首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A petrography–geochemistry-based evaluation of the provenance of the sandstones of the Tertiary Middle Siwalik Subgroup in the Lish River Valley, West Bengal, is presented. The framework grains in the sandstones suggest mixing of sediments from spatially separated gneissic, quartzitic and phyllitic source rocks. Modal values of different framework minerals suggest that recycled sediments in an orogenic setting were deposited in the Middle Siwalik basin in the area. The major and trace element ratios suggest dominantly felsic input and mixing with subordinate basic material in an upper continental crustal setup. The major and trace element data also indicate that rocks of a passive margin setting acted as the source to the sediments. The present paper postulates that the Middle Siwalik sediments were derived from pre-Himalayan gneissic and metabasic rocks of an erstwhile passive margin setting and presently forming the Higher and Lesser Himalaya, respectively.  相似文献   

2.
During the course of mapping of active faults in the northwestern Outer Himalaya (using CORONA photographs, multispectral satellite data of Indian Remote Sensing satellite (IRS) and aerial photographs) we have identified an isolated basin of Quaternary and Holocene sediments resting unconformably on Siwaliks, around Parduni, in the northwestern Dehra Dun (Doon) valley. The region around Parduni is tectonically very complex and is traversed by active thrust faults to its north and south and strike slip faults to its east and west. The uplift and southward shift along the strike slip faults on both sides and the Markanda thrust edging to its south, the Parduni has developed as an intradun basin and now remains isolated from the main Doon valley. Based on the OSL age data widespread deposition of Quaternary alluvial fan sediments, the dun gravels, is inferred to have initiated around 34 ka BP in the western part of the Doon valley, while the sedimentation in the Parduni Basin started only around 27 ka BP, which more or less ceased around 20 ka. The southward movement of the Parduni Basin as a piggyback basin is ongoing with recent alluvial deposits covering the dun gravels tectonically overlain by the Siwalik sandstone and mudstones in the hanging wall of the Markanda thrust. The present communication discusses the development and evolution of the Parduni Basin vis-à-vis the configuration of the Doon valley in the northwestern Outer Himalaya and the prevalence of tectonics expressed or demonstrated in the active Himalayan Front.  相似文献   

3.
The Balderton Terrace marks a former course of the River Trent between Newark and the Lincoln Gap. The principal deposit, the Balderton Sand and Gravel, is interpreted as a braided river sediment. Ice wedge casts truncated by intraformational erosion surfaces at many levels indicate syndepositional permafrost. Remnant cover deposits overlying the Balderton Sand and Gravel include the partly aeolian Whisby Sand. Locally, both the upper part of the Balderton Sand and Gravel and the cover deposits exhibit features indicative of temperate climate pedogenesis. All these deposits are affected by subsequent cryoturbation. On the basis of these features and the geomorphological and topographical relationship to other terrace deposits of the area, the Balderton Sand and Gravel and Whisby Sand are regarded as post-Hoxnian and pre-lpswichian, i.e. Wolstonian. Electron spin resonance age determinations for fossil elephant teeth and amino acid analyses on molluscs from the Balderton Sand and Gravel suggest correlation with Oxygen Isotope Stage 6. The Balderton Sand and Gravel has yielded a cold-climate mammalian fauna dominated by woolly mammoth and woolly rhinoceros, though rarer species suggest periods of milder climate. Silts from channels near the base of the deposit have produced pollen, mollusc, ostracod and beetle assemblages also indicating a cold climate.  相似文献   

4.
Information on landuse/landcover change is a critical input for natural resource management policy decisions. Remote sensing data under GIS domain were utilized to evaluate the changes in land-use/land-cover (LU/LC) spanning a period of thirty three years during 1975 to 2008 along the Dhansiri River channel, Assam, India. Seven different types of LU/LC were categorized and out of them cropland was evident as the most important landuse/landcover practices followed by dense mixed jungle in 1975 and the settlement in 2008. Significant reduction (13.02%) in cropland area to settlement was observed. Moreover, teagarden also occupies 0.77% of the total area from cropland and open mixed jungle. The changes in the areas of swampy land as evident from the present study in turn will impact the environmental quality around it and will help to increase the surface run off leading to enhancement of erosion processes. It is believed that the present study will help to contribute towards sustainable land-use planning and management towards protection of extremely rich biodiversity of the North East India with mighty Brahmaputra River system.  相似文献   

