首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 796 毫秒
1.
东北地区冬半年积雪与气温对冻土的影响   总被引:3,自引:3,他引:0  
周晓宇  赵春雨  李娜  刘鸣彦  崔妍  敖雪 《冰川冻土》2021,43(4):1027-1039
利用东北地区121个气象站逐日冻土深度、积雪深度、平均气温、地表平均气温及降水量数据,分析了1964—2017年冬半年冻土的变化特征及气象要素对冻土的影响。结果表明:东北地区积雪深度、平均气温、地表平均气温与冻土深度相关系数较高,降水量相关性不大。20世纪60年代平均气温、地表平均气温及负积温最低,最大冻土深度为历年代最深;随着气候变暖,最大冻土深度以6.15 cm?(10a)-1的速率显著减小。冬半年平均最大冻土深度为123 cm,呈显著纬向分布,自辽东半岛向大兴安岭北部递增;随纬度和海拔高度的增加,平均气温和地表平均气温降低,负积温增加,且由北向南地气温差增大。最大冻土深度全区有90%以上的站点减少,减少速率以0.1~10 cm?(10a)-1为主。冻土持续时间随纬度升高而增加,月最大冻土深度和积雪深度最大值分别出现在3月和1月,最大冻土深度的增加要滞后于积雪深度的增加。由于积雪对地温的保温作用,积雪深度较浅时,冻土深度增加较明显,随着积雪深度的增加,冻土深度变化较小,积雪对冻土起到了保温的作用。对于高纬度地区站点,30 cm左右为积雪的保温界限值;对于沿海站点,积雪保温的界限值在5 cm左右;在相同地形下,冻土深度较浅区域积雪的保温值因海拔高度、气候特点而异。最大冻土深度对地表平均气温升温的响应更为显著,地表平均气温和平均气温每升高1 ℃,最大冻土深度将减小8.4 cm和10.6 cm,负积温每减少100 ℃?d,最大冻土深度减少4.9 cm。  相似文献   

2.
秦岭区域性高山积雪事件变化特征分析   总被引:2,自引:0,他引:2  
韩婷  雷向杰  李亚丽  王毅勇 《冰川冻土》2021,43(4):1040-1048
为了研究秦岭高山积雪事件变化特点,利用秦岭陕西境内32个国家气象站1980—2016年度共37年高山积雪观测记录,统计分析5个或者5个以上气象站连续积雪日数≥3 d的区域性高山积雪事件、5个或者5个以上气象站连续积雪日数≥20 d的区域性长时间高山积雪事件、5个或者5个以上气象站连续积雪日数≥60 d的区域性稳定高山积雪事件,结果表明:秦岭1980—2016年度共出现区域性高山积雪事件114次,其中包含区域性长时间高山积雪事件29次,区域性稳定高山积雪事件6次。区域性高山积雪事件均发生在冷季(11月—次年4月),其中60%的区域性高山积雪事件发生在冬季(12月—次年2月)。6次区域性稳定高山积雪事件都发生在12月—次年3月。区域性高山积雪事件1980—1989年度最多(44次),其次是1990—1999年度和2000—2009年度(各29次),2010—2016年度最少(12次)。1980—2016年度,区域性高山积雪事件呈现明显减少趋势(通过α=0.01的信度检验),减幅为-0.86次?(10a)-1,区域性高山稳定积雪事件次数与冷季平均气温呈显著的负相关关系(通过α=0.01的信度检验)。  相似文献   

3.
1981-2010年青藏高原积雪日数时空变化特征分析   总被引:2,自引:0,他引:2  
全球气候变暖大背景下, 作为冰冻圈最为活跃和敏感因子, 青藏高原积雪变化备受国内外关注. 本文利用青藏高原(以下简称高原)1981-2010年地面观测积雪日数资料, 较系统地分析了近30年来高原积雪日数的时空变化特点. 主要结论如下: (1) 近30年内高原平均年积雪日数出现了非常显著的减少趋势, 减少幅度达4.81 d·(10a)-1, 其中冬季减幅最为明显, 为2.36 d·(10a)-1, 其次是春季(2.05 d·(10a)-1), 而夏季最少(0.21 d·(10a)-1); (2) 30年间, 积雪日数较少的年份多数出现在本世纪初10年内, 且2010年属于异常偏少年, 高原积雪日数在1997年左右发生了由多到少的气候突变; (3) 在空间上, 北部柴达木盆地及其附件区域部分气象台站观测的年积雪日数出现了不显著的增加趋势之外, 高原91.5%的气象站年积雪日数呈减少趋势, 且高寒内陆中东部和西南喜马拉雅山脉南麓等高原历年积雪日数高值区域减少最为明显; (4) 由于受到气象台站所在地理位置、地形地貌、地表类型、海拔高度、局地气候以及大气环流等综合影响, 高原平均年积雪日数的空间差异很大, 最多达146 d, 最少的则不足1 d, 平均仅为38 d, 其中高寒内陆中东部是积雪日数最长的区域, 而东南部海拔和纬度较低的干热河谷地区积雪日数最少.  相似文献   

