首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
The Ilesha granite gneiss comprises a varied series ranging from porphyroblastic alkali gneiss and granitic gneiss to banded and strongly foliated melanocratic rocks. Deformation is intense and the dominant structural trend is approximately N-S.Chemical data show essentially a systematic variation reflecting the differences in the petrographic character of the outcrops. SiO2, Na2O, K2O and related trace elements, particularly Rb, are higher in the alkali and granitic varieties, whereas the melanocratic types have lower contents of these elements. The basic rocks are likewise significantly enhanced in TiO2, Fe, MgO, CaO, Cr and Ni concentrations, with some values being comparable to those of basaltic rocks.  相似文献   

2.
出露于阿中地块库木塔什萨依一带的亚干布阳片麻岩主要岩性为黑云斜长片麻岩、黑云二长片麻岩。利用LA-ICPMS方法进行锆石微区U-Pb同位素定年,得到206Pb/238U年龄加权平均值为900.2±2.9Ma,表明亚干布阳片麻岩原岩形成于新元古代早期青白口纪;地球化学结果显示,主量元素具有高SiO_2、Al_2O_3、K_2O+Na_2O含量,低Na_2O、MgO、CaO和TiO_2含量的特征,A/CNK值介于0.95~1.22之间,属于高钾钙碱性系列的过铝质花岗岩。岩石富集Rb、Th、K等大离子亲石元素,亏损Nb、Sr、P、Hf、Ti等高场强元素;岩石轻稀土元素分馏较强而重稀土元素分馏较弱,具有明显的负Eu异常,总体呈右倾的"V"字形稀土元素配分模式,显示典型的地壳重熔型花岗岩特征。亚干布阳片麻岩的源岩主要为地壳中沉积岩类的部分熔融,形成于俯冲-同碰撞构造环境。综上说明亚干布阳片麻岩是新元古代早期俯冲碰撞热事件的产物,反映阿中地块和柴达木地块青白口纪处于汇聚碰撞阶段,构造岩浆活动强烈,与Rodinia超大陆汇聚事件具有一致性。  相似文献   

3.
Paleoarchean granulite-facies metasedimentary rocks (quartzites, garnet quartzites, garnet-pyroxene gneisses, pyroxene-magnetite and magnetite quartzites) attributed to the Dniester-Bug Group of the Ukrainian Shield were studied. On the basis of geochemical data, including REE, the primary composition of these rocks was reconstructed as association of Fe-rich sandstones and sublitharenites, Fe-shales, and BIFs. This sedimentary association is similar to the rocks of other ancient greenstone belts and ascribed to the Algama-type iron formation. The sum of Al2O3, CaO, Na2O, and TiO2, high Zr contents (>100 ppm in quartzites), and the presence of detrital zircon grains of different ages are consistent with the terrigenous nature of sedimentary rocks. The Sm/Nd, Ti/Zr, Sc/Zr, and Ni/Zr ratios indicate the predominance of granitoid rocks in the source areas. The elevated Cr contents suggest that, in addition to granitoids, the source area contained ultramafic rocks. Geochemical characteristics, such as Fe/Mn ratio, low REE contents, and variations of REE versus the sum of Ni, Co, and Cu testify that sedimentation occurred under shallow-water conditions on the continent or its slope, similarly as the formation of ancient (3.5–3.2 Ga) basalt-komatiitic series intercalated with sedimentary rocks in the Pilbara Craton. The age of supracrustal rocks of the Dniester-Bug Group was constrained within the time interval of 3.4–3.2 Ga on the basis of U-Pb zircon dating and determination of Nd isotope composition. The DM model age of quartzites varies from 3.37 to 3.5 Ga. Sedimentary rocks together with volcanic rocks represent the oldest supracrustal association of the East European Platform.  相似文献   