5.
Mammalian fossils recently discovered near Fulbeck in Lincolnshire, include abundant hippopotamus, suggesting an Ipswichian date for the Fulbeck Sand and Gravel (new name). These deposits mark a former course of the River Witham; clasts indicate derivation from outcrops of Jurassic rocks and chalky till to the south and south-east. The relationship of the Fulbeck Sand and Gravel to the terrace deposits of the River Trent necessitates a revised chronology. The Balderton Sand and Gravel (new name), laid down by the Trent along its former course to the Lincoln Gap, is shown to be older than the Ipswichian Fulbeck Sand and Gravel, and was probably deposited during the Wolstonian Stage. The Eagle Moor Sand and Gravel (new name), probably glaciofluvial outwash from the chalky tills of the region, is considerably older than the Balderton Sand and Gravel and, together with the tills, is assigned to the early part of the Wolstonian, or the Anglian glacial Stage. It is suggested that the Balderton and Eagle Moor terraces equate with the lower and upper facets of the composite Hilton Terrace of the Middle Trent.  相似文献   

6.
The frontal part of the active, wedge-shaped Indo-Eurasian collision boundary is defined by the Himalayan fold-and-thrust belt whose foreland basin accumulated sediments that eventually became part of the thrust belt and is presently exposed as the sedimentary rocks of the Siwalik Group. The rocks of the Siwalik Group have been extensively studied in the western and Nepal Himalaya and have been divided into the Lower, Middle and Upper Subgroups. In the Darjiling–Sikkim Himalaya, the Upper Siwalik sequence is not exposed and the Middle Siwalik Subgroup exposed in the Tista river valley of Darjiling Himalaya preserves a ~325 m thick sequence of sandstone, conglomerate and shale. The Middle Siwalik section has been repeated by a number of north dipping thrusts. The sedimentary facies and facies associations within the lithostratigraphic column of the Middle Siwalik rocks show temporal repetition of sedimentary facies associations suggesting oscillation between proximal-, mid- and distal fan setups within a palaeo-alluvial fan depositional environment similar to the depositional setup of the Siwalik sediments in other parts of the Himalaya. These oscillations are probably due to a combination of foreland-ward movement of Himalayan thrusts, climatic variations and mountain-ward shift of fan-apex due to erosion. The Middle Siwalik sediments were derived from Higher- and Lesser Himalayan rocks. Mineral characteristics and modal analysis suggest that sedimentation occurred in humid climatic conditions similar to the moist humid climate of the present day Eastern Himalaya.  相似文献   

7.
To study neotectonics, the structural and morphotectonic aspects are studied along a part of mountain front region of Northeast Himalaya, Arunachal Pradesh, India. Unpaired river terraces are recognized near north of transverse Burai River exit, which is cut by an oblique fault. Across this fault, fluvial terraces are located at heights of 22.7 and 3 m, respectively, on the left and right banks. A water gap is formed along the river channel where the uplifted Middle Siwalik sandstone beds dipping 43° towards ENE direction, thrust over the Quaternary deposit consisting of boulders, cobbles, pebbles and sandy matrix. This river channel incised the bedrock across the intraformational Ramghat Thrust along which the rocks of the Middle Siwalik Formation thrust over the Upper Siwalik Formation. Recent reactivated fault activity is suggested north of the Himalayan Frontal Thrust that forms the youngest deforming front of the Himalaya. The uplifting along the stream channel is noticed extended for a distance of ~130 m and as a result the alluvial river channel became a bedrock river. The relative displacement of rocks is variable along the length of strike–slip faults developed later within the Ramghat Thrust zone. Longitudinal and Channel gradient profiles of Burai River exhibit knick points and increase in river gradient along the tapering ends of the profiles. The study suggests active out-of-sequence neotectonically active thrusting along the mountain front. Neotectonics combined with climatic factor during the Holocene times presents a virgin landscape environment for studying tectonic geomorphology.  相似文献   

