首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Upper Cretaceous phosphorite beds of the Duwi Formation, Upper Egypt, are intercalated with limestone, sandy limestone, marl, calcareous shales, and calcareous sandstone. Calcareous intercalations were subjected to field and detailed petrographic, mineralogical and geochemical investigations in order to constrain their rock composition and origin. Mineralogically, dolomite, calcite, quartz, francolite and feldspars are the non-clay minerals. Smectite, kaolinite and illite represent the clay minerals. Major and trace elements can be classified as the detrital and carbonate fractions based on their sources. The detrital fraction includes the elements that are derived from detrital sources, mainly clay minerals and quartz, such as Si, Al, Fe, Ti, K, Ba, V, Ni, Co, Cr, Zn, Cu, Zr, and Mo. The carbonate fraction includes the elements that are derived from carbonates, maily calcite and dolomite, such as Ca, Mg and Sr. Dolomite occurs as being dense, uniform, mosaic, very fine-to-fine, non-ferroan, and non-stoichiometrical, suggesting its early diagenetic formation in a near-shore oxidizing shallow marine environment. The close association and positive correlation between dolomite and smectite indicates the role of clay minerals in the formation of dolomite as a source of Mg^2+ -rich solutions. Calcareous rocks were deposited in marine, oxidizing and weakly alkaline conditions, marking a semi-arid climatic period. The calcareous/argillaceous alternations are due to oscillations in clay/carbonate ratio.  相似文献   

2.
The mineralogy and geochemistry data are presented for thirty-seven shales,four concretions,two carbonate sediments and seven lignites from the Marathousa coal field of the Megalopolis Basin in Greece.The argillaceous rocks consist of chlorite,illite,kaolinte,albite,quartz.opal-A,calcite and dolomite;the concretions of aragonite,gypsum and pyrite;and the carbonate rocks of calcite,quartz and illite.The mineral matter in the lignites consists of gypsum,quartz,albite,chlorite,illite,opal-A,dolomite,pyrite,and rarely calcite and kaolinite Athree-factor model explains the total variaition of major and trace elements in the argillaceous sediments.The first factor is an aluminosilicate factor and involves the following elements:Al,Si,Mg,Na,K,Ti,Mn,Nb,Y,Rb,Zn,Cu,Ni,Cr,Nband V,associated with chlorite,albite and illite.The second factor involves the elements Ca,Sr,Ba,Znand Sc and is related to carbonate lithology and mainly the carbonate concretions with gypsum.The third factor involves Fe and Ce with a weak association with Mn.The diagenesis of the Marathousa sediments and lignites was not very advanced as indicated by (a) the total thickness of the sequence (500m),(b) the presence of biogenic silica(opal-A) and (c) the age of the deposit(Pleistocene).FOr these reasons the rpresence of chlorite,illite and kaolinite in the sediments and lignite is due not to diagenetic reactions but to weathering of the flysch and metamorphic rocks at the edges of the Megalopolis Basin and transport of the weathering products(illite,chlorite,kaolinite)into the basin of deposition.The diagenetic minerals of the Marathousa sequence include pyrite,gypsum,dolomite and aragonite.  相似文献   

3.
The aim of this study is to characterize the pedogenic clay minerals by using simple approach: mixing mineralogical and geochemical findings.The fine clay fractions (< 0.1 μm) of a Vertic Cambisol profile were studied by means of X-ray diffraction (XRD), infrared spectroscopy (FTIR) and cation exchange capacity (CEC).Qualitative and quantitative mineralogical compositions of the clay mixture were determined.Moreover, chemical equilibria and thermodynamic stabilities of minerals (calcite, gypsum, kaolinite, smectites and illites) were studied using results of ionic activities obtained from total concentration of various aqueous species in water extracts from soil-saturated pastes.XRD analysis shows a good homogeneity in the mineralogical composition of the soil material, with depth of soil profiles. The identified clay minerals are mainly illite–smectite mixed layers (I/S) and kaolinite. The chemical analysis of saturated paste extracts with clay minerals shows a slight undersaturation of the illitic phase while smectites and also calcite and gypsum reach the thermodynamic equilibrium along the soil profile.  相似文献   

