首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 323 毫秒
1.
Zhang Zonghu 《GeoJournal》1991,24(2):195-200
The soil erosion processes in the Loess Plateau may be divided into three types: namely, waterflow erosion; gravitational erosion; wind erosion. The waterflow erosion is most widely distributed and is the main erosion action in the Loess Plateau. The main factors dominating the occurrence and development of the soil erosion in the Loess Plateau are: 1. rainfall; 2. topography; 3. vegetation; 4. soil character. The energy of erosion action depends upon the rainfall and topography, but erodiblity depends upon the vegetation and soil properties. The degree of soil erosion in the Loess Plateau changes with variations of interaction of erosion and anti-erosion measures.  相似文献   

2.
《Earth》2009,95(1-4):23-38
Erosion is a major threat to soil resources in Europe, and may impair their ability to deliver a range of ecosystem goods and services. This is reflected by the European Commission's Thematic Strategy for Soil Protection, which recommends an indicator-based approach for monitoring soil erosion. Defined baseline and threshold values are essential for the evaluation of soil monitoring data. Therefore, accurate spatial data on both soil loss and soil genesis are required, especially in the light of predicted changes in climate patterns, notably frequency, seasonal distribution and intensity of precipitation. Rates of soil loss are reported that have been measured, modelled or inferred for most types of soil erosion in a variety of landscapes, by studies across the spectrum of the Earth sciences. Natural rates of soil formation can be used as a basis for setting tolerable soil erosion rates, with soil formation consisting of mineral weathering as well as dust deposition. This paper reviews the concept of tolerable soil erosion and summarises current knowledge on rates of soil formation, which are then compared to rates of soil erosion by known erosion types, for assessment of soil erosion monitoring at the European scale.A modified definition of tolerable soil erosion is proposed as ‘any actual soil erosion rate at which a deterioration or loss of one or more soil functions does not occur,’ actual soil erosion being ‘the total amount of soil lost by all recognised erosion types.’ Even when including dust deposition in soil formation rates, the upper limit of tolerable soil erosion, as equal to soil formation, is ca. 1.4 t ha 1 yr 1 while the lower limit is ca. 0.3 t ha 1 yr 1, for conditions prevalent in Europe. Scope for spatio-temporal differentiation of tolerable soil erosion rates below this upper limit is suggested by considering (components of) relevant soil functions. Reported rates of actual soil erosion vary much more than those for soil formation. Actual soil erosion rates for tilled, arable land in Europe are, on average, 3 to 40 times greater than the upper limit of tolerable soil erosion, accepting substantial spatio-temporal variation. This paper comprehensively reviews tolerable and actual soil erosion in Europe and highlights the scientific areas where more research is needed for successful implementation of an effective European soil monitoring system.  相似文献   

3.
遥感与GIS支持下的南桐矿区水土流失评价与区划   总被引:2,自引:0,他引:2  
苏迎春  周廷刚 《中国岩溶》2012,31(2):191-197
以重庆市南桐矿区为研究对象,运用遥感和GIS技术获取对水土流失影响较大的植被覆盖度、地形坡度、土地利用类型等信息并进行空间叠加分析,计算了水土流失类型及面积。研究结果表明,南桐矿区水土流失面积262.91km2,侵蚀模数2281t/(km2?a),水土流失强度以轻度和中度为主,其中轻度流失132.37km2,中度流失108.95km2。根据区域地貌类型以及水土流失特征,将研究区水土流失划分为盆边低山丘陵中强度流失区、北部坪状低山中轻度流失区和盆边中山轻度流失区三个类型区,盆边低山丘陵中强度流失区以中度流失为主;北部坪状低山中轻度流失区以轻度流失为主;盆边中山轻度流失区虽然以轻度流失为主,但微度流失也占有相当部分的比重。   相似文献   

