首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
阿西金矿床流体成矿的地球化学示踪研究   总被引:8,自引:0,他引:8  
依据阿西金矿床H、O同位素组成特点对成矿流体的来源进行了示踪研究,并且研究了矿床的水岩交换作用,讨论了水-岩作用与金成矿的关系。根据矿床中典型热液矿物和岩矿石的稀土元素地球化学特征对成矿流体作用过程进行了示踪研究,与同位素地球化学示踪研究取得了基本一致的结果。根据成矿流体活动踪迹建立找矿标志,是进行矿产资源预测的新思路。  相似文献   

2.
依据阿西金矿床H、O同位素组成特点对成矿流体的来源进行了示踪研究,并且研究了矿床的水岩交换作用,讨论了水-岩作用与金成矿的关系.根据矿床中典型热液矿物和岩矿石的稀土元素地球化学特征对成矿流体作用过程进行了示踪研究,与同位素地球化学示踪研究取得了基本一致的结果.根据成矿流体活动踪迹建立找矿标志,是进行矿产资源预测的新思路.  相似文献   

3.
成矿流体活动的地温信息及地球物理示踪   总被引:5,自引:1,他引:4  
本文对流体活动与地温结构的相互作用关系-流体活动的热效应,地温异常导致的地球化学效应,流体活动-地热传输的耦合过程及其模拟进行了研究。初步建立了识别流体活动热效应的地球物理及地球化学标志,指出通过热史模拟,流体史模拟、热-质迁移模拟及地球物理等方法识别这些标志可以进行流体活动的示踪。  相似文献   

4.
变质流体作用的元素地球化学研究   总被引:3,自引:0,他引:3  
变质流体作用是变质岩-流体体系的重要地质作用过程,可以通过有效的地质地球化学方法揭示,综述了变质流体作用的地球化学研究进展,主要包括:流体包裹体,同位素和元素地球化学等方面,强调了元素地球化学研究对于示踪变质流体作用过程的重要性。  相似文献   

5.
本文以阿西金矿床为例,研究地球化学界面对流体成矿的控制作用。研究发现,阿西金矿床流体成矿的最佳地示化学界面主要为:成矿环境条件变异界面(区域地球物理条件变异界面、地质条件突变界面),流体性质演介面(温度界面、压力界面、pH界面、Eh界面),流体-环境作用界面。地球化学界面是流体演化最强烈的部位,也是地质地球化学作用集中发生的主要场所,成矿元素往往在地球化学界面附近卸载成矿。  相似文献   

6.
成矿流体地球化学界面:Ⅲ应用实例研究   总被引:1,自引:0,他引:1  
本文以田湾金矿带为例,研究了地球化学界面对流体成矿的控制作用。研究发现,田湾金矿带流体成矿的最佳地球化学界面主要为:成矿流体地球化学界面(区域地球物理条件变异面、地质条件突变界面),流体性质演化界面(温度界面、压力界面、PH值面、Eh界面)和流体-环境作用界面。  相似文献   

7.
鹿井铀矿床成矿流体演化的地球化学模拟   总被引:1,自引:0,他引:1  
借助水文地球化学研究中水-岩相互作用地球化学模拟的思路和NETPATH2.0反向地球化学模拟软件,以华南鹿井铀矿床不同成矿阶段矿物包裹体分析资料为基础,对该矿床成矿流体的地球化学演化进行了初步的模拟。结果表明,NETPATH2.0所产生的溶液描述模型提供了比流体包裹体丰富得多的资料和信息,而溶液分配模型则计算出了每种元素(尤其是成矿元素)的若干种存在形式及每种形式的相对重要性。模拟所得到的地球化学模型揭示了矿床内主要相态在成矿流体不同演化阶段的质量迁移情况,为全面理解矿床的形成机制和动力学过程提供了新的途径。  相似文献   

8.
阿西金矿床流体成矿的元素地球化学标志   总被引:7,自引:1,他引:6       下载免费PDF全文
采用中子活化分析方法,系统测定了阿西金矿床矿石及围岩的微量元素含量,讨论了热液流体作用下元素的地球化学行为及流体成矿的元素地球化学标志。认为金矿体赋存在成矿流体形成的地球化学界面附近。  相似文献   

