首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Mount Raymond transverse zone (MRTZ) forms the east-west-trending boundary between the Wyoming salient of the Sevier fold-thrust belt and the Uinta/Cottonwood arch in north-central Utah. Major faults in the zone dip 40° to 45° north. Our structural analysis indicates that the MRTZ contains both contractional and extensional structures. The contractional structures (thrusts and related folds) initially formed as part of a southeast-verging, northeast-trending thrust system. This system gradually curved and merged to the north with the east-verging Absaroka thrust system in the apex of the Wyoming salient. The contrast in trend between structures in the MRTZ and those in the apex of the Wyoming salient reflects the initial curvature of the salient. This curve formed because the stratigraphic sequence involved in thrusting thinned gradually southward, toward the axis of a proto-Uinta arch. The present east-west trend of the MRTZ developed during Laramide uplift of the Unita/Cottonwood arch, an event which tilted the faults into their present position. Cenozoic crustal extension subsequently reactivated segments of the MRTZ. In sum, the evolution of the MRTZ illustrates how post-thrusting processes can affect the map-view geometry of thrust belts to create transverse zones.  相似文献   

2.
Folds form by ductile deformation typically involving continuous flow. In the elastico-frictional regime, such deformation may be accomplished by cataclastic flow involving collective movement on a population of fractures and zones. The Canyon Range (CR) syncline, part of the CR thrust sheet in west-central Utah, developed in this regime. The CR syncline is composed of thick-bedded quartzite units with a small material contrast between layers, limiting limb rotation by flexural slip alone. Thus, fracture populations developed to accommodate fold tightening by limb rotation and thinning, and the formation of transverse zones across the fold. Several generations of fracture and deformation zone (DZ) networks are recognized from mesoscopic and microscopic evidence, and can be related to stages of folding. The net result of the large number of distributed fractures and deformation zones is a continuous deformation that is homogeneous at the scale of the outcrop. All these lines of evidence suggest that large-scale cataclastic flow accommodated folding by allowing rigid mesoscopic blocks to slide along bounding DZs.Along its length, the CR syncline consists of several segments bounded by transverse zones with different mechanisms accommodating fold tightening in adjacent segments. In one segment, fold tightening progressed by limb rotation, and then out-of-the-core thrusting. In contrast, fold tightening in the adjoining segments occurred by rotation and thinning of one limb and possible hinge migration, with the steeply dipping to overturned limb showing progressive thinning of units on a megascopic scale and progressive increase in the thickness and density of deformation zones at all scales.  相似文献   

3.
The map expression of "abrupt" changes in lateral stratigraphic level of a thrust fault has been traditionally interpreted to be a result of the presence of(1) a lateral(or oblique) thrust-ramp,or(2) a frontal ramp with displacement gradient、and/or(3) a combination of these geometries.These geometries have been used to interpret the structures near transverse /ones in fold-thrust belts(FTB).This contribution outlines an alternative explanation that can result in the same map pattern by lateral variations in stratigraphy along the strike of a low angle thrust fault.We describe the natural example of the Leamington transverse zone.which marks the southern margin of the Pennsy lvanian—Permian Oquirrh basin with genetically related lateral stratigraphic variations in the North American Sevier(TB.Thus.the observed map pattern at this zone is closely related to lateral stratigraphic variations along the strike of a horizontal fault.Even though the present-day erosional level shows the map pattern that could be interpreted as a lateral ramp.the observed structures along the Leamington zone most likely share the effects of the presence of a lateral(or oblique) ramp,lateral stratigraphic variations along the fault trace.and the displacement gradient.  相似文献   