4.
试论黑龙江省的水土流失   总被引:1,自引:1,他引:1  
水土流失是黑龙江省最主要的地质灾害,是环境资源的头号杀手,它给我们带来无穷的祸患。文章依据黑龙江省的实际情况,阐述了黑龙江省水土流失发育状况及分布规律:即山区、草原、沼泽地带水土流失程度低,而山前地带、台地、高平原则水土流失严重。根据水土流失的危害程度,将全省分为5个区;论述了由于水土流失危害造成的土质严重退化、水库河道淤积、环境恶化、遏制经济发展等一系列触目惊心的事实;分析了水土流失产生的人为与自然因素;指出水土流失进一步扩大的发展趋势;提出了5个方面的具体防治对策。  相似文献   

5.
Soil erosion is a serious global environmental problem which limits the survival and development of human beings. In our country, due to the special physical geography and socio-economic conditions, soil erosion intensity is great, which is particularly prominent in Loess Plateau region. Therefore, preventing and controlling soil erosion, as well as reducing soil erosion in Loess Plateau have become the key to solving environmental problems in the region. Soil erosion on Loess Plateau is serious, and grassland vegetation has good effects on soil and water conservation, which can improve ecological environment well. After the implementation of the project about returning farmland to grassland on Loess Plateau, the ecological benefits mainly focused on soil and water conservation benefits, soil improvement benefits, water conservation benefits and species diversity benefits, etc. Grassland vegetation has an irreplaceable role in the construction of the ecological environment on Loess Plateau. Therefore, the role of grassland in preventing soil erosion has received more and more attention. Scholars have done lots of research involved in the relationship between grassland coverage and soil erosion, impacts of grassland on hydrodynamic parameters, effects of grassland on soil properties, reduction effects of grassland on runoff and sediment, and soil erosion process on grassland slope. However, there is little research on erosion effect induced by grassland cover. This paper mainly pointed out the following questions: First, grassland cover is influenced by many factors, but the relationship with soil erosion from the dynamic mechanism is rarely discussed; Second, there is no well-developed theory of overland flow erosion at present, which limits the study of hydrodynamic parameters on grassland slope; Third, establishment of mathematical model between grassland cover and soil resistance can accelerate the quantitative analysis of grassland influence on erosion; Fourth, comprehensive analysis of influencing factors on water reduction and sediment reduction effect on grassland are insufficient; Fifth, there are not many mechanisms to analyze the erosion process of grassland slope by using the hydrodynamic characteristics of slope; sixth, research results on grassland-induced erosion are mainly focused on leading to soil dry layer and we should continue to strengthen in the future. This paper summarized the previous results, and supplemented some studies about erosion caused by grassland, then pointed out the existing problems in current research and the areas that need to be strengthened in the future, aiming at reducing soil erosion on the Loess Plateau.  相似文献   

6.
祁连山石羊河上游山区土壤侵蚀的环境因子特征分析   总被引:3,自引:1,他引:2  
在GIS技术支持下, 运用通用水土流失方程USLE, 对祁连山北坡东段的哈溪林区的土壤侵蚀量及空间分布进行了模拟运算, 并定量分析了各种环境因子与土壤侵蚀之间的关系. 结果显示: 研究区平均土壤侵蚀模数为25.1 t·hm-2·a-1, 微度和轻度侵蚀面积占总面积的80%, 而强度到剧烈侵蚀产生的侵蚀量占78.3%; 各土地类型土壤侵蚀模数由高到低依次是裸地>草地>农田>灌丛>乔木林, 裸地侵蚀量占到总侵蚀量的54.9%; 乔木林和灌木林95%以上侵蚀面积属微度侵蚀区, 农田中度到剧烈侵蚀的面积比例达到35.9%, 高于草地和其他植被类型, 而草地剧烈侵蚀面积比例高于农田. 海拔高度范围与土壤流失量之间的关系与植被的海拔分布范围明显相关; 土壤平均侵蚀模数随坡度的增加而增大, 土壤侵蚀量主要分布在15°~45°的坡度范围, 不同植被覆盖下土壤流失随坡度变化的趋势可在一定程度上反映该类植被对土壤流失的防止作用.  相似文献   

