首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 815 毫秒
1.
The selection of the disposal site is probably the most important step in the development of solid waste management. In site selection, geology plays a determining role. This study evaluates the characteristics of the environment on the basis of the geological, hydrogeological and geo-engineering properties of the solid waste site of the Sivas city, Turkey. The area is underlain by the Oligocene-Miocene rocks which have limited aquifer properties. Thin Quaternary alluvium and soil cover overlie the Oligo-Miocene rocks, which are represented as well graded sand and inorganic silt of low plasticity. The Quaternary alluvium and soil cover are classified as inorganic clays having a low plasticity and the permeability varies from 1.2×10−6 to 3.11×10−6 m/s. These values are much higher than 1×10−8 m/s, which is accepted for waste disposal standards. Seepage waters have a potential to pollute the ground water and the Kızılırmak River, which is 500 m to the southwest of the waste disposal area and because the disposal site is close to the river, the potential for flash flooding poses a high pollution risk. The waste disposal area must be covered by clay layers or an impervious artificial membrane. In addition, seepage must be controlled and removed from the site.  相似文献   

2.
 Drilling of 15 boreholes at a disused liquid waste disposal site near Perth, Western Australia, has indicated that a contamination plume extends about 1000 m in a southerly direction from the site in the direction of groundwater flow. The plume is up to 600 m wide and 5–40 m thick. Chemical and microbiological analyses have indicated that contaminated groundwater contains high concentrations of ammonia, iron, and bacteria at levels that commonly exceed national drinking water guidelines. It is likely that a proposed water supply production well in the path of the contamination plume will have to be abandoned, and additional wells may have to be abandoned if the plume continues to extend in the direction of groundwater flow. There is currently insufficient information to indicate whether the plume is continuing to expand, but studies on similar plumes in the Perth metropolitan area have indicated that contaminated groundwater can move at rates up to 100 m yr–1. Several other liquid waste disposal sites are now located in residential areas of Perth where wells are used for garden irrigation. Further work is required to ensure that there is no potential impact of groundwater contamination on public health in these areas. Received: 31 July 1995 · Accepted: 18 September 1995  相似文献   

3.
Surface rupture and source fault of the 20 February 1956 Eskişehir earthquake have been a matter of debate that potentially contributes towards the understanding of the active deformation and seismic risk in the highly populated NW Anatolia. Field observations on the two fault segments (namely Kavacık and Uludere faults) in the north of the Eskişehir graben revealed evidences of co-seismic surface rupture and mass movements during the Eskişehir earthquake. Surface rupture was observed as a 2.5m wide, a 100m long and ca. 20 cm deep asymmetric depression in the Gümüşlü valley, 2 km east of the Uludere village. A trench dug on this depression confirms a prominent high-angle south dipping fault (dominantly left lateral strike slip) and two faint north-dipping antithetics as clear noticeable shear zones in organic-rich thick soil. Mass failures are particularly observed in spring depressions filled with loose torrent and carbonaceous material in front of the fault scarp. Some rock slides of several tens of meters in size that obviously require significantly high ground shaking were also developed on steep fault scarps. The orientation of the principal stress tensor as deduced from the surface rupture of the Eskişehir earthquake displays clear inconsistency with the geometry of prominent faults in the area. We concluded that this disagreement may be explained by a curved surface rupture. The western and eastern tips of this rupture are EW trending and the probable NW-running part in the middle would correspond to the bounding zone between two right-stepping faults.  相似文献   

4.
Different geoenvironmental site investigation techniques to assess contamination from a municipal solid waste disposal site in Brazil are presented here. Superficial geophysical investigation (geoelectrical survey), resistivity piezocone penetration tests (RCPTU), soil samples collected with direct-push samplers and water samples collected from monitoring wells were applied in this study. The application of the geoelectrical method was indispensable to identify the presence and flow direction of contamination plumes (leachate) as well as to indicate the most suitable locations for RCPTU tests and soil and water sampling. Chemical analyses of groundwater samples contributed to a better understanding of the flow of the contaminated plume. The piezocone presented some limitations for tropical soils, since the groundwater level is sometimes deeper than the layer which is impenetrable to the cone, and the soil genesis and unsaturated conditions affect soil behavior. The combined interpretation of geoelectrical measurements and soil and water samplings underpinned the interpretation of RCPTU tests. The interpretation of all the test results indicates that the contamination plume has already overreached the landfill’s west-northwest borders. Geoenvironmental laboratory test results suggest that contamination from the solid waste disposal site has been developing gradually, indicating the need for continuous monitoring of the groundwater.  相似文献   