4.
准噶尔盆地南缘褶皱-逆冲断层带分析   总被引:13,自引:0,他引:13  
讨论了与准噶尔盆地南缘褶皱-逆冲断层带有关的4个问题。(1)准噶尔盆地南缘褶皱-逆冲断层带具有纵向分带、横向分段和垂向构造分层的特征:纵向上由南至北可分为逆冲推覆构造带、基底卷入褶皱-冲断带和滑脱型褶皱-冲断带三个带;横向上,基底卷入褶皱-冲断带从西至东按横向调节带分为5个段,构造特征表现为反冲断层从不发育到向南反冲的位移逐渐增大、反冲断层所滑脱的层位亦逐渐加深;滑脱型褶皱-冲断带以红车断裂为界划分为西段和东段,西段构造运动弱,构造变形具双层结构;东段构造运动较强,发育大型冲向后陆的反向逆冲断层,构造变形多具有3层结构。(2)逆冲断层-褶皱类型按其形成机制分为基底卷入型冲断-褶皱、滑脱型冲断-褶皱以及基底卷入-滑脱混合型冲断-褶皱3大类,其中,基底卷入型冲断-褶皱的特征是褶皱作用发生在逆冲断裂之前,而滑脱型冲断-褶皱以冲断和褶皱同时或冲断层先于褶皱形成为特征。(3)本区存在横向和纵向传递带。横向调节带一般分布于基底卷入型褶皱-冲断带,主要为左旋走滑断层;纵向传递带分布于滑脱型褶皱-冲断带,以逆冲断层系斜列分布和位移纵向斜列传递为特征。(4)褶皱-冲断带形成的主控因素主要有:近南北向的水平挤压作用,上新世末—早更新世末和晚侏罗世末发生的构造变形以及古近系、下白垩统和下—中侏罗统发育的三套异常高压泥岩层相关的滑脱作用。  相似文献   

5.
The fold-thrust tectonics in the Northern Tarim Basin, oriented roughly parallel to the South Tianshan orogenic belt, consists of two large-scale tectonic regimes: (1) the foreland-basin, thin-skinned deformation belt; and (2) the foreland-craton, thick-skinned-dominated (i.e., basement-involved) deformation belt. Variations in the degree of deformation in these tectonic belts and style along the regional tectonic strike can be accounted for by longitudinal (progressive) transfer or transverse (abrupt) transfer. Longitudinal transfer maintains the overall displacement or shortening within the fold-thrust belts as uniform or with gradual change along the tectonic strike. This includes the tectonic transfer between en echelon master thrusts and from the individual master thrust to terminal fold (s) or distributive thrusts. Transverse transfer resulted from an abrupt change in overall displacement or shortening along the tectonic strike. Within the transverse transfer zone, various tectonics—such as strike-slip faults, strike-slip thrusts, transverse anticlines, and en echelon folds—are developed.

The development of longitudinal transfer zones can be attributed to the gradual variation of intrinsic and extrinsic deformational conditions along the tectonic strike. The initiation of transverse transfer may be related to variations in the thickness of sedimentary layers, detachment-layer distribution limits, and variation along strike of the degree and mode of the South Tianshan orogenic belt's effect on the basin, as well as the variation of the boundary conditions of the deformation, such as in the geometry of plate margins.  相似文献   

6.
The Helena salient is a prominent craton–convex curve in the Cordillera thrust belt of Montana, USA. The Lombard thrust sheet is the primary sheet in the salient. Structural analysis of fold trends, cleavage attitudes, and movement on minor faults is used to better understand both the geometry of the Lombard thrust and the kinematic development of the salient.Early W–E to WNW–ENE shortening directions in the Lombard sheet are indicated by fold trends in the center of the thrust sheet. The same narrow range of shortening directions is inferred from kinematic analysis of movement on minor faults and the orientations of unrotated cleavage planes along the southern lateral ramp boundary of the salient. As the salient developed, the amount and direction of shortening were locally modified as listric detachment faults rotated some tight folds to the NW, and as right-lateral simple shear, caused by lock-up and folding of the Jefferson Canyon fault above the lateral ramp, rotated other folds northeastward. Where the lateral ramp and frontal-oblique ramp intersect, folds were rotated back to the NW. Our interpretation of dominant W–E to WNW–ESE shortening in the Lombard sheet, later altered by local rotations, supports a model of salient formation by primary parallel transport modified by interactions with a lateral ramp.  相似文献   