4.
雷向杰  李亚丽  李茜  王娟  陈卫东 《冰川冻土》2016,38(5):1201-1210
利用太白气象站1962-2014年地面积雪观测资料,太白、眉县气象站1980-2014年高山积雪观测记录和1988-2010年卫星遥感资料,分析了秦岭主峰太白山西部中山区、西部中高山区和中部中高山区积雪初、终日期、积雪日数和积雪深度等的变化特征,以及西部中山区积雪变化的成因.结果表明:1962-2014年太白山西部中山区积雪初日推迟,终日提前,初终间日数减少,积雪日数显著减少,积雪深度呈现波动变浅的趋势;1980-2014年西部中高山区积雪日数同样呈现波动减少趋势,西部中山区和中高山区年积雪日数减少率分别为3.2 d·(10a)-1和8.9 d·(10a)-1.1980-2014年中部中高山区积雪初、终日期和积雪日数变化趋势不明显.卫星遥感监测资料分析结果显示太白山地区积雪面积呈现波动减少趋势.1962-2014年西部中山区气温升高,降水减少,积雪参数与气候要素相关分析结果表明气温和累积雪深等参数变化关系密切,气温升高是太白山积雪减少的主要原因.1980-2014年太白山地区7月积雪日数很少,关中八景之一的“太白积雪六月(公历7月)天”已很少见到.  相似文献   

5.
应用1961-2013年逐日积雪深度及气象要素资料,采用REOF、多元线性回归等方法,分析了青海高原积雪日数时空分布特征,探讨了各季节积雪日数与气温和降水的关系.结果表明:(1)青海高原积雪日数呈先增加再减少的变化趋势,1961年至20世纪90年代末呈增加趋势,其中1982年达到峰值为44天,2000-2012年呈减少趋势.(2)青海高原积雪时空分布不均,地域差异大,分为六个积雪气候区,主要特点为高原南部积雪日数最多且呈显著增加趋势;东部农业区、西部柴达木盆地积雪少且呈下降趋势.(3)冬、春季积雪日数有上升趋势,冬季较显著;秋季积雪日数有下降趋势.(4)各季节平均气温均呈上升趋势,是影响秋、春季积雪的关键因子;冬、春季降水量呈上升趋势,是影响冬季积雪的关键因子.青海高原冬、春季有暖湿化趋势.  相似文献   

6.
北京-张家口地区冬春季积雪特征分析   总被引:6,自引:4,他引:2  
2022年冬奥会将在北京-张家口(以下简称北-张地区)举办,揭示该地区的积雪变化特征及其在全球变暖背景下的发展趋势,对冬奥会的筹备以及当地的积雪资源的开发利用等方面都有重要意义。利用2002-2014年MODIS遥感积雪产品提取了研究区域积雪数据,结合1966-2013年台站积雪、气温和降水资料和DEM数据,分析了积雪的时空分布特征,并对冬奥会场地进行积雪资源评价。结果表明:2002-2013冬春年北张地区的整体积雪频率较小,多处于0~0.2之间,但场馆区2月的积雪频率多在0.5以上,最大值接近0.9左右,积雪的分布呈带状和点状。积雪覆盖率最大值出现在1月初,达到0.23。积雪的形成缓慢,但是消亡迅速。1966-2012冬春年冬季积雪日数的波动幅度大于春季,延庆和崇礼县的2月份积雪日数分别为4.6d和13.9d,且均呈下降状态。积雪初终日均有提前,但整体的积雪期在减少。北京和张家口整体的最大积雪深度变化平稳,在1966-1980年和2000-2012年处于高值区,波动较大,其他年份最大雪深处于低值变化平稳,延庆和崇礼县的2月份最大积雪深度分别为3.6cm和5.1cm。通过分析积雪指标与气象因子(气温、降水)的相关关系发现,在年内(年际)变化上,积雪指标与气温(降水)的关系更为密切。冬奥会场地的2月份气温在-14~2℃之间,月平均降水量仅0.2mm·d-1,积雪日数不足,预计难以形成足够深度的雪,且未来气温上升,达到0.8℃·(10a)-1,降水、积雪深度和积雪日数均呈下降趋势,可能60%~95%的赛事用雪将来自人造雪,以应对可能的积雪不足。  相似文献   