8.
南海珠江深水扇系统的层序地层学研究   总被引:18,自引:1,他引:18  
位于古珠江大河及其浅海陆架富砂珠江三角洲下方的陆坡深水区白云凹陷是沉积大型深水扇的有利地域,宏观认识的进展指导了白云深水陆坡区系统的层序地层学研究,并因此发现了多层序叠置的南海珠江深水扇系统,使其成为具有油气勘探潜力的新领域。南海珠江深水扇系统的层序地层学研究包含了以下关键内涵层序地层学解释中在承认各种资料的分辨率、多解性和局限性的同时,强调多学科资料的综合应用、相互印证,强调周期性海平面变化对沉积的控制作用研究,强调地震反射相位等时界面确认的有效性,强调层序界面的反复确认,强调生物地层时代、相对海平面、全球海平面与层序界面的响应研究,强调层序格架内各沉积体的相互响应关系研究等。层序地层格架的建立导致了珠江深水扇系统的发现,揭示了珠江大河流域、陆架区大型珠江三角洲系统与陆坡区珠江深水扇系统的耦合关系,揭示了珠江深水扇与海平面变化的响应关系,揭示了珠江深水扇与古地理的响应关系。珠江深水扇系统的发现有力地推动了南海陆坡深水区的油气勘探。  相似文献   

9.
The Siwalik Group in a part of the Kumaun Himalaya has been studied with respect to its sedimentologic properties. Size-based environmental data indicate a fluviatile environment for the Middle and Upper Siwalik sediments. The Lower Siwalik samples indicate a border-line environment, possibly a fluvial-deltaic complex. Petrologically, the Siwalik samples are essentially sublitharenites and litharenites. Variation in petrological character in successive Siwalik units is not very marked, although the heavy-mineral assemblages serve the purpose of stratigraphic identification.Sedimentary structures, though not profuse, show a well-developed cyclic development corresponding to the idealised fining-upward sequence of alluvial sediments. They indicate deposition by laterally shifting braided streams. A major portion of the Siwalik detritus may be considered to have its provenance in the Himalayan metamorphic areas.  相似文献   

10.
We identified geological units in the Francistown area in northeastern Botswana by using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) thermal infrared (TIR) data, which contains both surface temperature and spectral emissivity information. A scatter plot of ASTER L1B daytime TIR digital values and L2 daytime temperature indicates that in the ASTER L1B daytime TIR data, bands 10, 11, and 12 contain spectral emissivity and temperature information, whereas surface temperature dominates the spectral emissivity information in bands 13 and 14. Visual interpretation of the ASTER TIR false color composite (FCC) images generated by assigning red, green, and blue to band 14:band 12:band 10 using L1B daytime data allowed us to identify mafic-to-ultramafic units and quartz-rich felsic units. Mafic-to-ultramafic units such as gabbro, dolerite, and dunite appear white in ASTER L1B daytime TIR FCC images due to their high spectral emissivities in the 8–9 μm region (bands 10 and 12) and high surface temperatures. Mafic-to-ultramafic units have higher surface temperatures than other geological units because they absorb more solar radiation due to their lower albedos and they have a lower thermal inertia. Quartz-rich felsic units such as granite and dry river sand appear reddish in the ASTER L1B daytime TIR FCC image because the spectral emissivity of quartz is lower in the 8–9 μm region (bands 10 and 12) than in the 10–12 μm region (band 14). Mafic-to-ultramafic and granitic units are important targets for mineral exploration because they are potential geological units to host or accompany mineralization. The proposed ASTER L1B daytime TIR FCC images can be prepared very simply and they provide valuable information for geological mapping and mineral exploration.  相似文献   

11.
甘肃疏勒河冲积扇发育特征及其对构造活动的响应   总被引:7,自引:2,他引:5  
甘肃疏勒河冲积扇是面积达2400km2的一个巨型冲积扇,位于青藏高原北缘阿尔金断裂带东端。区域构造上该扇发育在阿尔金主断裂、三危山断裂和南截山断裂组成的阿尔金断裂带左旋走滑构造域。根据野外调查获得的沉积层序、地貌形态和构造变形等资料,该冲积扇可划分为老冲积扇和新冲积扇。老冲积扇扇顶紧靠阿尔金主断裂,由已显著构造变形的早更新统玉门砾岩组成;新冲积扇是在老冲积扇基础上发育的,扇顶已向下游移动到大坝附近,距阿尔金主断裂4km,主要由中更新统酒泉砾石和晚更新统戈壁砾石组成。疏勒河冲积扇发育对区域构造活动的响应主要表现为:1)在第四纪早期,阿尔金断裂的左旋走滑兼逆冲运动,导致了由玉门砾岩组成的疏勒河老冲积扇扇头被左旋错动约8km,同时扇体,尤其扇头明显褶皱隆升,扇顶向山外移动;2)此后随着阿尔金断裂继续作左旋走滑兼逆冲运动,老冲积扇扇头又被左旋错动了约2km,总共左旋位移了约10km,并且扇顶下移了约4km,形成新的冲积扇;3)在冲积扇内从早更新世至晚更新世沉积中心不断向下游移动,呈现向下游超覆沉积的特征,这也一定程度上反映了祁连山隆升、向外扩展和侵蚀作用显著  相似文献   