4.
《地学前缘(英文版)》2018,9(6):1777-1794
Sedimentary rocks cover-73% of the Earth's surface and metamorphic rocks account for approximately91% of the crust by volume. Understanding the average behavior and variability of heat production for these rock types are vitally important for developing accurate models of lithospheric temperature. We analyze the heat production of ~204,000 whole rock geochemical data to quantify how heat production of these rocks varies with respect to chemistry and their evolution during metamorphism. The heat production of metaigneous and metasedimentary rocks are similar to their respective protoliths. Igneous and metaigneous samples increase in heat production with increasing SiO_2 and K_2 O, but decrease with increasing FeO, MgO and CaO. Sedimentary and metasedimentary rocks increase in heat production with increasing Al_2 O_3, FeO, TiO_2, and K_2 O but decrease with increasing CaO. For both igneous and sedimentary rocks, the heat production variations are largely correlated with processes that affect K_2 O concentration and covary with other major oxides as a consequence. Among sedimentary rocks,aluminous shales are the highest heat producing(2.9 μW~(-3)) whereas more common iron shales are lower heat producing(1.7 μW m~(-3)). Pure quartzites and carbonates are the lowest heat producing sedimentary rocks. Globally, there is little definitive evidence for a decrease in heat production with increasing metamorphic grade. However, there remains the need for high resolution studies of heat production variations within individual protoliths that vary in metamorphic grade. These results improve estimates of heat production and natural variability of rocks that will allow for more accurate temperature models of the lithosphere.  相似文献   

5.
Corundum (ruby-sapphire) is known to have formed in situ within Archean metamorphic rocks at several localities in the North Atlantic Craton of Greenland. Here we present two case studies for such occurrences: (1) Maniitsoq region (Kangerdluarssuk), where kyanite paragneiss hosts ruby corundum, and (2) Nuuk region (Storø), where sillimanite gneiss hosts ruby corundum. At both occurrences, ultramafic rocks (amphibole-peridotite) are in direct contact with the ruby-bearing zones, which have been transformed to mica schist by metasomatic reactions. The bulk-rock geochemistry of the ruby-bearing rocks is consistent with significant depletion of SiO2 in combination with addition of Al2O3, MgO, K2O, Th and Sr relative to an assumed aluminous precursor metapelite. Phase equilibria modelling supports ruby genesis from the breakdown of sillimanite and kyanite at elevated temperatures due to the removal of SiO2. The juxtaposition of relatively silica- and aluminum-rich metasedimentary rocks with low silica ultramafic rocks established a chemical potential gradient that leached/mobilized SiO2 allowing corundum to stabilize in the former rocks. Furthermore, addition of Al2O3 via a metasomatic reaction is required, because Al/Ti is fractionated between the aluminous precursor metapelites and the resulting corundum-bearing mica schist. We propose that Al was mobilized either by complexation with hydroxide at alkaline conditions, or that Al was transported as K-Al-Si-O polymers at deep crustal levels. The three main exploration vectors for corundum within Archean greenstone belts are: (1) amphibolite- to granulite-facies metamorphic conditions, (2) the juxtaposition of ultramafic rocks and aluminous metapelite, and (3) mica-rich reactions zones at their interface.  相似文献   

6.
Late Proterozoic rocks of Tanol Formation in the Lesser Himalayas of Neelum Valley area are largely green schist to amphibolite facies rocks intruded by early Cambrian Jura granite gneiss and Jura granite representing Pan-African orogeny event in the area. These rocks are further intruded by pegmatites of acidic composition, aplites, and dolerite dykes. Based on field observations, texture, and petrographic character, three different categories of granite gneiss (i.e., highly porphyritic, coarse-grained two micas granite gneiss, medium-grained two micas granite gneiss, and leucocratic tourmaline-bearing muscovite granite gneiss), and granites (i.e., highly porphyritic coarse-grained two micas granite, medium-grained two micas granite, and leucocratic tourmaline-bearing coarse-grained muscovite granite) were classified. Thin section studies show that granite gneiss and granite are formed due to fractional crystallization, as revealed by zoning in plagioclase. The Al saturation index indicates that granite gneiss and granite are strongly peraluminous and S-type. Geochemical analysis shows that all granite gneisses are magnesian except one which is ferroan whereas all granites are ferroan except one which is magnesian. The CaO/Na2O ratio (>0.3) indicates that granitic melt of Jura granite gneiss and granite is pelite-psammite derived peraluminous granitic melt formed due to partial melting of Tanol Formation. The rare earth element (REE) patterns of the Jura granite and Jura granite gneiss indicate that granitic magma of Jura granite and Jura granite gneiss is formed due to partial melting of rocks that are similar in composition to that of upper continental crust.  相似文献   