7.
罗良  漆家福 《地质科学》2015,50(2):355-363
前陆冲断带可以分为3种基本类型:弧后前陆型、周缘前陆型和再生前陆型冲断带。相对国外典型前陆冲断带,中国中西部前陆冲断带在构造演化和变形方面具有独特性,属于再生前陆型冲断带,普遍经历了两期逆冲构造变形、或者"伸展-挤压-伸展-挤压"多期构造变形的叠加。中国中西部的再生前陆冲断带多具有"分带、分段和分层"的结构特征,表现出以主干断裂为界往往可以划分为若干个冲断变形带,沿走向方向表现为几个在构造变形上具有明显差异的变形区段,在垂向上由于滑脱层的发育表现出不协调的分层收缩、上下叠置的变形特征。  相似文献   

8.
Deformation within the upper crust (elastico-frictional regime) is largely accommodated by fractures and conjugate faults. The Coulomb fracture criterion leads us to expect that the average dihedral angle of conjugate-fault sets is expected to be ∼60°. Experiments, however, reveal a significant amount of scatter from this 60° average. The confining pressure under which these rocks are deformed is a contributing factor to this scatter.The Canyon Range syncline, Sevier fold-thrust belt (USA) and the Jebel Bani, Anti-Atlas fold-belt (Morocco) both folded under different depths, within the elastico-frictional regime, by cataclastic flow. Conjugate-fault sets assisted deformation by cataclastic flow. The Canyon Range syncline and the Jebel Bani are used here as natural examples to test the relationship between the dihedral angle of conjugate-faults and confining pressure. Variations is confining pressure are modeled by the difference in depth of deformation and position within the folds.Results from this study show that the dihedral angle increases with an increase in depth and within the hinge regions of folds, where space problems commonly occur. Moreover, the shortening directions based on the acute bisectors of conjugate-faults may not be accurately determined if the dihedral angles are unusually large or small, leading to incorrect kinematic analyses.  相似文献   

9.
祁连山北缘-河西走廊西段位于青藏高原东北缘,是新生代陆内构造活动最强烈地区。基于野外构造观测、横跨山前及前陆盆地区的三维地震构造分析与解释,结合地震地质属性提取分析,识别出祁连山北缘-酒泉盆地西段窟窿山-柳沟庄带隐伏的弧形褶皱-逆冲带,该弧形构造是造山带基底逆冲构造楔体垂向差异抬升与向前陆方向差异运动的产物;该弧形结构控制本区下白垩统地层裂缝发育、分布与破裂强度,并与本区先期断裂、裂缝带产生构造叠加效应,形成弧形构造“中央强裂缝发育带”,是形成构造裂缝型油气藏的有利区域。  相似文献   

10.
塔里木盆地南部玛东早古生代褶皱-冲断带   总被引:2,自引:0,他引:2  
玛东褶皱-冲断带位于塔里木盆地南部,走向NE-SW,由NW向SE方向冲断。褶皱冲断带发育于寒武-奥陶系,以中寒武统膏-盐层为主滑脱面。中志留统及其以上地层不整合于褶皱冲断带之上。它是世界上保存最好的早古生代褶皱冲断带之一。根据卷入变形最新地层、不整合于褶皱-冲断带之上的最老地层和上奥陶统上部的生长地层,玛东褶皱-冲断带的变形时间为晚奥陶世-早志留世。玛东褶皱-冲断带与其东南侧的塘南褶皱-冲断带同为塔里木盆地南缘早古生代前陆褶皱-冲断带的组成部分,塘南褶皱-冲断带是该早古生代前陆褶皱-冲断带主体的残余,其向NW的主冲断方向代表该前陆褶皱-冲断带的主冲断方向;玛东褶皱-冲断带是该早古生代前陆褶皱-冲断带的前锋,其向SE的冲断具有反冲性质。它们是昆仑早古生代造山作用的重要记录,也是昆仑早古生代碰撞造山带的组成部分,现今保存最好的部分。  相似文献   