5.
The current solid waste disposal site in the Mamak district of Ankara is being engulfed by the growing city. All varieties of solid wastes, including medical wastes, are stored at the present site in an irregular manner. Topographical and geological conditions at Mamak waste site are favorable for constructing a sanitary landfill. Located at the edge of a topographical depression, the site is underlain by the natural hydraulic barriers such as clay and metagreywacke. The terrestrial clay has a permeability of 10−7 to 10−8 cm/s and low to moderate values of CEC. The proposed sanitary landfill to replace the present solid waste site has a capacity of storing solid waste over 50 years. The details of base liner, final cover, toe embankment, and drainage of leachate and gas are presented in the paper.  相似文献   

6.
The present work demonstrates the environmental problems associated with the development and operation of a lined and unlined landfill site, both used for municipal solid waste landfilling, that are situated next to the city of Patra, Greece. Findings from a detailed site investigation as well calculations on hydrologic evaluation of landfill’s performance and measurements on leachate composition proved that the lined landfill site is more secure and environmental friendly compared with the unlined landfill site. Even though, until today, there is no evidence from near boreholes for severe contamination problems generated by any of the two landfills, in the forthcoming future several environmental problems are expected to occur from the unlined site. In addition the prevailing hydrogeotechnical conditions indicated that the unlined site is a potential source of contamination; hence extra remedial measures should be received by the local authorities to prevent severe contamination in soil and groundwater.  相似文献   

7.
Unscientific disposal of municipal solid waste causes groundwater contamination. The migration of leachate from the solid waste dumpsite to the aquifer varies according to the geohydrological profile of the dumpsite. A detailed study of the mechanism of leachate percolation to the groundwater helps to design a proper groundwater remediation technique. Multilevel boreholes were drilled in the periphery of the Perungudi dumpsite, Chennai, India. The major lithological layers and the geochemical analysis of the contaminant migrated from the dumpsite to the underlying aquifer has been studied. The distribution of heavy metals such as Pb, Fe, Zn, Cr, and Cd follows a similar trend in the pollutant source, groundwater samples around the dumpsite, and at various litho units beneath the dumpsite. The analysis thus helps to find an appropriate groundwater remediation technique to remove the specific contaminant and thereby provide a safe drinking water for the surrounding community.  相似文献   

8.
The ability of Chromolaena odorata to accumulate and serve as biomarker to lead and cadmium metals pollution load had been revealed by this study. Samples of soils and Siam weed were collected to assess impacts of solid waste disposal and traffic density on the environment. Composite sample were collected from a solid waste dumpsite, three traffic polluted areas with varying traffic density and a background site distant from traffic. Concentration of eight elements: cadmium, cobalt, chromium, copper, iron, nickel, lead and zinc were determined in soil and plant samples and correlated together. Accumulative factors like pollution load index, transfer factor, contamination factor, enrichment factor were calculated for the metals in both plants and soils and used as basis for interpreting the state of the environment and ability of C. odorata to accumulate metals. The accumulative factors of plants were generally greater than that of soil samples indicating increased accumulative capacity of the plant. The accumulations of lead and cadmium in C. odorata were remarkable with contamination factor 10.51 and 23.50, respectively and mean enrichment factors 3.52 and 6.93, respectively. Other metals had lower accumulative factors. The distribution of metals and calculated factors placed solid waste disposal site as the most polluted site while the trend observed in areas with traffic pollution depicts the ability of C. odorata to clean up metal pollution by accumulating them. It can therefore be suggested that solid waste disposal negatively affects the environment more than traffic pollution subject to the volume of traffic.  相似文献   