7.
阿西金矿地处川甘陕“金三角”成矿集中区,中三叠统为本区内最重要的金矿源层和赋矿层。阿西金矿田的形成经历了一个从沉积-成岩-富集成矿的漫长复杂的由量的积累到质的飞跃过程,是多阶段、多层次、多因素作用有机结合的产物。赋矿岩系特征表明,阿西金矿田的主要成矿环境为半深海斜坡环境。区内岩石类型极为复杂,三大岩类均有产出。主要有细砂岩、杂砂岩、沉凝灰岩、碳酸盐岩、硅质岩;变粒岩、石英岩、角岩、大理岩、夕卡岩、角砾岩;岩浆岩类主要为英安斑岩(玢岩)、闪长岩等。其中最重要的赋矿岩石为石英岩,其主要特征为具块状、不规则条带状构造,呈褐黄色/浅灰色变余层状构造。由石英(75%-80%)、高龄石(10%-15%)、绢云母(2%-3%)、钛铁质(3%-4%)、玉髓(2%-3%)及少量碳质组成。其岩石化学成分与典型硅质岩相比,SiO2偏低,Al2O3总体偏高,出现较强的高岭土化。通过研究认为,该区主要赋矿岩石石英岩的原岩应属正常碎屑沉积岩。  相似文献   

8.
黔北务川瓦厂坪铝土矿床元素迁移规律研究   总被引:6,自引:0,他引:6  
金中国 《地质与勘探》2011,47(6):957-966
黔北务正道地区铝土矿矿床属古风化壳沉积型,成矿母岩具多源性,但主要来源于下覆的中下志留统韩家店组。本文依据Grant提出的质量平衡方程和图解法,对瓦厂坪矿床在成矿过程中元素迁移的富集、贫化(亏损)规律进行了定量研究。结果表明,主要成矿母岩韩家店组砂、页岩一中间产物铝土质页岩、粘土岩是主要元素A12O3、TiO2显著富集...  相似文献   

9.
FeO*‐Al2O3‐TiO2‐rich rocks are found associated with transitional tholeiitic lava flows in the Tertiary Bana plutono‐volcanic complex in the continental sector of the Cameroon Line. These peculiar rocks consist principally of iron‐titanium oxides, aluminosilicates and phosphates, and occur as layers 1–3 m thick occupying the upper part of lava flows on the southwest (site 1) and northwest (site 2) sites of the complex. Mineral constituents of the rocks include magnetite, ilmenite, hematite, rutile, corundum, andalusite, sillimanite, cordierite, quartz, plagioclase, alkali feldspar, apatite, Fe‐Mn phosphate, Al phosphate, micas and fine mixtures of sericite and silica. Texturally and compositionally, the rocks can be subdivided into globular type, banded type, and Al‐rich fine‐gained massive type. The first two types consist of dark globule or band enriched in Fe‐Ti oxides and apatite and lighter colored groundmass or bands enriched in aluminosilicates and quartz, respectively. The occurrence of andalusite and sillimanite and the compositional relations of magnetite and ilmenite in the FeO*‐Al2O3‐TiO2‐rich rocks suggest temperatures of crystallization in a range of 690–830°C at low pressures. The Bana FeO*‐Al2O3‐TiO2‐rich rocks are characterized by low concentrations of SiO2 (25–54.2 wt%), Na2O + K2O (0–1%), CaO (0–2%) and MgO (0–0.5%), and high concentrations of FeO* (total iron as FeO, 20–42%), Al2O3 (20–42%), TiO2 (3–9.2%), and P2O5 (0.26–1.30%). TiO2 is positively correlated with Al2O3 and inversely correlated with FeO*. The bulk rock compositions cannot be derived from the associated basaltic magma by crystal fractionation or by partial melting of the mantle or lower crustal materials. In ternary diagrams of (Al2O3)?(CaO + Na2O + K2O)?(FeO*+ MnO + MgO) and (SiO2)?(FeO*)?(Al2O3), the compositional field of the rocks is close to that of laterite and is distinct from the common volcanic rocks, suggesting that the rocks are derived from lateritic materials by recrystallization when the materials are heated by the basaltic magmas. A hydrothermal origin is discounted because the rocks contain high‐temperature mineral assemblages and lack sulfide minerals. It is proposed that the FeO*‐Al2O3‐TiO2‐rich rocks of the Bana complex were formed by pyrometamorphism of laterite by the heat of basaltic magmas.  相似文献   