7.
为揭示南方红壤丘陵区水土流失地质成因规律和模式,促进水土流失精准治理,选择福建长汀县开展地质背景与水土流失关系研究。结果表明:岩性对水土流失侵蚀速度、侵蚀剧烈程度、水土流失发育阶段等具有控制作用;地形坡度和部位、节理裂隙对水土流失程度具有重要影响;区内不同岩性不同地形部位风化壳-土壤分布具明显的规律性。建议长汀县进一步依据地质背景优化水土流失治理布局,优选水保植物和种植方式,优化茶果园等坡地农业开发项目。  相似文献   

8.
Effects of land use changes on soil erosion in a fast developing area   总被引:1,自引:0,他引:1  
Land use changes extensively affect soil erosion, which is a great environmental concern. To evaluate the effect of land use change on soil erosion in fast economic developing areas, we studied land use changes of Guangdong, China, from 2002 to 2009 using remote sensing and estimated soil erosion using the Universal Soil Loss Equation. We calculated the areas and percentage of each land use type under different erosion intensity and analyzed soil erosion changes caused by transitions of land use types. In addition, the impact of land use change on soil erosion in different river catchments was studied. Our results show that forest and wasteland land conversions induce substantial soil erosion, while transition from wasteland to forest retards soil loss. This suggests that vegetation cover changes significantly influence soil erosion. Any conversion to wasteland causes soil erosion, whereas expansion of forests and orchards mitigates it. The most significant increase in soil erosion from 2002 to 2009 was found in the Beijiang catchment corresponding to the transition from forest/orchard to built-up and wasteland. Soil erosion in the Xijiang catchment accelerated in this period due to the enormous reduction in orchard land. In Hanjiang catchment, erosion was alleviated and vegetation coverage greatly expanded owing to considerable transitions from wasteland and cropland to orchards. Field investigations validated our estimations and proved the applicability of this method. Measures including protecting vegetation, strict control of mining as well as reasonable urban planning should be taken to prevent successive soil erosion.  相似文献   

9.
区域土壤侵蚀定量研究的国内外进展   总被引:27,自引:0,他引:27  
由于水土保持宏观决策的需要、土壤侵蚀学科自身的进步和全球变化研究的促进,过去的10多年来,国内外研究者对区域尺度土壤侵蚀研究给予了高度重视。已经开展的主要研究包括:全球和区域(包括国家尺度)土壤侵蚀调查、区域土壤侵蚀过程和尺度效应、区域土壤侵蚀因子和区域土壤侵蚀模型等。将区域土壤侵蚀作为现代陆地地表过程的一部分,充分考虑全球变化的影响,集成土壤侵蚀研究成果与遥感和GIS技术,开发分布式区域土壤侵蚀模型,成为区域土壤侵蚀定量评价研究的基本趋势。在对国内外区域土壤侵蚀定量评价研究评述的基础上,提出我国近期在区域土壤侵蚀方面研究的重点问题为:区域土壤侵蚀过程及其尺度效应的量化描述、区域土壤侵蚀模型开发、区域土壤侵蚀动态模拟与趋势预测、区域土壤侵蚀与全球变化关系研究和区域土壤侵蚀数据处理与管理方法。  相似文献   

10.
In the study of surface processes, it is generally assumed that erosion occurs equally throughout the soil profile so that chemical depletion of the topsoil can represent the intensity of chemical weathering and the duration of surface exposure to cosmogenic radiation can reflects the soil residence time, and then the rate of erosion can be calculated. In comparison with fresh bedrock, the depletion of soluble elements in soil mainly comes from fine-grained secondary clay components, while the depletion degree of detrital minerals is weak. The preferential erosion of fine-grained secondary clay will lead to the underestimation of weathering intensity, and the retention time of detrital mineral will be longer than the total retention time of soil, and thus the soil erosion rate will be underestimated. Based on the uranium isotope comminution ages of soil in the Lesotho Highlands, we found that erosion operates differentially between the detrital and authigenic components of the soil. Uranium isotope comminution ages show a soil residence time of (543±32) ka for the detrital particles. In contrast, soil residence time of the authigenic phases is constrained to be (22±11) ka according to the accumulation of recoiled 234U from the absorbed 238U to river water. The residence time of secondary clay matches with the regional erosion rate 24-33 t/(km2·a) calculated from weathering flux, indicating that secondary clay is the main component of soil erosion. The results indicate that the decoupled erosion of different components in soil may be common. This finding implies that the intensity of weathering based on bulk soil erosion and the rate of soil erosion determined by exposure dating of coarse soil grains may be invalidated due to the preferential erosion of authigenic particles. As a result, a lower estimate of weathering flux may be made, and therefore the role of chemical weathering in the global carbon cycle could be underestimated.  相似文献   