9.
当代地球化学研究的某些新进展(Ⅰ)魏春生(中国科学院地球化学研究所,贵阳550002)关键词矿床地球化学,流体地球化学1矿床地球化学有关成矿理论研究的新突破(1)变质热液金矿床成矿理论的确立与完善:70年代后,世界范围内又掀起了新的“淘金热”,到80...  相似文献   

10.
流体成矿地球化学界面是成矿环境条件变化、流体性质演化、流体一环境作用的突变部位,这些部位往往是流体成矿定位的重要场所。在巴西金矿田,应用X射线荧光测量方法可以探测流体成矿过程中元素浅地表的地球化学异常及蚀变分带,识别汉体成矿定位地球化学界面在浅地表的位置及分布特征,地气测量方法可以查明深部的地球异常和断裂破碎带的位置及特征,确定深部地球化学界面的分布。  相似文献   

11.
Clay minerals record chemical data about the past, acting like natural computer memory chips. To retrieve the data we must understand how they are stored. To achieve this we have examined the isotopic information revealed by two trace elements, lithium and boron, that are incorporated into the common clay minerals illite-smectite (I-S) during diagenesis. We used hydrothermal experiments at 300°C, 100 MPa, to speed up the reaction of smectite to illite that normally occurs during slow (10-100 Ma) sediment burial. During illitization, Li substitutes into the octahedral sites and B enters the tetrahedral sites of the silicate framework. Both Li and B are also adsorbed in the interlayer of smectite, but Li is preferred over B in the exchange sites. To determine the equilibrium isotope fractionation of the two trace elements it is important to remove these adsorbed interlayer species. By measuring the isotopic composition of Li and B in the silicate framework during reaction, we can address the relative timing of element exchange in the different crystallographic sites. Furthermore, because illitization of smectite is a crystal growth process (not an isomorphous replacement) we have examined the effect of crystal size on the isotope fractionation.The results show that Li and B approach an isotopic steady state when R1 ordering occurs, long before oxygen isotopes equilibrate with the fluid. The isotopic fractionation (αmineral-water) for Li (0.989) is similar to that for B (0.984) at 300°C. However, when separated into <0.2, 0.2-2.0, and >2.0 μm fractions, there are significant differences in measured isotope ratios by as much as 9‰. Crystal growth mechanisms and surface energy effects of nanoscale crystals may explain the observed isotopic differences. The fact that different crystals equilibrate at different rates (based on size) may be applied to natural samples to reveal the changing paleofluid history, provided we understand the conditions of equilibrium. This has very important implications for the interpretation of diagenetic environments, fluid flow, and surficial geochemical cycling.  相似文献   

12.
Using the ICP-MS method we have studied the isotope systematics of Sr and Nd as well as trace element composition of a representative collection of kimberlites and related rocks from the Siberian Platform. The summarized literature and our own data suggest that the kimberlites developed within the platform can be divided into several petrochemical and geochemical types, whose origin is related to different mantle sources. The petrochemical classification of kimberlites is based on persistent differences of their composition in mg# and in contents of indicator oxides such as FeOtot, TiO2, and K2O. The recognized geochemical types of kimberlites differ from one another in the level of concentration of incompatible elements as well as in their ratios.Most of isotope characteristics of kimberlites and related rocks of the Siberian Platform correspond to the earlier studied Type 1 basaltoid kimberlites from different provinces of the world: Points of isotopic compositions are in the field of primitive and weakly depleted mantle. An exception is one sample of the rocks from veins of the Ingashi field (Sayan area), which is characterized by the Sr and Nd isotopic composition corresponding to Type 2 micaceous kimberlites (orangeites).The most important feature of distribution of isotopic and trace-element compositions (incompatible elements) is their independence of the chemical rock composition. It is shown that the kimberlite formation is connected with, at least, two independent sources, fluid and melt, responsible for the trace-element and chemical compositions of the rock. It is supposed that, when rising through the heterogeneous lithosphere of the mantle, a powerful flow of an asthenosphere-derived fluid provoked the formation of local kimberlite chambers there. Thus, the partial melting of the lithosphere mantle led to the formation of contrasting petrochemical types of kimberlites, while the geochemical specialization of kimberlites is due to the mantle fluid of asthenosphere origin, which drastically dominated in the rare-metal balance of a hybrid magma of the chamber.  相似文献   