11.
南天山褶皱冲断带西段变形空间差异性及控制因素   总被引:1,自引:0,他引:1  
新生代早期印度板块与欧亚板块持续碰撞汇聚导致欧亚板块内部发生大规模的陆内变形,天山造山带再次隆升,并向塔里木盆地大规模逆掩推覆,形成了现今南天山褶皱冲断带,其变形表现出明显的空间差异性。本文以南天山褶皱冲断带西段为研究对象,通过对不同构造带的地震剖面解释、运用平衡剖面技术恢复出各演化阶段发育过程并计算出相应的变形量,分析本区构造带的空间差异性及其控制因素。通过分析认为南天山褶皱冲断带西段可以进一步划分为巴什布拉克构造段,乌恰-阿图什-喀什构造段和柯坪西缘构造段。其中,巴什布拉克构造段变形特征主要呈一系列对冲构造和背驮盆地样式。乌恰-阿图什-喀什构造段变形特征表现为深、浅两个层次:深部发育堆垛构造和构造楔,浅部发育断层传播褶皱和逆冲断层改造的褶皱带。柯坪西缘构造段变形更加强烈,也表现为深、浅两个层次:深部发育堆垛构造,堆垛程度更大,浅部也发育断层传播褶皱和逆冲断层改造的褶皱带以及反冲断层系。结合该研究区的地质概况进一步分析,本文认为南天山褶皱冲断带西段构造变形的差异性可能与新生代以来帕米尔块体向北推进、塔拉斯-费尔干纳右行走滑断裂的活动、先存断裂的活化与韧性滑脱层的影响有关。  相似文献   

12.
Given the wealth of data concerning the kinematics of deforming fold-thrust belts (FTBs), first-order generalizations about how the major strain components vary within a deforming thrust wedges are considered. These generally observed strain patterns are used to constrain a general, kinematics-based, FTB-wedge model. We considered five strain components within a deforming thrust sheet: (1) thrust-parallel simple shear, (2) horizontal contractional strain, (3) thrust-normal reaction strain, (4) gravitational strain, and (5) a lateral confining boundary condition. After making assumptions about how these strain components vary within a model FTB-wedge, the incremental deformation matrix can be calculated for any given point within the deforming wedge. Thus, the material path of a given marker can be determined and an initially spherical marker’s strain path can be calculated as it moves through the deforming wedge. Furthermore, by illustrating various kinematic parameters of many initially spherical markers (for example, Flinn’s k-value, incremental octahedral shear strain, transport-perpendicular stretch), we have assembled representations of the kinematic properties of the entire model wedge. By including a flat-ramp-flat fault surface geometry for the model wedge, we are able to examine the kinematic effects of this relatively common structural geometry. Within the fault ramp segment there are greater incremental strain magnitudes, out-of-the-plane motion, and flattening strains. Additionally, data from this model suggests that gravitational strains potentially have a significant effect on the strain distribution within a deforming thrust wedge. M. Mookerjee is formerly Matthew Strine.  相似文献   

13.
A small thrust sheet, named Pedda Gutta thrust sheet, consisting of calcareous to cherty argillites and cherts, and juxtaposed against tidal-intertidal cross-bedded quartzites and stromatolitic and sileceous limestone in the eastern Proterozoic belt, Godavari Valley, exhibits structures comparable in style to those of the external zone of a fold-thrust mountain belt. A wide spectrum of periodic and aperiodic mesoscopic folds varying from upright ones with rounded hinges and attenuated limbs, through noncylindrical kinks to whalebacks and sheath-like forms have developed within the small volume of the thrust sheet, the preserved thickness of which is of the order of 50 metres (comparable in scale to cleavage duplexes). Cleavage development is also heterogeneous across the width of the sheet. Displacement transfer from faults to folds and vice-versa is a common feature. On the basis of the distribution of the mesoscopic structures of varying style within the sheet and localization of fault rocks, three slices (wedges) have been recognized, each bounded on the east by a thrust which is steep at the current erosion level but interpreted to be of listric form making the thrust network comparable in architecture, though not in scale, to a hinterland (west) dipping imbricate fan.  相似文献   