11.
The karst area of Southwest China is suffering from serious ecological and environmental problems due to soil erosion while the research on soil erosion is not sufficient. Primary achievement was systematically reviewed in this paper in three aspects: erosion characteristics, current researches about erosion on different spatial scales, and key scientific problems. Based on the review, the authors figured out the shortcomings of the existing studies and pointed out the directions on erosion study in southwest China karst region. The results showed that: ① Due to the existence of a dual structure in karst environment including ground and underground erosion, the process of runoff and sediment production on slope scale and confluence and sediment transportation processes on catchment scale were more complex under the unique geological and hydrological backgrounds; ② At present, most researches about erosion mechanism in karst area focus on slope scale and some achievements on quantitative evaluation of erosion factors have been made. Continuous data with high quality about relationship between water and sediment on catchment scale is limited. When data is scarce, river sediment data can be used as an effective way to study soil erosion intensity and spatial-temporal variation in karst area; ③ It is more reasonable to use 50 t/(km2·a) as the grading standard of soil loss tolerance than the previous grading standard of soil erosion intensity. Given the complex relationship between rocky desertification and soil erosion, more quantitative studies about the effects of rocky desertification on soil erosion are still necessary. There are different viewpoints on soil leakage definitions, leakage mechanism and leakage ratios, and new breakthroughs could be achieved by combining different methods and matching multi-scales. In conclusion, in order to further reveal soil erosion laws and establish and revise available regional soil erosion forecasting models for Southwest China karst areas, synchronous test and monitoring on slope, watershed, and channel spatial scales are urgently needed. The results can provide theoretical and technical support for promoting soil and water conservation work for the karst area of Southwest China.  相似文献   

12.
王翠丽  曹明明 《地下水》2012,(2):183-185
土地利用结构特征可反映某个区域的土壤侵蚀状况,也是水土保持研究的内容之一。通过运用遥感影像得出榆阳区土壤侵蚀分级图,并根据公式得出土壤侵蚀严重指数。运用层次分析法计算出水田、平缓旱地、坡耕地、林地、草地、水体、建设用地和未利用地在土壤侵蚀强度评价中所占权重。通过对2005-2008年榆阳区土地利用结构特征值的分析得出榆阳区土壤侵蚀有所好转,为今后土地利用结构调整和土地开发整理提供参考。  相似文献   

13.
Soil erosion is a geo-ecological problem in Southwest China, which can result in karst rocky desertification when it is very serious. The grade delineation of soil erosion risk can be used as a guide for controlling regional and hierarchical soil erosion, and provide scientific references for restraining rocky desertification. Chaotian Town, an area of Karst Mountains and hills in Guilin, northeast part of Guangxi Zhuang Autonomous Region, China, was chosen as the study area. Settlement buffer, roadway buffer, lithology, slope, elevation, and aspect were selected as the main indicators of soil erosion in the karst area. After the indicators were scored by fuzzy modeling, the potential risk of soil erosion was quantified using indicator-weight union method. Five grades of soil erosion risk were delineated based on Geographic Information System. The grades of minimal, low, medium, high, and extreme soil erosion risk accounted for 1.62, 19.46, 52.35, 24.86, and 1.71 %, respectively. As a whole, the soil erosion risk was moderate, because the proportion data of different grades of soil erosion risk were a normal distribution, and about 52.35 % of the study area was in the medium grade. Soil erosion risk was higher in the southeast of the study area and lower in the northwest. Obvious variances have been found in the grade distribution of soil erosion risk, corresponding to different indicators.  相似文献   

