mit flacher Schieferung begleitet. Die dritte Schieferungsphase besteht aus zwei gleichzeitigen Scherfaltensystemen in NW- und NE-Richtung. Sie weist wie die vorhergehende Phase auf eine Einengung in E-W-Richtung hin. Die vierte Phase hat E-W gerichtete Falten mit Schieferung hervorgerufen und ist wie die Hauptphase eine N-S-Zusarnmenstauung. Die Intrusion der Granite kann in diese tektonische Entwicklung eingeordnet werden. Während einer späten Phase sind die Schieferungsflächen zu einem großen Fächer verstellt worden. Das Auftreten von Knickzonen ist mit diesem Auseinanderfallen der Schieferung verbunden.

Résumé Dans le Paléozoique des Pyrénées cinq phases de déformation peuvent être reconnues. La première phase a formé des plis concentriques sans schistosité et se trouve près de la bordure nord et sud de la zone axiale. Les quatre phases suivantes sont accompagnées d'une schistosité. La phase principale a causé une différentiation entre supra- et infrastructure, tous les deux avec des plis E-W. La deuxième phase synschisteuse ne se trouve que dans l'infra-structure et est caractérisée par des plis N-S. Une phase suivante consiste d'une système conjugée de plis avec direction des plans axiaux des plis NW et NE. La dernière phase a produit des plis E-W. L'intrusion des granites peut être datée dans cet histoire tectonique. Une phase tardive a causé la formation d'un gros structure en éventail des plans de clivage du suprastructure.

5 , . , .
  相似文献   

16.
Numerous UHP suites developed in East Asia during the Paleozoic because subduction occurred in an area of low thermal gradients. By contrast, no Paleozoic UHP suites formed in North America or in terranes accreted to it because all subduction under accreting terranes occurred in an area of high thermal gradients centered in North America. High thermal gradients beneath North America are also demonstrated by an abundance of intracratonic rifts and basins. These differences in thermal gradients between North America and East Asia may have been caused by a very large mantle convection cell, with a rising limb under North America and a descending limb in an oceanic area where East Asia was assembled.  相似文献   

17.
The Paleozoic of Graz is an isolated nappe complex of about 1,500 km2 size and belongs to the Austroalpine units of the eastern European Alps. Despite more than 500 publications on stratigraphy, paleontology and local structure, many aspects of the internal geometry of this complex as a whole remained unclear. In this contribution, we present integrated geological profiles through the entire nappe complex. Based on these profiles, we present (1) a simplified lithological subdivision into 13 rock associations, (2) a modified tectonostratigraphy where we consider only two major tectonic units: an upper and a lower nappe system and in which we abandon the traditionally used facies nappe concept, and (3) a modified paleogeography for the whole complex. Finally, we discuss whether the internal deformation of the Paleozoic of Graz is of Variscan or Eo-Alpine age and which of the published models best explain the tectonic evolution of the Paleozoic of Graz.  相似文献   

18.
19.
《International Geology Review》2012,54(10):1742-1746
Carboniferous and Permian terrigenous sediments in the basin of the Iman, Vaka and Ulakhe rivers show features known as tectonites — lens structures in conglomerate-type rocks, elongated pebbles and so on. These features and other considerations indicate that the central and eastern parts of the main Sikhote-Alin anticlinorium was experiencing contemporaneous differential movements. Competent beds of sandstones and flints form lenses, ovals and sometimes shapeless blocks embedded in incompetent siltstones and clay shales. Competent beds range greatly in thickness; fragments indicate most ranged from 1–5 cm with some beds 1–5 m. Most of the enclosing sequences are 100–300 m thick. Disposition of fragments indicates clearly the lines of the original beds. Direction of displacement is parallel to the plane of the layer. Elongation of fragments is in the direction of transport. Latest papers show a tendency to assign these tectonites a consedimentation origin; they are believed to be products of endogenous forces acting on consolidated sediments. The term hydrotectonite is used when morphologically similar products are formed under water through the joint action of forces both tectonic and otherwise. Two such structures are illustrated and their origin considered. Effects of dewatering are also discussed. Epochs favorable to hydrotectonites are rapid sinking a geosyncline when inclination of the floor increases and when earth tremors are common, in combination with rapid sedimentation. High tectonic activity in the Sikhote Alin syncline, based on hydrotectonites, may correlate with numerous magmatic effects in the adjacent Khanda central massif.—W.D. Lowry  相似文献   

