首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 133 毫秒
1.
结合渝沙高速公路共和隧道地应力量测资料,通过调整多种组合的侧压系数,获得隧址区山体多组地应力。将每一组侧压系数下获得的测试段地应力,利用横观各向同性弹塑性本构模型对测试段层状岩体进行计算,并将计算的结果与实测结果对比分析,确定出隧址区山体合理的侧压系数,从而得到了隧道轴线方向的初始地应力大小和方向,研究表明,隧道轴线初始地应力与隧道的埋深和地形地貌有关,靠山侧初始地应力大于靠河侧,最大初始地应力主要集中在埋深500~1 000m,即K41+500~K43+000里程段,最大初始地应力为19.7MPa,与水平面的夹角为-71.58°。这为隧道设计和施工提供了重要的基础资料。  相似文献   

2.
川西地区地质构造环境复杂,该区深埋隧道建设过程中经常面临岩爆风险,而地应力条件对深埋隧道的规划建设和岩爆风险预判具有重要意义。本研究利用水压致裂法在川西折多山某深埋隧道开展了原地应力测量及其工程效应分析。某钻孔196~650 m深度范围内的地应力测试结果显示,隧址区以水平构造应力为主导,测试深度范围内水平主应力随深度线性增加,且应力增加梯度高于中国大陆背景值。地应力结构整体以逆断型(SH>Sh>Sv)为主,其中389.50~560.50 m深度范围属应力释放区,地应力结构以走滑型(SH>Sv>Sh)为主。侧压系数及最大、最小水平主应力比值随深度分布基本符合中国大陆各参数变化特征。最大水平主应力方向为NWW向,与区域应力场分布及周边活动断裂反映的力学机制一致,主要受印度板块向欧亚板块持续俯冲和高原物质东南向扩散作用控制。测点现今地应力强度较高,临近断裂失稳状态,随着应力的不断积累,区内优势破裂方向或已有断裂的特殊构造部位可能发生失稳滑动。最后,基于地应力测量结果对深埋隧道围岩稳定性进行了预判分析,受隧址区高地应力影响,围岩发生中-强岩爆的可能性较大,需优化设计并重点防护。  相似文献   

3.
结合西部地区某深埋长大公路隧道信息化施工 ,对深埋长隧地应力演化及围岩应力位移进行了弹塑性有限元数值模拟研究。研究结果表明 ,隧道轴线现代地应力状况与隧道埋深、地层岩性及构造发育程度有关 ,最大地应力为40 0MPa左右 ;隧道周边围岩应力在曲边墙底部最大 ,约 3 8 0MPa ,隧道开挖引起的围岩应力影响范围约 2 5 0m ;隧道水平收敛和拱顶下沉位移与隧道埋深近于成直线关系。这些研究结果为深埋长隧信息化设计和施工以及围岩稳定性分析提供了科学依据。  相似文献   

4.
为分析铁路隧道隧址区地应力分布、发育方向、变化规律,判断隧道洞身围岩岩爆、软岩变形特征,运用单回路水压致裂法,对隧道区内施工的4个深孔进行了地应力测试工作。结果表明,隧道洞身附近最大水平主应力为12~21MPa,最小水平主应力为9.6~14.2MPa,估算垂直应力为9.6~15.4MPa;地应力特征是以构造主应力为主,三向主应力具有随深度增加而增大的趋势;隧道洞身附近最大水平主应力优势方向为NNW14°~28°,表明隧道洞身附近地应力以NNW向挤压为主,主应力方向与拟设隧道轴线走向夹角在12°~26°,对洞室围岩稳定有利。由于隧道埋深大,地应力高,构造发育,岩性构成复杂,软硬相夹,存在硬质岩产生岩爆,软质岩遇水变形的可能。建议隧道在硬质岩段施工,采用"短进尺、多循环、强支护"的掘进方法,在软质岩段施工,采用"少扰动、快封闭"的掘进方法。该研究对隧道的设计施工具有重要的现实意义。  相似文献   

5.
深埋特长隧道工程的高地应力问题越来越受到重视,如何准确高效地确定工程区地应力状态,是目前关注的重点和难点。针对深埋特长隧道地应力状态的确定问题,我们提出了基于多源数据的初始原地应力方向综合确定和应力量值预测及复核的综合解决方案。通过勘察阶段有限钻孔的地应力测试,并结合区域多源地应力资料,可以综合确定地应力方向并利用修正的Sheorey模型预测隧道轴线地应力;针对预测结果,在隧道开挖施工过程中,进一步利用有限钻孔的水压致裂地应力测试检验预测结果并复核隧道应力状况。结果表明,桃子垭隧道水平最大主应力方向为N15°W~N40°W,实测三向应力关系为SH≥Sv>Sh;钻孔附近的应力预测值在区域实测应力量值变化范围内,隧道埋深最大处的水平最大、最小应力值分别达24 MPa和16 MPa;隧道施工过程中的4个钻孔应力量值复核结果显示,除了局部受到岩性变化、断裂破碎带等影响出现偏差,本文预测结果与实测应力量值基本一致。笔者发展的原地应力综合预测及复核方法,一方面可以快速有效地预测深埋特长隧道等线状工程的原地应力状态,有效降低初始勘察阶段地应力测试成本,另一方面,应力量值的复核保证了应力预测结果的可靠性,可以为隧道施工方案的及时变更及预算调整等提供有力依据和数据支撑。  相似文献   