12.
Four legume fruits (Fabaceae) from the Siwalik sediments (middle Miocene to lower Pleistocene) of Darjeeling and Arunachal Pradesh of Eastern Himalaya are described here. One fossil fruit, Dalbergia prelatifolia sp. nov., is recovered from the lower part of the Siwalik succession (Gish Clay Formation of Sevok Group; middle to upper Miocene) of Darjeeling foothills. Mastertia neoassamica sp. nov. and Acacia miocatechuoides sp. nov. are collected from the lower part of the Siwalik succession (Dafla Formation; middle Miocene to upper Miocene), while Pongamia kathgodamensis Prasad is recovered from the upper part of the Siwalik succession (Kimin Formation; upper Pliocenelower Pleistocene) of Arunachal sub Himalaya. Their presence indicates a warm and humid tropical environment in the region during the Siwalik sedimentation.  相似文献   

13.
 Radon concentration was measured in 133 water samples from tubewells, handpumps, dug wells and springs of the Doon Valley, Outer Himalaya, India. The observed radon values were found to vary from 10 to 154 Bq/l whereas radium in selected water samples varied from 0.11 to 0.75 Bq/l. Three different clusters of high radon values were observed in the north-western, central and south-eastern parts of the Doon Valley. These clusters were found to be associated with tectonics (thrust/fault) and associated uranium mineralization in the area. In general, radon concentration in groundwater was found to be positively correlated with the depth of the wells, whereas no significant correlation was observed between radon concentration in groundwater and the water temperature, pH value, conductivity and altitude of the water samples. An attempt has also been made to determine the nature and extent of aquifers in the Doon Valley on radon concentration in groundwater. The variation in radon concentration within the groundwater of the study area was found to be controlled by the neotectonic activity and geohydrological processes that occur in the area. The impact of these activities on radon concentration in groundwater are discussed. Received: 17 September 1999 · Accepted: 11 April 2000  相似文献   

14.
The Himalayan fold-and-thrust belt has propagated from its Tibetan hinterland to the southern foreland since ∼55 Ma. The Siwalik sediments (∼20 - 2 Ma) were deposited in the frontal Himalayan foreland basin and subsequently became part of the thrust belt since ∼ 12 Ma. Restoration of the deformed section of the Middle Siwalik sequence reveals that the sequence is ∼325 m thick. Sedimentary facies analysis of the Middle Siwalik rocks points to the deposition of the Middle Siwalik sediments in an alluvial fan setup that was affected by uplift and foreland-ward propagation of Greater and Lesser Himalayan thrusts. Soft-sediment deformation structures preserved in the Middle Siwalik sequence in the Darjiling Himalaya are interpreted to have formed by sediment liquefaction resulting from increased pore-water pressure probably due to strong seismic shaking. Soft-sediment structures such as convolute lamination, flame structures, and various kinds of deformed cross-stratification are thus recognized as palaeoseismic in origin. This is the first report of seismites from the Siwalik succession of Darjiling Himalaya which indicates just like other sectors of Siwalik foreland basin and the present-day Gangetic foreland basin that the Siwalik sediments of this sector responded to seismicity.  相似文献   

15.
The physical characteristics of sedimentary record are governed largely by grain size distribution in Mohand area where Middle and Upper Siwalik successions are investigated to characterize the sediments deposited in response to the prevailing tectonic activities and climatic conditions. Here we show with the help of cluster analysis that precipitation and tectonic perturbations generate characteristic patterns of grain sizes and stratigraphic succession. Previous studies suggested an increase in precipitation represented by the abrupt accumulation of sediments to foreland Siwalik basin around 11 to 10 Ma. First appearance of diagnostic minerals of the Great Himalayan complex in Siwalik sediments at 9.2 Ma implies the accelerated erosion of Himalaya during Middle to Late Miocene. The response of sedimentation to tectonic activity is resulted by the presence of coarse grained gravel units in Siwalik succession of Mohand area. Apatite fission-track dates and muscovite cooling ages confirm the strong activity on boundary thrusts during 8-6 Ma. Although the responses are non-linear and transient, we clusterize these non-linear responses to tectonics and climate and quantify them to find out the role of tectonics and climate in architecture of sedimentary succession.  相似文献   