13.
矿床地球化学应用   总被引:37,自引:13,他引:37  
郑永飞 《矿床地质》2001,20(1):57-70,85
稳定同位素方法已成为现代地球科学研究的重要手段之一,稳定同位素体系的理论模式及其地球化学应用是国际上地球化学研究的前沿方向之一。本文概括了热液体系内成矿地球化学过程引起稳定同位素组成变化的定量理论模式,包括热液矿物之间的同位素平衡的判断、热液去气和矿物沉淀的储库效应、二元混合与矿床成因等。这些模型对于确定成矿温度、鉴定成矿流体源区和推测成矿地球化学机理提供了更为合理的同位素数据定量解释基础。  相似文献   

14.
卡洛夫-牛津阶碳酸盐岩为土库曼斯坦阿姆河盆地主力天然气产层,以储层岩石学分析为基础,结合Fe、Sr、Mn微量元素和C、O、Sr同位素及流体包裹体地球化学特征,分析了储层成因和成岩流体性质,得出以下几点认识:(1)由厚壳蛤壳体测定的87Sr/86Sr比值在全球锶同位素地层曲线上可标定的年龄为157.2Ma,储层发育层位属于卡洛夫-牛津阶;(2)卡洛夫-牛津阶为一持续海侵-海退旋回,持续海侵期是礁、滩相储层形成期,而持续海退期为致密盖层发育期;(3)较高的Fe和Sr及较低的Mn含量,以及伴随成岩强度加大δ13C变化不大而δ18O向负值方向偏移的演化趋势,证明成岩作用发生在缺乏大陆淡水影响和以温度为主控因素的还原性封闭系统中;(4)综合同位素地球化学与流体包裹体和镜质体反射率特征,可确定洛夫-牛津阶碳酸盐岩仍处在中成岩阶段;(5)礁、滩相灰岩的溶蚀、埋藏白云化和充填缝、洞的方解石是不同成岩阶段的水-岩反应产物,成岩流体主要来自于深部富Sr的地层热卤水。  相似文献   

15.
蒸发岩是海水/卤水蒸发浓缩的产物,不同的水化学环境下析出的蒸发岩类型不同,其在不同的地质历史时期都有分布,是重要的古海水和古环境记录载体。蒸发岩研究的主要问题包括:蒸发岩的物质来源、形成时代、蒸发盆地和卤水的演化历史、蒸发岩矿物所记录的环境变化。一些矿物、元素及同位素指标可用于解决这些问题,其中稳定同位素对于示踪蒸发岩的物质来源与形成过程具有不可替代的作用。近20年来,非传统稳定同位素地球化学获得快速发展,并在蒸发岩研究中获得成功应用,这些同位素体系包括阴离子元素B、Cl和Br,以及阳离子元素Mg、K和Ca。本文综述了多个非传统稳定同位素在蒸发岩领域的研究,主要包括:蒸发岩矿物与溶液之间的同位素分馏系数、蒸发岩的同位素信息重建古海水同位素组成及示踪蒸发岩成因和时代等。  相似文献   