7.
1961 - 2017年中国东北地区降雪时空演变特征分析   总被引:2,自引:1,他引:1  
利用东北地区162个气象台站逐日降水量和天气现象数据, 采用统计分析方法, 对近57年(1961 - 2017年)降雪的气候特征和时空演变规律进行了分析。结果表明: 降雪量和降雪日数最多出现在12月, 小雪和中雪最多出现在11月或12月, 大雪和暴雪在冬末春初出现概率最高。降雪分布为山地大于平原, 平原地区自北向南、 自东向西减少, 降雪高值区主要位于大兴安岭北部、 小兴安岭和长白山区, 降雪强度中心位于长白山区和辽宁中部平原地区。年、 秋季、 冬季、 春季降雪量占同期降水量比例分别为4.7%、 7.0%、 84.4%和7.6%; 辽宁省西部山区和南部大连地区日最大降雪量占年总降雪量比例最高, 最长连续降雪日数在2 d以下, 降雪较高纬度地区更为集中。近57年降雪量和降雪强度分别以1.93 mm?(10a)-1和0.11 mm?d-1?(10a)-1的速率显著增加, 降雪日数以2.08 d?(10a)-1速率显著减少; 降雪量增加主要表现为各等级降雪量的增加, 降雪日数减少主要是微量和小雪日数的减少, 降雪强度增加主要为大雪和暴雪降雪强度的增加。年、 秋季和冬季降雪量占同期降水量比例平均每10年增加0.36%、 0.48%和0.45%, 春季以0.11%?(10a)-1的速率减少。中雪、 大雪和暴雪对降雪贡献率均呈增加趋势, 小雪降雪量和微量降雪日数贡献率减少; 1987年降雪量和降雪日数突变后, 微量降雪日数和暴雪日数、 小雪降雪量贡献率改变显著。就区域平均而言, 2001 - 2017年的降雪量较1961 - 1980年增加了27.8%, 降雪日数减少了22.4%。  相似文献   

8.
1961 - 2016年秦岭山区冷季积雪日数变化特征及其影响因子   总被引:1,自引:1,他引:0  
李茜  魏凤英  雷向杰 《冰川冻土》2020,42(3):780-790
根据1961 - 2016年秦岭地区32个气象站点的气温、 降水及积雪等相关数据, 运用REOF、 M-K检验和小波分析等方法, 对秦岭地区冷季积雪日数的时空变化和影响因子进行分析。结果表明: 秦岭地区冷季多年平均积雪日数表现为北坡比南坡积雪日数多。在全球气候变暖的背景下, 海拔越高积雪日数减少的越多。秦岭冷季积雪日数呈现显著减少的趋势, 5个区的积雪日数年代际变化特征显著, 在20世纪末到21世纪初发生了由积雪日数偏多到偏少的突变。各区冷季积雪日数的周期变化主要集中在10 ~ 20 a, 秦岭南坡同时也显示了较为明显的4 a左右的周期变化。西北太平洋海温阶段性增暖是导致秦岭冷季积雪日数减少的外强迫因素。秦岭地区冷季平均气温的显著增暖和冷季降水量的显著减少直接造成积雪日数的减少。秦岭冷季积雪日数减少的突变要比气温增暖的突变大约滞后4 ~ 7 a。  相似文献   

9.
胡列群  李帅  梁凤超 《冰川冻土》2013,35(4):793-800
利用新疆91个气象台站1960-2011年的观测资料, 对南北疆及天山山区冬春年(10月-翌年5月)的积雪日数、最大积雪深度、积雪初始、终止日期等因子进行了统计分析, 并通过Kringing插值计算了新疆区域平均最大积雪深度的空间分布.结果表明: 新疆冬春季积雪主要分布在天山以北, 厚度可达30 cm以上, 天山以南积雪比较浅薄, 大部分在10 cm以下;50 a来, 南北疆及天山山区的积雪深度均呈小幅增长(天山山区增幅最大), 积雪日数呈略微降低趋势, 积雪初始、终止日期无明显变化. 天山山区的积雪变化与北疆有较高的相关性, 它们积雪深度和积雪日数的相关系数分别达0.708和0.614, 南疆积雪变化与它们几乎没有相关性;积雪深度与冬春年降水量的变化均有很好的一致性, 尤其在北疆,二者相关系数高达0.702, 但与平均温度呈低的负相关;积雪日数与冬春年降水量变化没有明显相关关系, 但均与气温呈较好的负相关, 在北疆二者的相关系数达-0.742.  相似文献   