10.
J.G. Liou  Pei-Yuan Chen 《Lithos》1978,11(3):175-187
Chloritoid-rich rocks occur as thin pods or lenses in the well-foliated marble and greenschist of the pre-Tertiary metamorphic complex of eastern central Taiwan. They contain unusually abundant chloritoid: 60–90% in the massive rocks and 30–50% in the schistose rocks. Compared to the adjacent basaltic greenschist, the chloritoid rocks contain extremely low SiO2, CaO and Na2O and very high Al2O3, total Fe as Fe2O3, and TiO2. Both monoclinic and triclinic chloritoids were identified. These rocks may have been derived originally from fossil lateritic soils formed from a basaltic layer in a limestone terrain. These soils and the bedded rocks were then metamorphosed in the chlorite-biotite zone of the greenschist facies.  相似文献   

11.
在华北克拉通北缘大青山地区,广泛的深熔作用导致新太古代晚期石榴花岗岩发育。石榴花岗岩空间上与新太古代晚期大青山表壳岩(主要为石榴黑云母片麻岩)共生,渐变过渡。宏观上岩性具有不均一性,在包头哈德门沟一条实测地质剖面上可以观察到石榴混合闪长岩、石榴混合石英闪长岩和石榴混合花岗闪长岩等不同岩石类型。岩相学研究表明,石榴花岗岩与源岩矿物组合相近,但含量却大不相同。石榴花岗岩和源岩中的石榴石特征十分相似。石榴石周围存在放射状黑云母,是典型的逆反应结构。研究表明深熔作用可能发生在具有顺时针P-T轨迹的变质作用演化峰期及峰期后近等温降压阶段,主要发生钾长石熔融和黑云母熔融。地球化学特征研究表明石榴花岗岩与石榴黑云母片麻岩具有亲缘关系,均表现出高Al2O3、CaO含量,K2O/Na2O比值存在较大变化,富集轻稀土和大离子亲石元素,亏损Nb、Ta、P和Ti。但是,石榴花岗岩存在组成变化,Eu富集型和亏损型稀土模式为原地-半原地深熔花岗岩的标志性特征。SHRIMP锆石年代学研究表明深熔作用发生在2.43Ga之前,与区内新太古代晚期水平顺层滑脱变形有关,揭示华北克拉通北缘新太古代晚期构造热事件。  相似文献   