16.
In recent years, a series of important progresses have been made in the aspect of magnesium isotopes behavior in weathering processes. These progresses are not only favorable to understand the change of the magnesium isotopic compositions in rivers, but also establish the foundation to further reveal the magnesium isotope geochemical cycle. The magnesium in rivers is both magnesium sink for weathering and magnesium source for the ocean. The Mg isotopic compositions in rivers are dominated by the magnesium sources and Mg isotope fractionations processes. The sources of magnesium in rivers originate mainly from draining rocks, as well as less contribution from the eolian deposition, groundwater, plant debris, and precipitation. The Mg isotope fractionations in rivers are mainly related to precipitation and dissolution of carbonate minerals, silicate mineral hydrolysis, adsorption on mineral or colloidal matter surface, and plant uptake. Generally, the contribution of carbonate minerals dissolution or precipitation is equal to add or reduce magnesium from carbonate endmember, which has a remarkably negative δ26Mg value. Based on the fact that most clay minerals are rich in 26Mg during nature silicate mineral hydrolysis, then it is possible to infer that residual weathering products enrich in 26Mg. However, there is no significant Mg isotope fractionation causing by the adsorption on mineral or colloidal matter surface during river water migration. For the plant uptake, the root prefers to have 26Mg, leading the plant itself rich in heavier Mg isotopic composition. In addition, formation of secondary minerals in rivers could also reflect the changes of chemical parameters in rivers (such as major elements, CO2 solubility, pH, etc.). Hence, Mg isotopic composition in rivers and associated isotope fractionations are not only the basis for the application of magnesium isotope to trace surface material cycle, but also have important significance for the further understanding the geochemical cycle of magnesium isotopes.  相似文献   

17.
区域成矿带铅稳定同位素地球化学研究是区域地球化学分区、示踪成岩成矿物质来源、阐明矿床成因的有效途径。本文以中国特有的大地构造背景为基础,以新生代上地幔铅同位素组成的地球化学场为依据,示踪了中国大型、超大型斑岩型铜矿床及铜镍硫化物型矿床的成岩成矿物质来源。结果显示:①斑岩型铜矿床及铜镍硫化物型矿床成矿母岩继承了所属陆块的上地幔铅同位素组成特征;②两类矿床的含矿岩体和矿石矿物铅同位素组成十分一致,示踪两者同源;壳熔花岗岩和围岩地层的铅同位素组成与矿石铅同位素组成迥异;③位于各陆块的斑岩型铜矿床及铜镍硫化物型矿床的成矿母岩和矿石铅同位素组成除继承了各陆块上地幔不同的铅同位素组成特征外,还示踪了壳幔层圈间耦合性的"块体效应",同时,上地幔铅同位素组成可能还具"延迟效应"。  相似文献   

18.
Shear zone-hosted gold deposits in China can be divided into four types:ductile,brittle-ductile,ductile-brittle and brittle,of which the ductile and brittle types are the basic ones.All these types of gold deposits have their own geochemical characteristics.The Hetai gold deposit in Guangdong Province,for example,is a mylonite-type gold deposit in a ductile shear zone.With increasing mylonitization,obvious changes took place in trace elements in minerals and rocks,enriching gold and mineralizing elements.The S and Pb isotope data indicated that the ore-forming materials were derived from the strata.Hydrogen and oxygen isotopic and fluid inclusion studies also implied that the ore-forming fluid was much closer to meteoric water from the early to the late ore-forming stage.The Linglong gold deposit,Shangdong Province,is a quartz-type gold deposit in a brittle shear zone.Changes in rocks,minerals and trace elements occurred in the process of f ormation of gold quartz veins,and the analytical results of S,Pb ,Hand O isotopes showed that ore deposition is connected not only with the Jiaodong Group,but also with anatexic granites.  相似文献   