14.
The Northern Snake Range is a classic example of a metamorphic core complex, Basin-and-Range province, United States. It is composed of a plastically deformed footwall and a brittlely deformed hanging wall, separated by the Northern Snake Range low-angle detachment (NSRD). Brittle deformation, however, is not confined to the hanging wall.This paper focuses on exposures in Cove Canyon, located on the SE flank of the Northern Snake Range, where penetrative, homogeneous faults are well exposed throughout the hanging wall, footwall and NSRD, and overprint early plastic deformation. These late-stage fault sets assisted Eocene-Miocene extension. Detailed analysis of the faults reveals the following: (1) The shortening direction defined by faults is similar to the shortening direction defined by the stretching lineation in the footwall mylonites, indicating that the extensional kinematic history remained unchanged as the rocks were uplifted into the elastico-frictional regime. (2) After ∼17 Ma, extension may have continued entirely within elastic-frictional regime via cataclastic flow. (3) This latest deformation phase may have been accommodated by a single, continuous event. (3) Faults within NSRD boudins indicate that deformation within the detachment zone was non-coaxial during the latest phase of extension.  相似文献   

15.
Quartz c axis fabrics and microstructures have been investigated within a suite of quartzites collected from the Loch Eriboll area of the Moine Thrust zone and are used to interpret the detailed processes involved in fabric evolution. The intensity of quartz c axis fabrics is directly proportional to the calculated strain magnitude. A correlation is also established between the pattern of c axis fabrics and the calculated strain symmetry.Two kinematic domains are recognized within one of the studied thrust sheets which outcrops immediately beneath the Moine Thrust. Within the upper and central levels of the thrust sheet coaxial deformation is indicated by conjugate, mutually interfering shear bands, globular low strain detrital quartz grains whose c axes are aligned sub-parallel to the principal finite shortening direction (Z) and quartz c axis fabrics which are symmetric (both in terms of skeletal outline and intensity distribution) with respect to mylonitic foliation and lineation. Non-coaxial deformation is indicated within the more intensely deformed and recrystallized quartzites located near the base of the thrust sheet by single sets of shear bands and c axis fabrics which are asymmetric with respect to foliation and lineation.Tectonic models offering possible explanations for the presence of kinematic (strain path) domains within thrust sheets are considered.  相似文献   

16.
李萌 《地质与勘探》2015,51(4):776-788
塔里木盆地库车、塔西南和塔东南山前带在构造变形和活动强度等方面存在较大的差异性,这也决定了油气地质条件与油气分布的不均衡性。通过对3个山前带地质剖面的对比研究,结合对典型成藏模式的剖析,探讨山前带差异构造变形特征对油气成藏的控制作用。库车山前带以逆冲推覆及盐构造为主,构造圈闭规模大、幅度高;主要有盐下和盐上两种成藏模式,通源断裂十分发育,库姆格列木组膏盐岩对盐下油气的保存非常有利。塔西南山前带变形分段特征明显,包括三角带构造、双重逆冲、叠加背斜等,构造圈闭规模和完整性不如库车山前带;成藏模式也体现出分段差异,上白垩统-阿尔塔什组膏泥岩和普司格组泥岩的封闭效果较好,但运移路径复杂,先存油气易遭受后期调整和破坏。塔东南山前带具有一定构造分段性,若羌凹陷山前以冲断变形为主,远离山前的第二排背斜、断背斜圈闭具备基本的成藏条件;民丰凹陷山前以叠瓦逆冲和三角带构造为主,古近系膏泥岩封盖能力有限,深部逆冲断块及凹陷内部的低幅度背斜等是较现实的勘探目标。  相似文献   