12.
Ultramafic blocks that themselves contain eclogite lenses in the Triassic Su-Lu ultrahigh-P terrane of eastern China range in size from hundreds of metres to kilometres. The ultramafic blocks are enclosed in quartzofeldspathic gneiss of early Proterozoic age. Ultramafic rocks include garnetiferous lherzolite, wehrlite, pyroxenite, and hornblende peridotite. Garnet lherzolites are relatively depleted in Al2O3 (<3.8wt%), CaO (<3.2%) and TiO2 (<0.11 wt%), and are low in total REE contents (several p.p.m.), suggesting that the rocks are residual mantle material that was subjected to low degrees of partial melting. The eclogite lenses or layers within the ultramafic rocks are characterized by higher MgO and CaO, lower Al2O3 and TiO2 contents, and a higher CaO/Al2O3 ratio compared to eclogites enclosed in the quartzofeldspathic gneiss. Scatter in the plots of major and trace elements vs. MgO, REE patterns and La, Sm and Lu contents suggest that some eclogites were derived from melts formed by various degrees (0.05–0.20) of partial melting of peridotite, and that other eclogites formed by accumulation of garnet and clinopyroxene ± trapped melt in the upper mantle. Both ultramafic and eclogitic rocks have experienced a complex metamorphic history. At least six stages of recrystallization occurred in the ultramafic rocks based on an analysis of reaction textures and mineral compositions. Stage I is a high temperature protolith assemblage of Ol + Opx + Cpx + Spl. Stage II consists of the ultrahigh-pressure assemblage Ol + Cpx + Opx + Grt. Stage III is manifested by the appearance of fine-grained garnet after coarse-grained garnet. Stage IV is characterized by formation of kelyphitic rims of fibrous Opx and Cpx around garnet, and replacement of garnet by spinel and pargasitic-hornblende. Stage V is represented by the assemblage Ol + Opx + Prg-Hbl + Spl. The mineral assemblages of stages VIA and VIB are Ol + Tr-Amp + Chl and Serp + Chl ± talc, respectively. Garnet and orthopyroxene all show a decrease in MgO with retrogressive recrystallization and Na2O in clinopyroxene also decreases throughout this history. Eclogites enclosed within ultramafic blocks consist of Grt + Omp + Rt ± Qtz ± Phn. A few quartz-bearing eclogites contain rounded and oval inclusion of polycrystalline quartz aggregates after coesite in garnet and omphacite. Minor retrograde features include thin symplectic rims or secondary amphiboles after Cpx, and ilmenite after rutile. P-T estimates indicate that the ultrahigh-metamorphism (stage II) of ultramafic rocks occurred at 820-900d? C and 36-41 kbar and that peak metamorphism of eclogites occurred at 730-900d? C and >28 kbar. Consonant with earlier plate tectonic models, we suggest that these rocks were underplated at the base of the continental crust. The rocks then underwent ultrahigh-pressure metamorphism and were tectonically emplaced into thickened continental crust during the Triassic collision between the Sino-Korean and Yangtze cratons.  相似文献   

13.
Scapolite at Mary Kathleen (North-Western Queensland) occurs in calcareous and non-calcareous metapelites, acid and basic metavolcanics and metadolerites. Graphical treatment of the relationship between scapolite composition (Me%) and the host rock oxide ratios CaO/Na2O and Al2O3/(CaO + Na2O) reveals the following points:
  1. The calcareous metapelites are also very sodic.
  2. Scapolite in calcareous metapelites is more marialitic than that in low-calcium equivalents.
  3. In graphs of Me% against CaO/Na2O and Al2O3/(CaO + Na2O) the metasediments and the metaigneous rocks show markedly different trends.
It is concluded that scapolite in the metasediments originated by isochemical metamorphism of shales and marls containing evaporitic halite. The local abundance of halite was the main control on the composition and distribution of the scapolite, but the relative abundance of CaO and Na2O was a modifying factor. In the metaigneous rocks scapolite formed metasomatically during regional metamorphism by the introduction of volatile-rich fluids derived from the adjacent evaporitic sediments. The relative availability of CO2 and Cl2 again appears to have been the primary control on scapolite composition and may in turn have been controlled by bulk rock composition.  相似文献   