14.
西南喀斯特区土层浅薄、成土速率低等特点决定了其允许土壤流失量小,土壤一旦流失,极难恢复,土壤侵蚀及其造成的石漠化现象已成为制约该区可持续发展最严重的生态环境问题。文章首先明晰西南喀斯特区土壤侵蚀特征,从坡面、小流域和区域三个尺度上系统概括西南喀斯特区土壤侵蚀的相关研究进展。针对当前喀斯特区土壤侵蚀研究野外径流小区、小流域及区域空间尺度数据缺少和相关研究模型限制性强等不足,建议从不同尺度深入研究喀斯特区土壤侵蚀发生发展规律及时空演化格局,并结合高新遥感、地球物理探测技术及模型,同步监测坡面—小流域—区域土壤流失,对土壤侵蚀进行定量评估,结合不同空间尺度土壤侵蚀特征构建系统性水土保持生态恢复治理模式和监测系统评价体系。   相似文献   

15.
坡面侵蚀过程定量研究进展   总被引:8,自引:1,他引:8  
坡面是土壤侵蚀最基本的地貌单元,定量研究坡面侵蚀能为研究土壤侵蚀规律、确定坡面重点侵蚀部位、建立土壤侵蚀预报模型提供科学依据。总结了溅蚀、片蚀、细沟侵蚀、浅沟侵蚀的定量研究进展,简述了土壤侵蚀模型的研究进展,对目前的其它研究方法进行了评述。  相似文献   

16.
桂林毛村岩溶地下河流域水土流失遥感动态监测研究   总被引:3,自引:1,他引:2  
杨成英  吴虹 《中国岩溶》2009,28(2):206-211
为了给西南岩溶地区石漠化发展演变的研究工作提供一定的科学依据和决策支持,选择桂林毛村岩溶地下河流域作为研究区,利用两期遥感影像对该区影响水土流失的三个主要自然要素,即地形坡度、植被覆盖度和土地利用方式进行信息提取,并以地理信息系统为分析平台,参考水土流失强度分级标准,对该区两个时期的水土流失状况进行对比分析。调查监测结果显示,研究区随着坡度的增大,水土越容易流失,而且水土流失强度级别增大;植被覆盖度对水土流失强度起着控制性作用,为抑制并缩减水土流失面积,应保护植被,退耕还林;研究区土地利用变化比较缓慢,导致水土流失面积变化幅度不大。上述结果表明,利用遥感技术手段,可为当地的经济发展和水土流失的监测、评价、预测及治理提供参考。   相似文献   

17.
This study was aimed at predicting soil erosion risk in the Buyukcekmece Lake watershed located in the western part of Istanbul, Turkey, by using Revised Universal Soil Loss Equation (RUSLE) model in a GIS framework. The factors used in RUSLE were computed by using different data obtained or produced from meteorological station, soil surveys, topographic maps, and satellite images. The RUSLE factors were represented by raster layers in a GIS environment and then multiplied together to estimate the soil erosion rate in the study area using spatial analyst tool of ArcGIS 9.3. In the study, soil loss rate below 1 t/ha/year was defined as low erosion, while those >10 t/ha/year were defined as severe erosion. The values between low and severe erosion were further classified as slight, moderate, and high erosion areas. The study provided a reliable prediction of soil erosion rates and delineation of erosion-prone areas within the watershed. As the study revealed, soil erosion risk is low in more than half of the study area (54%) with soil loss <1 t/ha/year. Around one-fifth of the study area (19%) has slight erosion risk with values between 1 and 3 t/ha/year. Only 11% of the study area was found to be under high erosion risk with soil loss between 5 and 10 t/ha/year. The severe erosion risk is seen only in 5% of the study area with soil loss more than 10 t/ha/year. As the study revealed, nearly half of the Buyukcekmece Lake watershed requires implementation of effective soil conservation measures to reduce soil erosion risk.  相似文献   