19.
The importance of melt extraction for tracing mantle heterogeneity   总被引:3,自引:0,他引:3  
Numerous isotope and trace element studies of mantle rocks and oceanic basalts show that the Earth’s mantle is heterogeneous. The isotopic variability in oceanic basalts indicates that most mantle sources consist of complex assemblages of two or more components with isolated long-term chemical evolution, on both global and local scales. The range in isotope and highly incompatible element ratios observed in oceanic basalts is commonly assumed to directly reflect that of their mantle sources. Accordingly, the end-points of isotope arrays are taken to represent the isotopic composition of the different components in the underlying mantle, which is then used to deduce the origin of mantle heterogeneity. Here, a melting model for heterogeneous mantle sources is presented that investigates how and to what extent isotope and trace element signatures are conveyed from source to melt. We model melting of a pyroxenite-bearing peridotite using recent experimental constrains for melting and partitioning of pyroxenite and peridotite. Identification of specific pyroxenite melting signatures allows finger-printing of pyroxenite melts and confirm the importance of lithological heterogeneity in the Earth’s mantle. The model results and the comparison of the calculated and observed trace element-isotope systematics in selected MORB and OIB suites (e.g. from the East Pacific Rise, Iceland, Tristan da Cunha, Gough and St.Helena) further show that factors such as the relative abundance of different source components, their difference in solidus temperature, and especially the extent, style and depth range of melt aggregation fundamentally influence the relationship between key trace element and isotope ratios (e.g. Ba/Th, La/Nb, Sr/Nd, La/Sm, Sm/Yb, 143Nd/144Nd). The reason for this is that any heterogeneity present in the mantle is averaged or, depending on the effectiveness of the melt mixing process, even homogenized during melting and melt extraction. Hence to what degree mantle heterogeneity is reflected in the erupted melts is not only a function of source and melting-induced variability. It also depends on the extent of mixing during melting and melt extraction and thus strongly on the relative incompatibility of the elements considered. The observed trace element variation in erupted melts can be greater or smaller than that of their mantle sources, depending on the incompatibility of the elements investigated. The isotopic variability in erupted melts, on the other hand, is generally smaller than that of their mantle source. Melt mixing during melt extraction consequently has an important influence on the relative extent of variation, and hence the degree of correlation between the isotope and trace element ratios. Overall fewer correlations between trace element and isotope ratios are expected whenever melts are extracted from a restricted depth range, as is the case for ocean island basalts, than for cases where melts are extracted over a larger depth interval (mid ocean ridges and especially ridge centered hotspots like Iceland). While the isotopic composition of the most enriched melts may correspond closely to those of the enriched source component, even the most depleted mid ocean ridge basalts are likely to underestimate the isotopic depletion of the depleted mantle component. These observations imply that using the chemical and isotopic range observed in oceanic basalts as directly representative of that in the corresponding mantle source can be misleading, since this assumption is strictly true only for homogeneous mantle sources. In addition to identifying source or partitioning-related differences in melts from different mantle sources, inferring the true composition, origin, and distribution of heterogeneous components in the Earth’s mantle therefore requires detailed knowledge about the mechanisms of melting and melt mixing during the melt extraction process. Only if these processes and their influence on the isotope-trace element relationship are understood, can the composition and origin of the different source components, and thus mantle heterogeneity, be accurately constrained.  相似文献   

20.
Federico Farina  Gary Stevens 《Lithos》2011,122(3-4):189-200
The broad Sr isotopic variability exhibited by granitoid rocks is commonly interpreted to reflect the mixing of magmas from different sources. However, evidence from granites and migmatites indicates that melting and magma extraction from crustal sources can occur sufficiently rapidly that trace-element and isotopic equilibration between liquid and residual phases is commonly not achieved. Additionally, evidence from unmelted high-grade metamorphic rocks indicates that major reactant minerals in the fluid-absent melting process, principally biotite and plagioclase, do not always attain equilibrium during regional metamorphism. When these two circumstances occur in combination, the melt does not inherit its radiogenic isotopic signature from the bulk source in a simple way. In such situations, the isotopic composition of the melt will be dependent on the isotopic compositions of the reactant phases and the stoichiometry of the melting reaction. This study has used information from experimental studies of fluid absent partial melting in metapelites and metagreywackes to investigate the consequences of Sr isotopic disequilibrium between the reactant minerals for magma composition. The study demonstrates that a range of isotopically distinct magmas can arise from progressive melting of a single source that is able to undergo melting through different reactions as temperature increases. When translated to the typically layered sources constituted by sedimentary and volcano-sedimentary rocks, this process will produce magmas characterized by Sr isotope variability that reflects the differences in melting reaction stoichiometry within the different layers, even with no bulk-rock isotopic variability between layers. This study demonstrates that the Sr isotope variability commonly observed within granitic suites, as well as at the grain and sub-grain scale within individual magmatic bodies, can be primary, reflecting differences in composition between magma batches produced from the progressive melting of a single source.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号