14.
Interpretations based on quantitative phase diagrams in the system CaO–Na2O–K2O–TiO2–MnO–FeO–MgO–Al2O3–SiO2–H2O indicate that mineral assemblages, zonations and microstructures observed in migmatitic rocks from the Beit Bridge Complex (Messina area, Limpopo Belt) formed along a clockwise P–T path. That path displays a prograde P–T increase from 600 °C/7.0 kbar to 780 °C/9–10 kbar (pressure peak) and 820 °C/8 kbar (thermal peak), followed by a P–T decrease to 600 °C/4 kbar. The data used to construct the P–T path were derived from three samples of migmatitic gneiss from a restricted area, each of which has a distinct bulk composition: (1) a K, Al‐rich garnet–biotite–cordierite–sillimanite–K‐feldspar–plagioclase–quartz–graphite gneiss (2) a K‐poor, Al‐rich garnet–biotite–staurolite–cordierite–kyanite–sillimanite–plagioclase–quartz–rutile gneiss, and (3) a K, Al‐poor, Fe‐rich garnet–orthopyroxene–biotite–chlorite–plagioclase–quartz–rutile–ilmenite gneiss. Preservation of continuous prograde garnet growth zonation demonstrates that the pro‐ and retrograde P–T evolution of the gneisses must have been rapid, occurring during a single orogenic cycle. These petrological findings in combination with existing geochronological and structural data show that granulite facies metamorphism of the Beit Bridge metasedimentary rocks resulted from an orogenic event during the Palaeoproterozoic (c. 2.0 Ga), caused by oblique collision between the Kaapvaal and Zimbabwe Cratons. Abbreviations follow Kretz (1983 ).  相似文献   

15.
Cordierite–orthoamphibole gneisses and rocks of similar composition commonly contain low‐variance mineral assemblages that can provide useful information about the metamorphic evolution of a terrane. New calculated petrogenetic grids and pseudosections are presented in the FeO–MgO–Al2O3–SiO2–H2O (FMASH), Na2O–CaO–K2O–FeO–MgO–Al2O3–SiO2–H2O (NCKFMASH) and Na2O–CaO–K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–Fe2O3 (NCKFMASHTO) chemical systems to investigate quantitatively the phase relations in these rocks. Although the bulk compositions of cordierite–orthoamphibole gneisses are close to FMASH, calculations in this system do not adequately account for the observed range of mineral assemblages. Calculations in NCKFMASH and NCKFMASHTO highlight the role of minor constituents such as Ca, Na and Fe3+ in the mineral assemblage evolution of such rocks and these systems are more appropriate for interpreting the evolution of natural examples.  相似文献   

16.
Zincian spinel or gahnite [(Zn,Fe,Mg)Al2O4] occurs in metamorphosed sulphide-rich rocks, garnet quartzites, quartz-magnetite rocks, aluminous metasediments, barite-magnetite rocks, quartz veins, and pegmatites associated with the Aggeneys base metal deposits, Namaqualand, South Africa. Zincian spinel in, sulphide-bearing rocks, is considered to have formed predominantly by desulphurization reactions involving a member of the system Fe-S-O and sphalerite with sillimanite or garnet. Gahnite in sulphide-free garnet quartzites, quartz-magnetite rocks and barite-magnetite rocks probably formed from Zn and Al that were hydrothermally derived whereas gahnite in aluminous metasediments was derived from the metamorphism of metalliferous shales, in which Zn may originally have been linked to organic material. Gahnite is Zn-rich in sulphide-bearing rock, but is Fe-rich in sulphide-free garnet quartzites and quartz-magnetite rocks. Although Zn-rich spinels represent guides to ore in the Aggeneys area and elsewhere in the Namaqualand Metamorphic Complex, Fe-rich spinels should not be discounted because Zn-rich and Fe-rich spinels occur within metres of sulphides at Aggeneys.  相似文献   

17.
Extremely fractionated basaltic to ferrobasaltic amphibolites and granulites comprise two spatially associated mafic tholeiitic suites (?deformed sills) within the Early Proterozoic Oonagalabi basement gneiss complex, Harts Range, Central Australia. The metatholeiites are characterised by high to very high FeO, TiO2 and P2O5 contents, and variable depletion in CaO and Al2O3. Despite similar Zr/Nb ratios, the rocks from the two suites show different degrees of enrichment in LREE and other “immobile” incompatible elements. The basaltic melts which were parental to the two mafic suites were not comagmatic and the rocks cannot be related simply by fractionation of realistic assemblages of low-pressure fractionating phases. The data suggest that primary basaltic liquids for the two suites were derived by different degrees of partial melting from essentially similar undepleted mantle source regions. Clinopyroxene in the residual mantle assemblage controlled the composition of the segregating melt at lower degrees of melting. The ferrobasaltic compositions imply long residence times for the basaltic magmas in shallow-level differentiating tholeiitic sills and/or magma chambers in a mature propagating rift environment. High-grade (granulite facies) metamorphism, and subsequent restricted metasomatic reequilibration of the mafic rocks with interlayered migmatitic and quartzofeldspathic gneisses, have affected only abundances of certain highly-smobile elements (e.g. K2O and Rb), resulting in the partial disruption of inter-element correlations. However, the geochemical data do not indicate any large-scale depletion of large ion lithophile elements (LILE) in the Oonagalabi gneiss complex.  相似文献   