18.
Through utilizing water flow monitoring, rock scratching, soil wood piles and radionuclide 137Cs tracing in the Longhe karst ecological experimental site (hereinafter referred to“Longhe site”), Pingguo County, Guangxi Province, the features and values of soil erosion and soil leakage in different geomorphologic locations and land uses in the karst peak-cluster depressions are showed clearly. There are four kinds of geomorphologic locations in the karst peak-cluster depression, namely peaks, strip, slopes and depression. The soil leakage modulus in the peaks and strips respectively occupy 92.43% and 96.24% of the total mean soil erosion modulus at experimental sites. On the slope, soil leakage accounted for about 75%. At the bottom of depression, surface water was the main factor of soil erosion, and at last most soil leaked into underground rivers from sinkholes. The total soil erosion modulus and the contribution rates of relative surface soil erosion in regard of peaks, slopes and depressions gradually increased. There are also five major types of land use in the karst peak-cluster depressions, farmland, Kudingcha tea plantations, young Lignum Sappan fields, shrub-grassland and pastures. The soil erosion modulus of slope farmland has the highest value with an increasing trend year by year. But soil erosion modulus of other four land use types decreased by year, which shows the “grain for green” will result in better soil protection. By handling with rocky desertification and ecological rehabilitation in Longhe site, the mean soil erosion modulus of the karst peak-cluster depression has decreased about 80% from 2003 to 2015.  相似文献   

19.
地域分异是地球表层大小不等、内部具有一定相似性地段之间的相互分化以及由此产生的差异。为了研究不同区位土壤侵蚀问题,从土壤生态景观及系统论出发,运用地质学、地理学、景观生态学、环境学的理论和研究方法,研究湖北省土壤侵蚀景观空间格局及其驱动因子,使土壤侵蚀问题研究提高到一个新的水平。湖北省土壤侵蚀景观具有南北分带、东西分区,为一不对称的断块一环组合,土壤流呈现向长江、江汉盆地中心轴带辐聚、单流向特点。景观空间异质性形成的首要驱动因子是大地构造背景,以房县一襄樊一广济断裂带为界,南北两侧地壳物质组成和构造发展史存在较明显的差异,现代气候带、降雨量、温热程度及土地利用等差异,造成了湖北省区域土壤地理、土壤生态的分异,形成湖北省土壤生态带、区具有南北分带,东西分区的宏观格局;其次大兴安岭一武陵山深部构造陡变带两侧新构造运动强度差异、大别造山带构造强烈隆升,导致土壤侵蚀强度的西强东弱、南北强中间弱的态势;成土母岩差异性决定了土壤可蚀性的多变;空间上“土壤侵蚀内城区”分布在湖北省的周边地区,经济贫困、管理落后,这一地区的经济水平与水土流失间形成“自反馈作用”,这一现象在我国水土保持、生态建设工作中应该引起重视。  相似文献   

20.
桂江流域土壤侵蚀估算及其时空特征分析   总被引:2,自引:1,他引:1  
桂江流域的水土流失现状研究对珠江三角洲的水生态安全有重要的现实意义。采用修正的通用土壤流失方程(RUSLE)估算了桂江流域的土壤侵蚀模数与年侵蚀总量,分析流域内土壤侵蚀的时空分布特征,探讨了影响该区域土壤侵蚀强度的自然与人文因素。结果表明,桂江流域51.8%的地表都在发生不同程度的土壤侵蚀。从全流域平均土壤侵蚀强度来看,属于中度侵蚀。从土壤侵蚀面积来看,约85%的地表处于微度、轻度与中度侵蚀。4-6月的全流域平均土壤侵蚀强度最大,侵蚀总量也是最大的。流域的土壤侵蚀主要发生在高程在30~600m的低山丘陵-高地地貌区内的林地与耕地中。流域内岩溶区的土壤侵蚀强度随着石漠化程度从无到中度逐渐增加,轻、中度石漠化区的土壤侵蚀强度达到强度侵蚀等级。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号