10.
青藏高原是气候变化的敏感区,其积雪在区域水文循环和气候系统中具有重要作用。本文利用1980—2020年逐日无云积雪覆盖遥感数据,分析了该地区近40年的积雪面积、积雪覆盖日数的分布特征和变化趋势。结果表明:青藏高原地区积雪分布具有明显的空间分异和垂直地带性分布特征,阿姆河流域、印度河流域、塔里木盆地、恒河流域、怒江流域和雅鲁藏布江流域的高海拔山区是积雪广泛分布的地区。在水文年内,高原地区积雪覆盖率呈单峰变化,8月上旬积雪面积最小,1月中下旬达到最大,分别占高原总面积的5.2%和38.6%;40年间,高原地区平均积雪面积以3.9×104 km2·(10a)-1的趋势显著减少(P<0.05);积雪覆盖日数以0.47 d·a-1的趋势显著减少,高原71.4%的区域积雪覆盖日数呈减少趋势,呈显著减少的区域约占55.3%;17.1%的区域积雪覆盖日数呈显著增加趋势,且主要分布在5 200 m以上的高海拔山区,在海拔5 200~5 900 m之间的区域,积雪覆盖日数的增加率随海拔升高而增加。  相似文献   

11.
1979-2014年东北地区雪深时空变化与大气环流的关系   总被引:2,自引:2,他引:0  
基于被动微波遥感反演的雪深数据集(1979-2014年),利用Mann-Kendall检验、R/S分析、相关分析和小波分析等方法研究了东北地区雪深时空变化特征及其与大气环流的关系。结果表明:1979-2014年,东北地区年均雪深总体呈减小趋势,减小速率为-0.084 cm·(10a)-1。其中,春季雪深减小速率最大,为-0.19 cm·(10a)-1P<0.05),其次是冬季[-0.17 cm·(10a)-1],而秋季雪深减小速率最小,仅为-0.05 cm·(10a)-1。空间上,平原区(东北平原和三江平原)与少部分高原区(呼伦贝尔高原西南部)年均雪深呈增大趋势,山地(大、小兴安岭和长白山)与高原大部(内蒙古高原)雪深呈减小趋势,而且雪深增大区域的面积和变化速率均小于雪深减小的地区。东北地区年均雪深变化的Hurst指数为0.85,表明雪深未来减小的持续性很强;同时雪深变化具有22 a的主周期。春秋季雪深变化与东亚槽强度及北半球极涡面积呈显著负相关性,而冬季雪深与北半球副高强度关系密切。  相似文献   

12.
1936—2017年北极勒拿河流域气候变化及其对径流的影响   总被引:2,自引:2,他引:0  
胡弟弟  康世昌  许民 《冰川冻土》2020,42(1):216-223
北极河流径流的变化会影响海冰热力过程和海洋温盐环流。基于全球降水气候学中心(GPCC)及俄罗斯水文气象部提供的1936—2017年间的气温、 降水和径流数据, 分析了北极勒拿河(Lena River)流域近80年来的气候和径流变化特征, 并探究了气候变化对径流的影响。通过分析得出: 研究期内勒拿河流域气温上升0.18 ℃·(10a)-1, 降水量增加率为4.7 mm·(10a)-1, 径流增加399 m3·s-1·(10a)-1。各个季节的径流均呈增加趋势, 其中春季径流增加最为明显, 冬季次之。春季径流的增加主要是由春季气温升高所致的积雪加速消融造成的, 其次是春季降水的补给。夏、 秋季径流增加的主要原因是降水的贡献, 气温升高加剧蒸发反而使径流减少。冬季径流的增加, 是由于气温升高导致冻土退化或活动层厚度增加, 促进更多冻结水进入径流过程, 致使径流增加。  相似文献   

13.
杜军  牛晓俊  袁雷  次旺顿珠 《冰川冻土》2020,42(3):1017-1026
利用羌塘国家级自然保护区边缘5个气象站1971 - 2017年逐月平均气温、 平均最高气温、 平均最低气温、 降水量和逐年最大冻土深度等气象资料, 以及卫星遥感资料, 采用线性回归、 相关系数等方法, 分析了自然保护区气候(气温、 降水等)、 水体(湖泊、 冰川)和植被等生态环境因子的变化。结果表明: 近47年自然保护区年平均气温以0.46 ℃·(10a)-1的速率显著升高, 明显高于同期全球和亚洲地表温度的升温率。四季平均气温升温率为0.37 ~ 0.55 ℃·(10a)-1, 升幅在冬季最大、 夏季最小。年降水量呈明显的增加趋势, 增幅为11.0 mm·(10a)-1, 主要表现在春、 夏两季。近43年(1975 - 2017年)色林错面积呈显著增加趋势, 平均增长率为38.48 km2·a-1。1973 - 2017年, 普若岗日冰川面积整体上趋于减少, 平均每年减少2.11 km2; 自然保护区年最大冻土深度变化率为-35.7 cm·(10a)-1。1999 - 2013年保护区NDVI增幅达25.3%, 平均每10年增加0.0184, 植被覆盖度明显增加。总之, 近47年自然保护区表现为气候暖湿化、 冰川退缩、 湖泊扩涨、 冻土退化、 植被覆盖增加的变化特征, 而冰川变化引发的水资源时空分布和水循环过程的变化, 无疑将给高原社会经济发展带来深刻影响。  相似文献   