9.
In this study, a new, GIS-based solid waste site selection tool (DUPIT) is introduced to obtain a systematic and unbiased methodology during the evaluation phases of alternative solid waste disposal areas with regards to vulnerability to groundwater pollution. The proposed tool is an index technique based on the linear combination of five different hydrogeological parameters including Depth to groundwater table, Upper layer lithology, Permeability of the unsaturated zone, Impermeable layer thickness and Topographic slope. Five different categories are developed to classify each alternative based on the suitability of the site for a solid waste disposal area. As a result, each site is ranked according to the contamination risks for groundwater resources. The proposed technique is applied to the District of Torbali near Izmir, Turkey to determine the most appropriate solid waste disposal site location. The Torbali application is implemented by using a GIS database developed for the area. Based on the results of this application, the best alternative solid waste disposal site for Torbali is selected to be located in the northern portions of the city where the groundwater table is deep, the permeability is low and the topographic slope is mild.  相似文献   

10.
As part of the Swiss programme for high-level radioactive-waste disposal, a Jurassic shale (Opalinus Clay) is being investigated as a potential host rock. Observations in clay pits and the results of a German research programme focusing on hazardous waste disposal have demonstrated that, at depths of 10–30 m, the permeability of the Opalinus Clay decreases by several orders of magnitude. Hydraulic tests in deeper boreholes (test intervals below 300 m) yielded hydraulic conductivities <10–12 m/s, even though joints and faults were included in some of the test intervals. These measurements are consistent with hydrogeological data from Opalinus Clay sections in ten tunnels in the Folded Jura of northern Switzerland. Despite extensive faulting, only a few indications of minor water inflow were encountered in more than 6,600 m of tunnel. All inflows were in tunnel sections where the overburden is less than 200 m. The hydraulic data are consistent with clay pore-water hydrochemical and isotopic data. The extensive hydrogeological data base – part of which derives from particularly unfavourable geological environments – provides arguments that advective transport through faults and joints is not a critical issue for the suitability of Opalinus Clay as a host rock for deep geological waste disposal. Electronic Publication  相似文献   

11.
The effect of the Ruseifa municipal landfill on the shallow groundwater aquifers in the area was investigated in two separate sites. The first one was not used since 1994, whereas the other is still being used for dumping. Fourteen electrical resistivity soundings were performed to detect the leachate and its effect on the quality of the groundwater. Results indicated that the solid waste thickness of the landfill was ranged from 3 to 20 m with resistivity value less than 10 Ω m. Based on the resistivity decreases of values less than 5 Ω m, the leachate was detected in the landfill sites at depths ranged from 10 to 50 m. However, the flow direction of the leachate at depth ranging 10–20 m in the terminated site was toward north, whereas the flow direction of the leachate in the site still used for dumping was toward east–northeast which causes the major source of groundwater pollution.  相似文献   

12.
The proposed site for a new solid waste disposal facility was identified by a municipal government in a north Florida area characterized by Miocene Hawthorn Group sedimentary sequences and active karst development. An evaluation of the sinkhole potential and subsurface stability was conducted with a total of 300 electrical resistivity Wenner array sounding traverses with electrode spacings extending to 30 m. Data were interpreted to identify vertical sequences of the Hawthorn Group confining layer, and the underlying Ocala Limestone. Electrical evidence identified an intermediate, discontinuous limestone layer present in limited areas, but absent in much of the area investigated. No evidence was detected to identify breeches within the confining layer over the Floridan Aquifer within the Ocala Limestone. The data were combined with lithologic logs from deep boreholes to prepare a series of continuous and interconnecting fence diagrams to portray the geologic configuration throughout the proposed site. The results demonstrate the value of electrical resistivity measurements to augment borehole data in economical investigations of sinkhole potential in karstic terrains.  相似文献   

13.
This paper estimates CO2 fluxes in a municipal site for final disposal of solid waste, located in Gualeguaychu, Argentina. Estimations were made using the accumulation chamber methods, which had been calibrated previously in laboratory. CO2 fluxes ranged from 31 to 331 g m−2 day−1. Three different populations were identified: background soil gases averaging 46 g m−2 day−1, intermediate anomalous values averaging 110 g m−2 day−1 and high anomalous values averaging 270 g m−2 day−1. Gas samples to a depth of 20 cm were also taken. Gas fractions, XCO2 < 0.1, XCH4 < 0.01, XN2 ~0.71 and XO2 ~0.21, δ13C of CO2 (−34 to −18‰), as well as age of waste emplacement, suggest that the study site may be at the final stage of aerobic biodegradation. In a first approach, and following the downstream direction of groundwater flow, alkalinity and δ13C of dissolved inorganic carbon (−15 to 4‰) were observed to increase when groundwater passed through the disposal site. This suggests that the CO2 generated by waste biodegradation dissolves or that dissolved organic matter appears as a result of leachate degradation.  相似文献   