18.
The Ancient Gneiss Complex (AGC) of Swaziland, an Archean gray gneiss complex, lies southeast and south of the Barberton greenstone belt and includes the most structurally complex and highly metamorphosed portions of the eastern Kaapvaal craton. The AGC is not precisely dated but apparently is older than 3.4 Ga.The AGC consists of three major units: (a) a bimodal suite of closely interlayered siliceous, low-K gneisses and metabasalt; (b) homogeneous tonalite gneiss; and (c) interlayered siliceous microcline gneiss, metabasalt, and minor metasedimentary rocks — termed the metamorphite suite. A geologically younger gabbro-diorite-tonalite-trondhjemite suite, the Granodiorite Suite, is spatially associated with the AGC and intrusive into it.The bimodal suite consists largely of two types of low-K siliceous gneiss: one has SiO2 < 75%, Al2O3 > 14%, low Rb/Sr ratios, and depleted heavy rare earth elements (REE's); the other has SiO2 > 75%, Al2O3 < 13%, high Rb/Sr ratios, and relatively abundant REE's except for negative Eu anomalies. The interlayered metabasalt ranges from komatiitic to tholeiitic compositions. Lenses of quartz monzonitic gneiss of K2O/Na2O close to 1 form a minor part of the bimodal suite. Tonalitic to trondhjemitic migmatite locally is abundant and has major-element abundances similar to those of non-migmatitic varieties.The siliceous gneisses of the metamorphic suite show low Al2O, K2O/Na2O ratios of about 1, high Rb/Sr ratios, moderate REE abundances and negative Eu anomalies.K/Rb ratios of siliceous gneisses of the bimodal suite are very low (~130); of the tonalitic gneiss, low (~225); of the siliceous gneiss of the metamorphite suite, moderate (~300); and of the Granodiorite Suite, high (~400).Rocks of the AGC differ geochemically in several ways from the siliceous volcanic and hypabyssal rocks of the Upper Onverwacht Group and from the diapirs of tonalite and trondhjemite that intrude the Swaziland Group.  相似文献   

19.
《Gondwana Research》2001,4(3):529-540
Geochemical studies on radioactive arkoses (43–153 ppm U and 387–862 ppm Th) of the Proterozoic Pakhal Supergroup from Bangaruchilka, Khammam district, Andhra Pradesh, India, indicate that their gross major and trace element chemistry reflect their mineral composition. Chemically, arkoses are rich in silica (83% to 88% SiO2) and potassium (3% to 5% K2O), with consistently high Al2O3/Na2O (36 to 50) and K2O/Na2O (18 to 25) ratios, which indicate that they are chemically mature sediments. The arkoses also show higher concentrations of Ti, V, Cr, Ni, Cu, Y, Zr, Nb, La and Pb.The values (60% to 68%) of chemical alteration index (CIA) of studied arkoses are moderate, and indicate that the source rocks have undergone lesser degree of chemical weathering. Tectonic setting discriminate plots of Fe2O3 (total)/MgO vs. TiO2 and Al2O3/SiO2, and K2O/Na2O vs. SiO2 and SiO2/Al2O3 indicate that the Bangaruchilka arkoses represent the sediments that were deposited in passive continental margin (PM), which is further supported by association of platformal type of sediments (quartzites and phyllites) with them. Unlike middle Archaean sedimentary rocks, the studied arkoses are depleted in Na2O, MgO and CaO, and distinctly enriched in SiO2 and K2O. These geochemical features match with post-Archaean clastic sediments, which argues for the involvement of late Archaean granitic crust in supply of detritus of studied arkoses. Enrichment of potassium alongwith abundant microcline and elevated concentrations of Y, Zr, Nb, U, Th, La, etc. in arkoses indicate K-rich evolved granitoid upper crust in the provenance during the late Archaean-early Proterozoic period.Dominance of mechanical weathering over chemical weathering favoured arkose formation, and also transfer of radio-elements with clastic sediments into the Pakhal basin. After sedimentation, uranium seems to have been remobilised from the rocks of Archaean-Pakhal system, consequent to post-sedimentation structural disruptions, and concentrated along suitable structural loci. Therefore, it is likely to encounter significant concentration of uranium in close proximity of unconformable Archaean and Pakhal contacts and tectonic zones, thereby making Pakhal basin and its environs a suitable terrain to search for concealed uranium mineralisation.  相似文献   