20.
Paleo-metallogenetic sketch maps of the East Alpine area are presented for the Ordovician/Silurian, the Devonian/Lower Carboniferous, and the Upper Carboniferous/Permian. Mineralization and tectonic evolution are then discussed in the frame of a plate tectonic model compatible with recent results in Western Europe.A group of microcontinents originally dispersed in an ocean north of Gondwana, comprising in the investigated area a Bohemian, Penninic and a South/Austro-Alpine microcontinent was sutured after earlier localized orogenies to a Central European continent during the Devonian resulting from a general northward drift from the Cambrian onwards. This was followed by the development of a new destructive plate margin in the South with a northerly dipping subduction zone, enabling the consumption of the Proto-Tethys ocean. Mainland Gondwana then collided with the newly formed continent during the Carboniferous.Contrary to the generally convergent tectonic pattern most mineralizations in the South/Austro-Alpine area appear associated with crustal extension and related volcanism continuing into the Lower Carboniferous. Especially in the Upper Ordovician this conforms well with the concept of a back arc extensional cratonic basin setting. Metal zoning similar to the Andean/Cordilleran situation cannot be observed. Notably different, however, is the orogenic setting of the Penninic area during the Lower Paleozoic, with an economic scheelite-mineralization and associated trace elements reflecting mainly crustal affinities.The Upper Carboniferous calc-alcaline magmatism of the South/Austro-Alpine-Penninic area with its Cu-Pb-Zn-Ag-F mineralisation in the South and anomalous Be-Bi-F-Li-Mo-W-U contents further North displays many features of a back arc magmatic belt. The orogenetic stage is followed in the Upper Carboniferous-Permian by molasse with sandstone type U, graphite (coal) and acidic volcanism giving rise to (Ba-F-) Cu-Pb-Zn-U ores. A renewed tensional regime accompanied by marine transgression during the higher Permian produced evaporite deposits and minor epigenetic mineralization dominated by Fe in the Austro-Alpine area.
Zusammenfassung Paläometallogenetische Skizzen des Ostalpenraumes werden für die Zeitabschnitte Ordoviz/Silur, Devon/Unterkarbon und Oberkarbon/Perm vorgestellt. Mineralisation und tektonische Entwicklung werden im Rahmen eines plattentektonischen Modelles diskutiert, welches mit neueren Ergebnissen aus dem westlichen Europa kompatibel ist:Eine Gruppe von Mikrokontinenten, welche ursprünglich in einem Ozean nördlich von Gondwana verstreut lag, und welche im hier untersuchten Bereich einen böhmischen, penninischen und süd-/ostalpinen Mikrokontinent umfaßte, driftete seit dem Kambrium nach Norden und war nach räumlich begrenzten Orogenesen im Devon zu einem Mitteleuropäischen Kontinent verschweißt. Darauf entstand südlich davon ein neuer destruktiver Plattenrand mit einer nördlich abtauchenden Subduktionszone, wodurch die Proto-Tethys konsumiert wurde. Im Karbon kollidierte schließlich die Hauptmasse Gondwanas mit dem neu gebildeten Kontinent entlang einer heute im Mediterran-Raum gelegenen Sutur.Im Gegensatz zur generell konvergenten Tektonik erscheinen die meisten Mineralisationen der Süd- und Ostalpinen Einheiten an Krustendehnung und damit auftretenden Vulkanismus gebunden, welche bis ins Unterkarbon anhielten. Besonders im Ordoviz entspricht dies gut einem back arc extensional cratonic basin. Eine metallogenetische Zonierung in Abhängigkeit vom Abtauchen einer Subduktionszone nach dem Anden/Kordilleren-Modell ist nicht zu beobachten. Davon sehr verschieden ist die orogene Situation im Penninikum während des Alt-Paläozoikums, wo die wirtschaftlich wichtige Scheelitvererzung mit ihren Begleitelementen starke Krustenaffinität anzeigt.Der oberkarbone kalkalkalische Magmatismus des Süd- und Ostalpins sowie des Pennins mit Cu-Pb-Zn-Ag-F-Mineralisation im Süden und erhöhten Be-Bi-F-Li-Mo-W-U-Ge-halten weiter nördlich hat viele Züge eines back arc magmatic belt.Dem orogenen Stadium folgte im Oberkarbon-Perm Molassesedimentation mit U-Vorkommen und Graphit (Kohle), sowie mit saurem Vulkanismus verknüpften (Ba-F-) Cu-Pb-Zn-U-Vererzungen. Erneuerte Zerrung und marine Transgression im obersten Perm führten zur Bildung von Evaporit-Lagerstätten und einer unbedeutenden epigenetischen Fe-betonten Mineralisation im Ostalpinen Raum.