17.
《Geodinamica Acta》2003,16(2-6):99-117
The Bielsa thrust sheet is a south-verging unit of the Axial zone in the central Pyrenees. The Bielsa thrust sheet consists predominantly of a Variscan granite unconformably overlain by a thin cover of Triassic and Cretaceous deposits. During the Eocene–Oligocene, Pyrenean compression, displacement of the Bielsa thrust sheet generated a large-scale south-verging monocline. Low temperature deformation of the Bielsa thrust sheet resulted in the development of: (1) E–W trending, asymmetric folds in the Triassic cover with amplitudes up to 1.5 km; these folds of the cover are related with normal and reverse faults in the granite and with rigid-body block rotations. (2) Pervasive fracturing within the Bielsa granite is also attributed to Pyrenean deformation and is consistent with a NNE to ENE shortening direction; two main, conjugate fault systems are associated with this direction of shortening, as is a subvertical strike-slip system with shallow-plunging slickenside lineations and a moderately dipping fault system with reverse movement; and (3) in addition, we recognise strike-slip and reverse shear bands, associated with sericitisation and brittle deformation of quartz and feldspar in the granite, that enclose Triassic rocks. Basement deformation within the Bielsa thrust sheet can be related to movement of faults developed to accommodate internal deformation of the hanging wall. Several models are proposed to account for this deformation during the southward displacement of the thrust.  相似文献   

18.
LATE CENOZOIC TECTONICS ALONG THE NORTHWESTERN MARGIN OF THE TARIM BASIN: INTERACTIONS BETWEEN THE TARIM BASIN AND THE SOUTHERN TIAN SHAN, WEST CHINAgrants 4 98340 50and 4 9732 0 90fromtheNSFofChina;;andproject96 913 0 7 0 1fromtheMinistryofSci enceandTechnology ,China…  相似文献   

19.
Thrust duplexes account for large fractions of the total shortening in most fold-thrust belts (FTBs). They also provide an efficient mechanism for transferring slip upward from the basal decollement and for transporting roof thrust sheets over long distances. The Lesser Himalayan duplex (LHD) plays a prominent role in the overall evolution of the Himalayan FTB and has been described from Garhwal-Kumaon to Bhutan. In Sikkim the LHD shows unique structural geometry and has been responsible for transporting crystalline thrust sheets (MCT 1 and MCT 2) farther southward than other parts of the Himalaya. Such lateral variations in LHD geometry imply variations in the kinematic history of the Lesser Himalaya and variations in shortening and shortening history along the length of the Himalayan arc, and these are reflected in observable large scale structural patterns.  相似文献   

20.
基于复杂构造解析和实验模拟研究,揭示了中西部前陆褶皱冲断构造带主要表现为受侧向挤压形成的滑脱冲断构造变形过程和结构样式;明确了单层滑脱挤压冲断构造变形存在临界增生和非临界增生两种变形机制,发育脆性拆离型、塑性滑移型和黏性流动型3种作用类型,并受滑脱层强度、地层厚度、底部边界和外动力过程等4种主要因素影响。复杂冲断构造带基本上表现为受多层单滑脱作用控制形成的垂向叠置组合结构,本文提出了复杂滑脱冲断变形结构的可分解性以及受不同性质的滑脱层组合控制形成特征结构模式,并揭示了前陆冲断带前缘多滑脱构造变形结构中由浅层向深层逐渐发育的变形时序;建立了中西部再生前陆冲断带结构模型、构造单元以及基本构造类型;并基于前陆盆地多阶段构造演化过程以及晚期的隆升剥蚀-沉降沉积过程,提出了中西部两种类型冲断带的控油气作用及其勘探领域。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号