14.
龚强  晁华  朱玲  蔺娜  于秀晶  刘春生  汪宏宇 《冰川冻土》2021,43(6):1782-1793
根据东北地区144个国家气象站1951—2016年的地温和土壤冻结深度资料,采用实测资料统计及统计建模推算的方法,对东北地区地温和冻结深度时空特征进行了细化分析。结果表明:东北地区地温整体由南到北逐渐降低,冻结深度逐渐增大。各层年平均地温呈向北2个纬度降低1 ℃左右,年平均最大冻结深度为向北2~3个纬度加深30 cm左右,极端最大冻结深度为向北2个纬度加深30 cm左右。地温和冻结深度与纬度关系显著,与经度和海拔也有一定相关性,但在东北北部的多年冻土区基本不受后两者影响。不同深度的地温季节特征不同,地表温度季节特征与气温一致,160 cm以下深度四季温度从高到低为秋、夏、冬、春。地表夏季与冬季温差达到33.5 ℃,而320 cm深处最热季与最冷季的温差仅为7 ℃。气候变暖使得东北地区各层地温升高、冻结深度减小、冻结期缩短,尤其在多年冻土区及其临近的高纬度季节冻土区更为显著。相对于下层土壤,地表升温最大。伊春地表升温趋势达到1.16 ℃?(10a)-1,40~320 cm土层升温趋势为0.60 ℃?(10a)-1左右,冻结深度减小、冻结期缩短趋势分别达到 23 cm?(10a)-1、8 d?(10a)-1,大幅升温不利于多年冻土的存在。  相似文献   

15.
王秀娜  丁永建  王建  赵传成 《冰川冻土》2021,43(4):1179-1189
利用1960—2017年日降水量资料,采用线性倾向趋势分析、滑动分析和泰森多边形法等,对河西地区多年降水时空变化特征及不同量级降水日数及降水强度的变化趋势进行了研究。结果表明:河西地区年均降水量为99.0 mm,呈现明显的逐年上升趋势,平均倾向率为8.72 mm?(10a)-1,月降水量为单峰分布,5—10月夏秋汛期降水量占年降水量的89.2%,各季节降水量均呈现显著上升趋势;年均降水日数为36.7天,呈现明显的上升趋势,增幅为3.18 d?(10a)-1,降水日数主要分布在夏季,约占总降水日数的54.6%;平均降水强度为2.70 mm?d-1,呈现减弱趋势,变化速率为-0.04 mm?d-1?(10a)-1;零星小雨和小雨降水日数均呈现增加趋势,而二者平均降水强度均为下降趋势,小到中雨降水日数和降水强度呈现增加趋势,中雨及以上的降水变化趋势不明显。  相似文献   

16.
积雪是水文过程的重要环节,基于1979—2017年中国雪深长时间序列数据集、中国区域地面气象要素数据集提供的降水和气温数据,结合DEM数字高程模型等,运用Mann-Kendall检验法、Sen氏坡度法、Pearson相关分析法,分析了雅鲁藏布江流域雪深时空变化分布特征,并对雪深与气象因子(气温、降水)和地形因子(高程、坡度、坡向)的相关性进行了分析。结果表明:1979—2017年雅江流域多年平均雪深为1.95 cm,且以0.02 cm·a-1的速率呈现显著减少趋势;雪深空间分布特征差异性明显,呈现“二高二低”相间分布的特征,高值区为流域西部边缘和东部的山地区域,低值区为中游河谷、流域出口低谷区;气象因子对雪深的变化起决定性作用,其中年平均气温与雪深的相关系数数值为-0.63,二者相关性显著;雪深呈现出随着高程的增加而增加的变化趋势,但最大雪深并非出现在最高海拔处;雪深随坡度的变化呈现“减少—增加—减少”三段式分布规律,且东坡和南坡的雪深厚度高于西坡和北坡的雪深厚度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号