14.
废物地质处置中的水文地质问题分析   总被引:2,自引:0,他引:2       下载免费PDF全文
郭永龙  桂承新 《地球科学》2000,25(5):518-521
废物地质处置中废液的泄漏或固体废物渗滤液对地下水可能产生的污染影响是选址中一个必须考虑且不可忽视的基本水文地质问题.分析了地下水污染中的几个基本概念问题, 并就废物地质处置选址和设计中如何注意这些问题提出了相应的解决办法及对策.   相似文献   

15.
Groundwater is inherently susceptible to contamination from anthropogenic activities and remediation is very difficult and expensive. Prevention of contamination is hence critical in effective groundwater management. In this paper an attempt has been made to assess aquifer vulnerability at the Russeifa solid waste landfill. This disposal site is placed at the most important aquifer in Jordan, which is known as Amman-Wadi Sir (B2/A7). The daily-generated leachate within the landfill is about 160 m3/day and there is no system for collecting and treating this leachate. Therefore, the leachate infiltrates to groundwater and degrades the quality of the groundwater. The area is strongly vulnerable to pollution due to the presence of intensive agricultural activity, the solid waste disposal site and industries. Increasing groundwater demand makes the protection of the aquifer from pollution crucial. Physical and hydrogeological characteristics make the aquifer susceptible to pollution. The vulnerability of groundwater to contamination in the study area was quantified using the DRASTIC model. The DRASTIC model uses the following seven parameters: depth to water, recharge, aquifer media, soil media, topography, impact on vadose zone and hydraulic conductivity. The water level data were measured in the observation wells within the disposal site. The recharge is derived based on precipitation, land use and soil characteristics. The aquifer media was obtained from a geological map of the area. The topography is obtained from the Natural Resources Authority of Jordan, 1:50,000 scale topographic map. The impact on the vadose zone is defined by the soil permeability and depth to water. The hydraulic conductivity was obtained from the field pumping tests. The calculated DRASTIC index number indicates a moderate pollution potential for the study area.  相似文献   

16.
Geo-environmental assessment and geophysical investigations were carried out over the only functional municipal solid waste disposal site of the city of Addis Ababa, Ethiopia, known locally as Koshe. The accumulated wastes from Koshe have impact on the surrounding human and physical environment since the disposal site was not designed. The study deserves emphasis because the city of Addis Ababa currently obtains a considerable portion of its domestic water supply from a well field developed not much farther from and along a groundwater flow direction in relation to the waste disposal site. It was found out that the leachates from the site contain high concentration of biological oxygen demand, chemical oxygen demand, chloride and sulphate besides high concentration of cobalt, nickel and zinc in the surrounding soils. The geophysical results have mapped weak zones and near-vertical discontinuities that could potentially be conduits for the leachate from the wastes into the deep groundwater system. Further, a zone of potential leachate migration from the landfill was identified from the electrical models; the location of this zone is consistent with the predicted direction of groundwater flow across the site. The results further suggested that the open dump site tends to cause increasing amount of pollution on the surrounding soil, surface and ground waters. Furthermore, it was observed that the Koshe waste disposal site has grown beyond its capacity and the poor management of the open dump landfill has reduced the aesthetic value of the surrounding environments. The need to change/relocate the existing waste disposal site to a more suitable and technologically appropriate site is emphasized.  相似文献   