16.
Cover sediments of the York Terrace exposed near the California River, western Seward Peninsula, Alaska, yield mollusks, ostracodes, and foraminifera that lived during the Anvilian transgression of early Pleistocene age. The fossiliferous sediments lie at the inner edge of the York Terrace, a deformed wave-cut platform that extends eastward from Bering Strait along much of the southern coast of Seward Peninsula. The seaward margin is truncated by the little-deformed Lost River Terrace, carved during the Pelukian (Sangamonian) transgression. The early Pleistocene sediments seem to have been deposited between the first and second of four glaciations for which evidence can be found in the California River area.The California River fauna includes several extinct species and several species now confined to areas as remote as the northwestern Pacific and north Atlantic. The fauna probably lived in water temperatures much like those of the present time but deeper water on the Bering Shelf is suggested.The presence of an early Pleistocene fauna at the inner edge of the York Terrace at California River shows that the terrace was largely carved before and during early Pleistocene time. However, a marine fauna apparently of middle Pleistocene age is found on the York Terrace near Cassiterite Peak, and this seems to indicate that the terrace remained low until middle Pleistocene time. Uplift of the York Terrace probably was accompanied by uplift of Bering Strait. The strait may have been deeper, and there may have been no land bridge between the Seward Peninsula of Alaksa and the Chukotka Peninsula of Siberia during most of early and middle Pleistocene time.  相似文献   

17.
Geochemistry of the Sub-Himalayan foreland basin Siwalik sediments has been used for interpreting the nature of the source rocks. This study has shown that the compositional changes are a function of stratigraphic height, demonstrated by the upward increase of P2O5, Na2O, CaO, MgO and SiO2 content from Lower to the Upper Siwalik rocks. On the other hand, K2O, Fe2O3, TiO2 and Al2O3 show decrease with the increasing stratigraphic height. These trends are a clear reflection of time-controlled changes in the source lithology. Ratios such as Eu/Eu*, (La/Lu)cn, La/Sc, Th/Sc, La/Co, and Cr/Th suggest a prominent felsic source area for the Siwalik sediments. Chondrite-normalized REE pattern with LREE enrichment and moderately flat HREE pattern with sharp negative Eu anomaly are attributed to a felsic source. Contrary to the existing belief, this study has ruled out any contribution from the mafic sources and highlighted the compositional similarities of Siwalik sediments with the crustal proxies like PAAS, NASC and UCC. The geochemical data point to a significant role played by the Precambrian and early Paleozoic granitic rocks of the Himalayan tectogene in shaping the composition of the foreland sediments. The variable CIA values and marked depletion in Na, Mg and Ca exhibited by the Lower, Middle and Upper Siwalik sediments reflect variable climatic zones and variations in the rate of tectonic uplift of the source area. Our results demonstrate that in the Lower Siwalik and part of the Middle Siwalik, Higher Himalayan Crystalline sequence (HHCS) was the primary source area with minor contributions by the meta-sedimentary succession of the Lesser Himalaya. Later, during the deposition of the upper part of the Middle Siwalik and Upper Siwalik, the source terrain switched positions. These two prominent source terrains supplied sediments in steadily changing proportion through time.  相似文献   