4.
Iron and Sr bearing phases were thoroughly investigated by means of spectrometric and microscopic techniques in Callovian–Oxfordian (COX) samples originating from the ANDRA Underground Research Laboratory (URL) in Bure (France). Strontium was found to be essentially associated with celestite, whereas Fe was found to be distributed over a wide range of mineral phases. Iron was mainly present as Fe(II) in the studied samples (∼93% from Mössbauer results). Most of the Fe(II) was found to be in pyrite, sideroplesite/ankerite and clay minerals. Iron(III), if present, was associated with clay minerals (probably illite, illite-smectite mixed layer minerals and chlorite). No Fe(III) oxy(hydro)xide could be detected in the samples. Strontianite was not observed either. Based on these observations, it is likely that the COX porewater is in equilibrium with the following carbonate minerals, calcite, dolomite and ankerite/sideroplesite, but not with strontianite. It is shown that this equilibrium information can be combined with clay cation exchange composition information in order to give direct estimates or constraints on the solubility products of the carbonate minerals dolomite, siderite and strontianite. As a consequence, an experimental method was developed to retrieve the cation exchanged Fe(II) in very well preserved COX samples.  相似文献   

5.
《Applied Geochemistry》2006,21(4):614-631
In the Szigetvár area, SW Hungary, shallow groundwaters draining upper Pleistocene loess and Holocene sediments are considerably contaminated by domestic effluents and leachates of farmland fertilizers. The loess contains calcite and dolomite, but gypsum was not recognized in these sediments. The anthropogenic inputs contain significant amounts of Ca and SO4. The Ca from these anthropogenic inputs is promoting calcite growth, with concomitant consumption of carbonate alkalinity, undersaturation of the system with respect to dolomite, and dolomite dissolution; in brief, is driving “dedolomitization reactions”. Geochemical arguments supporting the occurrence of “dedolomitization reactions” in the area are provided by the results of mass balance and thermodynamic analyses. The mass balances predicted the weather sequence dolomite > calcite > plagioclase > K-feldspar, at odds with widely accepted sequences of weatherability where calcite is the first mineral in the weathering sequence. The exchange between calcite and dolomite can be a side effect of “dedolomitization reactions” because they cause precipitation of calcite. The thermodynamic prerequisites for “dedolomitization reactions” are satisfied by most local groundwaters (70%) since they are supersaturated (or in equilibrium) with respect to calcite, undersaturated (or in equilibrium) with respect to dolomite, and undersaturated with respect to gypsum. The Ca vs. SO4 and Mg vs. SO4 trends are also compatible with homologous trends resulting from “dedolomitization reactions”.  相似文献   

6.
Carbonate concretions, lenses and bands in the Pleistocene, Palaeogene and Upper Triassic coalfields of Japan consist of various carbonate minerals with varied chemical compositions. Authigenic carbonates in freshwater sediments are siderite > calcite > ankerite > dolomite >> ferroan magnesite; in brackish water to marine sediments in the coal measures, calcite > dolomite > ankerite > siderite >> ferroan magnesite; and in the overlying marine deposits, calcite > dolomite >> siderite. Most carbonates were formed progressively during burial within a range of depths between the sediment-water interface and approximately 3 km. The mineral species and the chemical composition of the carbonates are controlled primarily by the initial sedimentary facies of the host sediments and secondarily by the diagenetic evolution of pore water during burial. Based on the regular sequence and burial depth of precipitation of authigenic carbonates in a specific sedimentary facies, three diagenetic stages of carbonates are proposed. Carbonates formed during Stage I (< 500 m) strongly reflect the initial sedimentary facies, e.g. low Ca-Mg siderite in freshwater sediments which are initially rich in iron derived from lateritic soil on the nearby landmass, and Mg calcite and dolomite in brackish-marine sediments whose pore waters abound in Ca2+ and Mg2+ originating in seawater and calcareous shells. Carbonates formed during Stage II (500–2000 m) include high Ca-Mg siderite, ankerite, Fe dolomite and Fe–Mg calcite in freshwater sediments. The assemblage of Stage II carbonates in brackish-marine sediments in the coal measures is similar to that in freshwater sediments. This suggests similar diagenetic environments owing to an effective migration and mixing of pore water due to the compaction of host sediments. Carbonates formed during Stage III (> 2000 m) are Fe calcite and extremely high Ca-Mg siderite; the latter is exclusively in marine mudstones. The supply of Ca is partly from the alteration of silicates in the sediments at elevated burial temperatures. After uplift, calcite with low Mg content precipitates from percolating groundwater and fills extensional cracks.  相似文献   