17.
Qom is the eighth most populated city in center of Iran, and its population growth rate is among the highest in this country. Th presence of a Great Salt Lake, petroleum potential and tourism attractions in this city sheds light on the importance of how solid waste landfill locations should be disposed, located and managed as an environmental issue. Considering the key parameters in landfill site selection, in this study a series of location analysis have been conducted to locate optimum regions for municipal solid waste disposal, using analytical hierarchy process (AHP) and geographical information system (GIS). The main factors in selecting the suitable location for waste disposal include geomorphology–hydrography, environmental–social factors and design criteria, each of which are subdivided into several categories. Criteria are selected according to the regional condition; therefore, important factors such as distance from sea and forested areas were not considered. In the next step, digital layers are weighted and classified according to the available standards and expert judgment. Then, analytical multi-criteria decision-making algorithms as AHP and weighted linear combination are applied upon existing layers in GIS. The results show that by implementing the AHP method in this region only 7% of the study area has a very good and appropriate condition for landfill location and the field observation confirms them. Finally, considering the environmental effects of landfill, appropriate locations are suggested.  相似文献   

18.
 Data from a radioactive waste disposal area at Oak Ridge National Laboratory suggest that releases depend on site hydrology and waste containment. Loss of packaging integrity has apparently caused episodic increases in 90Sr source strength, followed by gradual reduction as runoff carries contaminants away. Most flow and transport occurs during January–April storms in response to site hydrology. Diversion of runoff from undisturbed areas upstream of the waste site (1983) reduced flow through the site by more than 65% and annual 90Sr release by more than 45%. However, between 1983 and 1994, increases in 90Sr source strength have partially offset the diversion effectiveness. Selective source control in 1996 further reduced annual 90Sr releases by more than 30% in the first two years, compared with pre-treatment conditions. The effectiveness of the grouting treatment should increase over the next 5–10 years, if new 90Sr sources are insignificant. Received: 26 July 1999 · Accepted: 7 September 1999  相似文献   

19.
In southeast Anatolia, there are number of tectonomagmatic units in the Kahramanmaraş–Malatya–Elazığ region that are important in understanding the geological evolution of the southeast Anatolian orogenic belt during the Late Cretaceous. These are (a) metamorphic massifs, (b) ophiolites, (c) ophiolite-related metamorphics and (d) granitoids. The granitoids (i.e. Göksun–Afşin in Kahramanmaraş, Doğanşehir in Malatya and Baskil in Elazığ) intrude all the former units in a NE–SW trending direction. The granitoid in Göksun–Afşin (Kahramanmaraş) region is mainly composed of granodioritic and granitic in composition. The granodiorite contains a number of amphibole-bearing mafic microgranular enclaves of different sizes, whereas the granite is intruded by numerous aplitic dikes. The granitoid rocks have typical calcalkaline geochemical features. The REE- and Ocean ridge granite-normalized multi-element patterns and tectonomagmatic discrimination diagrams, as well as biotite geochemistry suggest that the granitoids were formed in a volcanic arc setting. The K–Ar geochronology of the granitoid rocks yielded ages ranging from 85.76±3.17 to 77.49±1.91 Ma. The field, geochemical and geochronological data suggest the following Late Cretaceous tectonomagmatic scenario for southeast Anatolia. The ophiolites were formed in a suprasubduction zone tectonic setting whereas the ophiolite-related metamorphic rocks formed either during the initiation of intraoceanic subduction or late-thrusting (∼90 Ma). These units were then overthrust by the Malatya–Keban platform during the progressive elimination of the southern Neotethys. Thrusting of the Malatya–Keban platform over the ophiolites and related metamorphic rocks was followed by the intrusion of the granitoids (88–85 Ma) along the Tauride active continental margin in the southern Neotethys.  相似文献   

20.
Smoothing and Change Point Detection for Gamma Ray Count Data   总被引:1,自引:0,他引:1  
Gamma ray detectors are used to measure the natural radioactivity of rocks. For a number of boreholes drilled at a site the gamma ray detector is lowered into each borehole and counts of gamma ray emissions at different depths are recorded as the instrument is gradually raised to ground level. The profile of gamma counts can be informative about the geology at each location. The raw count data are highly variable, and in this paper we describe the use of adaptive smoothing techniques and change point models in order to identify changes in the geology based on the gamma logs. We formulate all our models for the data in the framework of the class of generalized linear models, and describe computational methods for Bayesian inference and model selection for generalized linear models that improve on existing techniques. Application is made to gamma ray data from the Castelreagh Waste Management Centre which served as a hazardous waste disposal facility for the Sydney region between March 1974 and August 1998. Understanding the geological structure of this site is important for further modelling the transport of pollutants beneath the waste disposal area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号