18.
Pramod Singh 《Chemical Geology》2010,269(3-4):220-236
Major, trace and REE compositions of sediments from the upper Ganga River and its tributaries in the Himalaya have been examined to study the weathering in the Himalayan catchment region and to determine the dominant source rocks to the sediments in the Plains. The Ganga River rises in the Higher Himalaya from the Higher Himalayan Crystalline Series (HHCS) bedrocks and traverses over the Lesser Himalayan Series (LHS) and the Himalayan foreland basin (Siwaliks) rocks before entering into the Gangetic Plains. The major element compositions of sediments, reflected in their low CIA values (45.0–54.7), indicate that silicate weathering has not been an important process in the Himalayan catchment region of the Ganga River. Along the entire traverse, from the HHCS through LHS and the Siwaliks, the sediments from the tributaries and the mainstream Ganga River show higher Na2O, K2O, CaO and silica. This, and the higher ratios of La/Sc, Th/Sc and lower ratios of Co/Th, suggest that the source rocks are felsic. The fractionated REE patterns and the significant negative Eu anomalies (Eu/Eu? = 0.27–0.53) indicate highly differentiated source. Moreover, the comparison of the sediments with different source rock lithologies from the HHCS and the LHS for their major elements clearly suggests that the HHCS rocks were the dominant source. Further, comparison of their UCC (upper continental crust) normalized REE patterns suggests that, among the various HHCS rocks, the metasediments (para-gneiss and schist) and Cambro-Ordovician granites have formed the major source rocks. The Bhagirathi and Alaknanda River sediments are dominantly derived from metasediments and those in the Mandakini River from Cambro-Ordovician granites. The resulting composition of the sediments of the Ganga River is due to the mixing of sediments supplied by these tributaries after their confluence at Devprayag. No further change in major, trace and rare earth element compositions of the sediments of the Ganga River after Devprayag up to its exit point to the Plains at Haridwar, suggests little contribution of the Lesser Himalayan and Siwalik rocks to the Ganga River sediments.  相似文献   

19.
This study demonstrates the use of ASTER data for the mapping of gypsum deposits and associated geological formations that occurred in the Thumrait region of southern Oman. The measurement of spectra over samples of gypsum in the 1,300–2,500 nm wavelength using a PIMA spectrometer showed the presence of distinct absorptions at 1400–1600, 1750, 1940, 2,100, and 2,400 nm characteristics to O? H stretching, H2O combinations, and S? O bending overtones and stretching, respectively. Studying the unique spectral absorption characters of gypsum samples, we developed a false color composite (FCC) and an image by decorrelation stretch using the spectral bands 7, 3, and 2 of ASTER. The results FCC showed the regions of gypsum occurrences, and the decorrelated image discriminated the gypsum occurrences from other geological formations of the area. The study of surface mineralogy of the region using the VNIR‐SWIR bands by the spectral angle mapper method showed the presence of sulfate, carbonate, and clay minerals of the geological formations in the study area. We compared the results of ASTER with the results obtained using spectral bands 12, 8, and 4 of Sentinel‐2A processed by the same methods. The study showed that the spectral bands of ASTER can be used for mapping the gypsum and associated geological formations.  相似文献   

20.
《Gondwana Research》2010,17(3-4):687-696
Geochemistry of the Sub-Himalayan foreland basin Siwalik sediments has been used for interpreting the nature of the source rocks. This study has shown that the compositional changes are a function of stratigraphic height, demonstrated by the upward increase of P2O5, Na2O, CaO, MgO and SiO2 content from Lower to the Upper Siwalik rocks. On the other hand, K2O, Fe2O3, TiO2 and Al2O3 show decrease with the increasing stratigraphic height. These trends are a clear reflection of time-controlled changes in the source lithology. Ratios such as Eu/Eu*, (La/Lu)cn, La/Sc, Th/Sc, La/Co, and Cr/Th suggest a prominent felsic source area for the Siwalik sediments. Chondrite-normalized REE pattern with LREE enrichment and moderately flat HREE pattern with sharp negative Eu anomaly are attributed to a felsic source. Contrary to the existing belief, this study has ruled out any contribution from the mafic sources and highlighted the compositional similarities of Siwalik sediments with the crustal proxies like PAAS, NASC and UCC. The geochemical data point to a significant role played by the Precambrian and early Paleozoic granitic rocks of the Himalayan tectogene in shaping the composition of the foreland sediments. The variable CIA values and marked depletion in Na, Mg and Ca exhibited by the Lower, Middle and Upper Siwalik sediments reflect variable climatic zones and variations in the rate of tectonic uplift of the source area. Our results demonstrate that in the Lower Siwalik and part of the Middle Siwalik, Higher Himalayan Crystalline sequence (HHCS) was the primary source area with minor contributions by the meta-sedimentary succession of the Lesser Himalaya. Later, during the deposition of the upper part of the Middle Siwalik and Upper Siwalik, the source terrain switched positions. These two prominent source terrains supplied sediments in steadily changing proportion through time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号