7.
This work focuses on the relationship between the coal deposition and explosive volcanism of the Miocene basin, NW central Anatolia, Turkey. The coal-bearing Hirka Formation was deposited over the Galatian Andesitic Complex and/or massive lagoonal environments during the Miocene. The investigated lignite is a high ash (from 32 to 58%) and sulphur (from 1.43 to 3.03%) lignite which is petrographically characterised by a high humunite content. The mineral matter of the studied lignite samples is made up of mainly clay minerals (illite-smectite and kaolinite), plagioclase and quartz in Bolu coal field, clay minerals (illite-smectite, smectite and illite), quartz, calcite, plagioclase and gypsum in Seben coal field, quartz, K-feldspar, plagioclase and clay minerals (kaolinite and illite) in K?br?sc?k, and dolomite, quartz, clinoptilolite, opal CT and gypsum in Çaml?dere coal field. The differences in these four types of lignite with specific mineralogical patterns may be due to the explosive volcanic events and depositional conditions which changed from one coal field to the others. There is a zonation from SW to SE in the studied area for zeolites such as Opal CT+smectite-clinoptilolite-analcime-K-feldspar. Carbonate minerals are commonly calcite in Seben and K?br?sc?k coal fields. In Bolu, coal samples are devoid of calcite and dolomite. These analyses show that there is an increase in the amount of Mg and a decrease in the amount of Na from the northwestern part to the southern part in the study area.  相似文献   

8.
Processes controlling hydrogeochemistry in the Yuncheng Basin, China, were characterised using major-ion chemistry, 87Sr/86Sr ratios and ??13C values. Evapotranspiration during recharge increased solute concentrations by factors of ??5?C50 in deep palaeowaters, while higher degrees of evapotranspiration have occurred in shallow, modern groundwater. Aquifer sediments (loess) contain approximately 15 weight% calcite; trends in groundwater HCO3 concentrations and ??13C values (ranging from ?16.4 to ?8.2??) indicate that carbonate weathering is a significant source of DIC. Groundwater 87Sr/86Sr ratios (0.7110?C0.7162, median of 0.7116) are similar to those in both loess carbonate (0.7109?C0.7116) and local rainfall (0.7112), and are significantly lower than Sr in aquifer silicates (0.7184?C0.7251). Despite evidence for substantial carbonate dissolution, groundwater is generally Ca-poor (<?10% of total cations) and Na-rich, due to cation exchange. Saturation with respect to carbonate minerals occurs during or soon after recharge (all calcite and dolomite saturation indices are positive). Subsequent carbonate dissolution in the deep aquifer must occur as a second-stage process, in response to Ca loss (by ion exchange) and/or via incongruent dissolution of dolomite and impure calcite. The latter is consistent with positive correlations between ??13C values and Mg/Ca and Sr/Ca ratios (r 2?=?0.32 and 0.34).  相似文献   

9.
Playas are shallow ephemeral lakes that form in arid and semi-arid regions. Iran has a large number of playas such as Meyghan Playa, which is located in the northeast of Arak city that borders the central Iran and Sanandaj-Sirjan zones. This study aims to investigate the mineralogical, sedimentological, and geochemical characteristics of the playa sediments. In order to determine the palaeoenvironment, we carried out X-ray diffraction (XRD), X-ray fluorescence (XRF), and scanning electron microscopy (SEM) studies. Meyghan Playa sediments consist of very fine-grained sediments and contain both evaporite and clastic minerals. The evaporite minerals include calcite, gypsum, halite, glauberite, and thenardite, whereas clastic minerals are quartz and clay. The calcite abundance decreases from the margin to the central portion of the playa but gypsum and halite abundances show an increasing trend from the margin to the center. This observation is consistent with the general zonation of other playas. Variations of calcite and gypsum concentration profiles present increasing and decreasing trends with depth, which could be ascribed to the changes in climatic factors. These factors include brine chemical modifications owing to changes in evaporation and precipitation rates and variations in relative abundance of anions-cations or in the rate of clastic and evaporite minerals due to variations in the freshwater influx (climatic changes) with time. A decrease in calcite and increase in sulfate minerals (especially gypsum) with depth is probably due to the higher water level and rainfall, a more humid climate, and salinity variations.  相似文献   