Résumé Trois esquisses paléométallogéniques de la région des Alpes orientales sont présentées pour les périodes suivantes: Ordovicien et Silurien, Dévonien et Carbonifère inférieur, Carbonifère supérieur et Permien. Sur cette base, les minéralisations respectives et l'évolution tectonique sont discutées dans le cadre d'un modèle de tectonique de plaques, lequel est compatible avec les résultats récents des recherches en Europe occidentale.Il s'agit d'un groupe de microcontinents, à l'origine dispersés dans un océan au Nord du Gondwana, comprenant les microcontinents moldanubien, penninique et austroalpin et qui dériva vers le Nord à partir du Cambrien pour se souder, après une orogenèse limitée durant le Dévonien, et former le continent de la « Paléoeurope centrale ». Ensuite s'installa, au Sud, une nouvelle marge de plaque destructive avec une zone de subduction inclinée vers le Nord, résultant dans la résorption de la Proto-Téthys. Au Carbonifère, le Gondwana entra finalement en collision avec ce continet nouvellement formé le long d'une suture aujourd'hui située dans le domaine de la Méditerranée.En opposition avec la tectonique de convergence, les minéralisation de la région sudaustroalpine sont apparemment liées à une extension de la croûte continentale accompagnée d'un volcanisme bimodal jusqu'au Carbonifère inférieur. Surtout pendant l'Ordovicien supérieur, ceci est comparable à un bassin cratonique extensionnel d'arrière-arc. Une zonation métallogénique dans la dépendance du prolongement d'une zone de subduction, semblable à la situation observée dans les cordillères occidentales des deux Amérique n'est pas évidente. Notablement différent cependant est l'environnement orogénique du Penninique au Paléozoïque inférieur, avec sa minéralisation importante de schéélite et éléments associés qui indiquent une forte affinité avec une croûte continentale.Le magmatisme calco-alcalin d'âge carbonifère supérieur du Sud-austroalpin et du Penninique, avec une minéralisation de Cu, Pb, Zn, Ag, F au Sud, et des eneurs élevées an Be, Bi, F, Li, Mo, W, U plus au Nord, présente de nombreux traits d'une zone magmatique d'un arrière-arc. Ce stade orogénique fut suivi d'une molasse avec des occurrences de U en roches gréseuses, de graphite (houille), et un volcanisme acide associé à des minéralisations de (Ba-F), Cu-Pb-Zn-U. Un nouveau régime extensionnel accompagné d'une transgression marine produisit au Permien supérieur des dépôts évaporitiques et une minéralisation épigéné tique insignifiante dominée par Fe, dans l'Austroalpin.

/, / . , , . , - , , - , , , , . , , , . , . , , . back arc extensional cratonic basin. / . . - , u, Pb, Zn, Ag F Be, Bi, F, Li, Mo, W, U , back arc magmatic belt. / /, (, F) Cu, Pb, Zn U. .
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号