20.
在华北克拉通中部的山西云中山地区,新太古代花岗闪长质片麻岩中存在一些超镁铁质岩-镁铁质岩块及由斜长角闪岩、角闪变粒岩、石英岩和石榴夕线黑云片岩等岩石类型构成的变质表壳岩残片,其中的超镁铁质-镁铁质岩、斜长角闪岩和角闪变粒岩构成一套高镁火成岩组合。超镁铁质岩已变质为橄榄绿泥阳起片岩等岩石类型,呈变余斑状结构,橄榄石斑晶仍有保存;岩石SiO_2含量为39.22%~44.99%,Al_2O_3为8.82%~13.47%,Mg O为19.24%~22.13%,Na_2O+K_2O=0.71%~1.11%,CaO为5.75%~8.42%;Al_2O_3/TiO_2=14.8~17.4,CaO/Al_2O_3=0.60~0.84;化学成分上与科马提岩有一定的相似性。与之紧密伴生的斜长角闪岩也具有高镁特征,Mg O含量为11.28%~15.09%,铝、硅和碱质均偏低,具正铕异常,显示堆晶辉长岩的特征。非高镁斜长角闪岩有相对高的铝、硅和碱质,其原岩应为钙碱性玄武岩。角闪变粒岩样品的SiO_2含量为54.21%~55.71%,Al_2O_3为14.24%~15.49%,Mg O为6.26%~8.28%,Fe OT/Mg O=1.11~1.58,高钠低钾,Na_2O+K_2O=3.7%~4.78%,Na_2O/K_2O=5.15%~13.13,Mg#=53.0~61.5,属于高镁安山岩。由超镁铁质质岩-斜长角闪岩-角闪变粒岩构成的变质高镁火山岩组合具有钙碱性系列趋势。超镁铁质岩稀土元素含量总量较低,具有轻稀土富集和重稀土亏损的稀土型式;斜长角闪岩与超镁铁质岩比较,除富集大离子亲石元素和Cr、Ni明显较低外,具有相似的微量元素图谱形态。三种岩石类型在微量元素蛛网图上均显示出Ta、Nb、Ti负异常和Pb正异常。野外产状和岩石地球化学特征表明超镁铁质岩和高镁斜长角闪岩属于阿拉斯加型杂岩体,角闪变粒岩属于赞岐岩质高镁安山岩。在Zr/Nb-Nb/Th和Nb/Y-Zr/Y构造环境判别图解上显示出与俯冲相关的演化趋势,在Hf-Th-Ta、Nb/La-(La/Sm)N和Th/Yb-Nb/Yb图解上也落在岛弧钙碱性岩石区域。以上特征表明高镁火成岩组合形成于与板块俯冲相关的岛弧构造背景。野外地质关系和锆石U-Pb年龄限定高镁火成岩组合形成时代在~2.5Ga。云中山地区阿拉斯加型镁铁质-超镁铁质杂岩与赞岐岩质高镁安山岩共生,表明该地区存在新太古代的板块俯冲作用,为太古宙存在板块构造机制提供了新证据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号