10.
青海省阿尔金黄石山地区近红外蚀变矿物填图   总被引:1,自引:0,他引:1  
利用近红外光谱对羟基(OH-)等敏感的特性,可以区分多种蚀变矿物及其矿物的不同结晶度,如舍羟基之硅酸盐矿物(绿帘石、闪石等),碳酸盐矿物(方解石、白云石等),层状硅酸盐中单矿物(粘土矿物、绿泥石、蛇纹石等),硫酸盐矿物(明矾石、黄钾铁矾、石膏等)等;矿物的结晶度不同,其红外吸收峰形也不相同,而矿物的结晶度标志着矿化作用...  相似文献   

11.
The x-ray powder diffraction identification of clay minerals both in bulk samples and in separated clay fraction confirmed the presence of palygorskite in samples of cave sediments from Wadi Haqil (the western slopes of Musandam Mountains; Ras Al-Khaimah Emirate, UAE). Samples contain quartz, gypsum, smectite, kaolinite, calcite, and palygorskite, some of them chlorite, illite, feldspars, and goethite. Calcite dominates in most samples; smectite prevails in clay fraction. After heating, the 001 reflection of chlorite shifts to higher diffraction angles and its intensity decreases; these features indicate that the chlorite represent a Fe-dominant species. Unit-cell dimensions of major phases as refined by the Rietveld method are in agreement with literature data. Chemical composition of palygorskite was derived from unit-cell dimensions as follows: MgO content is 11–14 wt% and Al2O3 10–13 wt%. Clay mineralogy is only hard to ascertain from the scanning electron microscope (SEM) images even after being combined with the energy-dispersive spectrometer data. The SEM was also used to characterize gypsum grains; they often display flow deformation features. Studied cave sediments represent palygorskite-bearing weathering products and desert soils re-deposited from the cave surroundings by slope processes and wind and/or surface runoff. The mixture with other clay minerals, quartz, feldspars, etc. supports this interpretation. Fine-grained quartz fraction is probably wind-blown. Gypsum and calcite are the precipitates (crusts and/or cements), although gypsum can also be re-deposited from omnipresent gypsum-cemented surface sediments.  相似文献   

12.
Chemical analyses of more than 80 water wells penetrating the first aquifer in the coastal areas east of Tripoli indicate three different hydrochemical facies. Sodium chloride type water is mainly related to the encroachment of sea water as a result of excessive abstraction. The chemical interaction between groundwater and the aquifer materials led to the formation of calcium bicarbonate type water. Calcium chloride type is developed when the intruded sea water, very rich in Na ions, forced through the aquifer materials, and part of these cations replaced the Ca at the exchange sites of the clay minerals.Plotted against chloride, the concentrations of the Na, K, Ca, Mg, sulphate and bicarbonate species deviate considerably from the ideal mixing curves of fresh groundwater and sea water. Sulphate and bicarbonate enrichments are strongly related to the oxidation of sulphides and dissolution of calcite minerals present in the aquifer materials. Sea water intrusion and reverse cation exchanges reactions are the most important phenomena in the chemical evolution of the salinised groundwater.  相似文献   

13.
The aim is to define the mechanism of chemical reactions that are responsible for the salinization of the Azraq basin along groundwater flow path, using inverse modeling technique by PHREEQC Interactive 2.8 for Windows. The chemical analysis of representative groundwater samples was used to predict the causes of salinization of groundwater. In addition, the saturation indices analysis was used to characterize the geochemical processes that led to the dissolution of mineral constituents within the groundwater aquifer system. According to the modeling results, it was noted that the groundwater at the recharge area was undersaturated with respect to calcite, dolomite, gypsum, anhydrite, and halite. Thus, the water dissolved these minerals during water rock interaction, and therefore, the concentration of Ca, Mg, Na, and SO4 increased along the groundwater flow path. Furthermore, the groundwater at the discharge area was oversaturated with respect to calcite and dolomite. This meant that the water would precipitate these minerals along the flow path, while the water was undersaturated with respect to gypsum and halite throughout the simulated path; this showed the dissolution processes that take place during water-rock interaction. Therefore, the salinity of the groundwater increased significantly along the groundwater flow paths.  相似文献   

14.
人工补给对含水层水质的影响   总被引:8,自引:1,他引:7  
为了研究人工补给对含水层水质的影响问题,通过反向地球化学模拟方法对大庆西部地下水水质演化规律进行了分析。结果表明,地下水化学成分主要受含水层矿物相的溶解-沉淀作用、阳离子交换吸附作用以及氧化还原作用的影响,并确定方解石、白云石、盐岩、萤石、石膏、赤铁矿、菱铁矿、软锰矿、二氧化碳、阳离子交换剂等为影响地下水化学成分的控制性(矿)物相。在此基础上,采用正向地球化学模拟方法,以大庆市西水源地下水人工补给为例,模拟了地表水进入到地下后与含水层中原有的地下水以及含水层介质发生的水-岩相互作用。模拟结果表明,注入水与含水层中的水混合后,使地下水的矿化度有所降低,且混合水中地表水所占比例越大,地下水的矿化度越低;注入水与含水层中的地下水混合后,不会导致地下水水质的突变和水质级别的降低,还可在一定程度上改善含水层水质。  相似文献   

15.
This paper analyzed regional hydrogeochemical evolution characteristics of groundwater with respect to hydrogeological conditions in the Guanzhong Basin, China. Coefficient variation in the subregion between the Shichuan River and Luo River of the Guanzhong Basin is larger than other subregions, reflecting the more complicated hydrogeological conditions of this subregion. The hydrochemical components and hydrodynamic conditions of this area have distinct horizontal zoning characteristics, and hydrodynamic conditions play a controlling role in the groundwater’s hydrochemistry. The relationship between ions, and between ions and TDS (total dissolved solids) can give an indication of many charteristics of grounwater such as evaporation intensity, ion exchange, and the sources of chemical components. Results indicated that for the coefficient of variation (the coefficient of variation is a statistical measure of the distribution or dispersion of data around mean. This measure is used to analyze the difference of spread in the data relative to the mean value. Coefficient of variation is derived by dividing the standard deviation by the mean), the minimum value of pH parameters is 0.03-0.07, the minimum value of HCO3- parameters is 0.24, while the maximum is the SO42- coefficinet at 1.67. A PHREEQC simulation demonstrated that different simulation paths roughly have the same trend in dissolution and precipitation of minerals. Along the direction of groundwater flow, the predminant precipitation is of calcite and gypsum and the cation exchange of Na+ and Ca2+ in some paths. However, in other paths, the precipitation of calcite and dissolution of gypsum and dolomite are the main actions, as well as the exchange of Mg2+ and Ca2+ in addition to Na+ and Ca2+.  相似文献   

16.
This paper reveals the geochemical processes of dissolution, precipitation and cation exchange that took place during water–rock interaction between water seepages through the Tannur Dam. The Schoeller diagram indicates that there are three major water types originating during water–rock interaction. The first water type is characterized by low salinity that ranges from 1,300 to 2,800 µs/cm, which represents the reservoir water and the water in the right side of the central gallery. The second water type is in the left side of the central gallery, which exhibits medium salinity that reaches about 4,400 µs/cm. The third water type is characterized by very high salinity that reaches a value of around 8,500 µs/cm and represents the water in the right existing adit. The increase of salinity can be explained due to the dissolution of carbonate and sulfate minerals that form the matrix of the foundation and the abutment rocks, and the dissolution of the grout curtain, which is composed of cement and bentonite. Hydrogeochemical modeling, using a computer code PHREEQC, was used to obtain the saturation indices of specific mineral phases, which might be related to interaction with water seepages, and to identify the chemical species of the dissolved ions. The thermodynamic calculations indicate that most of the water samples were undersaturated with respect to gypsum, anhydrite and halite, and were saturated and/or supersaturated with respect to calcite and dolomite. Ca(HCO3)2 is the primary water type, as a result of dissolution of carbonate minerals such as calcite and dolomite prevailing at the dam site. However, cation-exchange processes are responsible for the formation of the Na2SO4 water type from the CaSO4 type that formed due to the dissolution of gypsum.  相似文献   

17.
四川渠县三叠系膏盐的同生、成岩、后生及表生变化   总被引:1,自引:0,他引:1  
隗合明 《沉积学报》1987,5(4):56-65
本文论述了四川渠县三叠系的膏盐在沉积后的不同阶段所发生的各种变化,并提出根据膏盐的变化特征推测它们的原生沉积条件、卤水咸化程度及研究区的矿床保存条件。  相似文献   

18.
The widely exposed siliciclastic/carbonate succession exposed at Gebel El-Qurn, west Luxor, has been investigated from the mineralogical, petrographical and biostratigraphical points of view. The succession belongs to the lower Eocene, including the upper Esna Shale and the Thebes Formations that have been deposited under varied marine conditions and during alternating periods of abundant and ceased clastic influx. They contain abundant and well-diversified planktonic foraminifera and calcareous nannoplankton, suggesting deposition in open marine inner to middle shelf environments. Mineralogical analysis carried out by XRD revealed the presence of smectite, illite, kaolinite, sepiolite, palygorskite, and smectite–illite-mixed layer as the principal clay minerals, and calcite, dolomite, quartz, anhydrite, gypsum, hematite, and goethite as non-clay minerals. The clay mineral distributions in the sediments reflect the climatic conditions and the weathering processes at the source area as well as the differential hydraulic sorting during transportation. Calcite is the most abundant non-clay mineral, and this is consistent with high calcareous fossil content of the sediments. Petrographic examination of the carbonate lithologies within the succession enables to identify eight microfacies associations. These microfacies were affected by several diagenetic processes including; micritization, compaction, cementation, neomorphism, dissolution, dolomitization, and silicification. Dissolution of original test wall and replacement and infilling by iron oxides and recrystallized calcite were commonly observed. Calcareous nannofossils are generally common to frequent, highly diversified, and moderately to well preserved. Two calcareous nannofossil biozones; Tribrachiatus contortus Zone (NP10) and Discoaster binodosus (NP11) are recorded in the studied sediments suggesting lower Eocene age. Their associated nannofossil taxa are characterized by the predominance of warm water species. Sea-level fluctuations, basin physiography, climate, paleogeography, and sediment supply were the major controls on the deposition of the lower Eocene sediments at Gebel El-Qurn.  相似文献   

19.
长江口细颗粒沉积物的粘土矿物及地球化学特征   总被引:4,自引:0,他引:4  
吕全荣  王效京 《沉积学报》1985,3(4):141-153
概况 粘土矿物是细粒沉积物中最主要的矿物组成。据长江口泥沙分析资料,在河口地区无论是悬沙或底沙,粒经均以<0.032毫米的颗粒为主,在悬沙中竟占90%以上,底沙中约占75%。因此,研究长江口沉积物的沉积作用、泥沙扩散及航道回淤等项目时,均须以细颗粒沉积物为主要对象。  相似文献   

20.
山西省阳泉市山底河煤矿“老窑水”循环系统多年水质监测数据计算结果显示,煤矿酸性“老窑水”的Ca/Mg值普遍偏低,且存在Ca/Mg值随酸化程度的增强(SO42?含量增加或pH减小)而减小的规律。针对这一问题,结合研究区的地球化学物源条件,通过室内试验以及野外监测水样的石膏、方解石、白云石矿物饱和指数与pH变化关系,分析煤矿酸性“老窑水”低Ca/Mg值的成因机制。研究表明:区内石炭系-二叠系的煤系地层中碳酸盐岩夹层、分散状态分布的菱镁矿、黄铁矿是“老窑水”中Ca2+、Mg2+、SO42?的物质来源;在黄铁矿氧化水解形成的以硫酸根为主导的酸性溶液中(pH为2.0~4.5),代表硫酸对石膏、方解石、白云石可溶解性的饱和指数排序为石膏>方解石>白云石,受石膏在高浓度硫酸活性降低并发生沉淀、方解石溶解受Ca2+同离子效应抑制和饱和状态的平衡调节的综合影响,使Ca2+相对含量减少,由于MgSO4溶度积大于CaSO4,故Mg2+含量未受上述约束(或较低),脱白云岩化反应可因Ca2+含量随石膏沉淀而继续进行,加之区内有菱镁矿的溶解,使得Mg2+相对含量增加,最终出现了镁矿酸性“老窑水” Ca/Mg值低的结果。Ca/Mg值可作为煤矿酸性“老窑水”的污染特征指标,应用于环境影响评价。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号