6.
深埋特长隧道工程区地应力场的预测一直是工程技术人员面临的难题,而工程地质综合分析法则可为工程区地应力场的分析提供较为全面准确的结论。因此,本文以滇东北典型深埋特长隧道——乐红隧道为例,采用综合分析法来研究工程区的地应力场特征。首先基于中国大陆应力分区,利用Anderson断层力学理论、震源机制解及实测地应力统计数据来获取研究区主应力方向。其次,基于工程地质勘察成果,利用Hoek-Brown强度准则对工程区的岩体强度进行了初步估算。在此基础上,利用修正Sheorey模型对工程区地应力量值水平进行了预测。分析结果表明,工程区以先进构造应力为主导。其中:水平最大主应力优势方位为N20°~60°W,应力场方向较为稳定。地应力量值水平预测结果表明,工程区在埋深500 m左右时,最大、最小水平主应力量值范围分别为11.2~20.5 MPa、6.6~12.2 MPa;埋深在1000 m左右时的最大、最小水平主应力量值范围分别为25.9~28.2 MPa、15.4~17.1 MPa。工程区在埋深超过500 m时的高地应力情况下,可能存在岩爆风险,而围岩大变形的问题几乎不存在。综合分析法的预测结果与现场实测数据较为吻合,表明该方法在线状公路隧道地应力状态的预测分析中,具有良好的应用效果。  相似文献   

7.
滇藏铁路香格里拉—邦达段沿线断层发育,构造运动强烈,为提高沿线工程的稳定性,基于构造形迹、震源机制解和实测数据的多元综合分析法,对研究区主应力方向进行了分析;基于Hoek-Brown强度准则和修正的Sheorey理论,结合实测数据,对研究区岩体强度参数和主应力量值进行了估算和预测,最后对研究区的地应力场特征及其工程效应进行了分析。结果表明:香格里拉-德钦应力区的水平最大主应力方向N0°W~N40°W;芒康-邦达应力区的水平最大主应力方向为N60°E~N80°E;铁路沿线埋深1000 m处,水平最大主应力范围为24.23~37.30 MPa;埋深2000 m处,水平最大主应力范围为47.29~66.69 MPa;香格里拉-德钦应力区隧道轴线设置为N80°W~N40°E有利于围岩稳定,芒康-邦达应力区隧道轴线走向设置为N10°E~N130°E有利于围岩稳定;铁路沿线高地应力显著,埋深超过400 m就可能处于高地应力状态,硬质岩埋深超过700 m会有岩爆风险,软质岩埋深超过1400 m会有大变形风险。  相似文献   

8.
为指导施工,提高施工的安全性和经济性,对西周岭隧道进行了钻孔水压致裂法地应力测量.测试结果表明:西周岭隧道深埋段地应力场以水平应力为主,在测试深度内最大水平主应力值为10.57~19.39MPa,具中等偏高应力水平;最大水平主应力方向为近N33°W,与隧道走向的夹角较小,即地应力对隧道围岩稳定性较为有利.基于地应力实测...  相似文献   

9.
针对复杂地质条件下深埋隧道精细应力场准确反演以及主要地质条件对地应力场影响问题,以滇西南双江至沧源高速姜染山隧道为例开展研究。采用精细DEM数据、实测地质资料建立隧址区精细地质模型,以地应力实测数据和GPS速度场数据作为联合约束条件,开展姜染山隧道工程区精细地应力场反演计算,揭示了隧址区精细应力场特征及主要地质条件影响作用。结果表明:隧道区模拟变形速度场与GPS观测结果基本一致,模型能够较好反映工程区现今构造应力环境;隧址区地应力场存在应力水平西高东低、主应力方向局部偏转的特征,近E-W向的小黑江断裂对研究区地应力场的影响主要表现为造成主应力方向小幅偏转,未造成应力量值急剧变化,局部次级断裂和地形叠加影响作用有限;隧道沿线最大主应力在7.47~27.23 MPa之间,中间主应力在1.59~15.12 MPa之间,最小主应力在0.01~6.71 MPa之间,隧道沿线应力水平总体上未表现出明显异常特征;基于反演精细应力场数据的岩石应力强度比方法计算结果显示,现今地应力条件下,隧道岩石强度应力比结果总体在0.20~0.48之间,表明隧道围岩整体为无岩爆和轻微岩爆情况。本研究实例表明,复杂地质...  相似文献   

10.
本文在襄渝增建二线———新白岩寨深埋长隧道(最大埋深近500m)工程区进行了水压致裂地应力测量,叙述了地应力测试方法和结果。测量结果表明:该工程区的原地应力以水平应力为主,最大主应力方向为NNW,与区域地质分析的结果相吻合。根据该工程区应力量值及其方向,分析了隧道区应力作用特征,并结合该工程区地质条件,对隧道的稳定性和地质灾害发生的可能性进行了讨论。  相似文献   

11.
隧道应力扰动区地应力测试及反演研究   总被引:4,自引:2,他引:2  
白世伟  韩昌瑞  顾义磊  王贵宾  李丹 《岩土力学》2008,29(11):2887-2891
通过对隧址区地应力的调查和现场测量,初步确定该区域存在较大的构造应力,但因岩芯破碎,只获得隧道应力扰动区的应力实测值。为此在三维数值模拟过程中模拟了河谷的下切过程,以反映地形对应力场的影响,并采用试算的方法调整侧压系数,从而确定合理的初始应力,使试算结果与现场测量的数据基本吻合,最终确定出合理的侧压系数和初始地应力的数值,弥补了现场测量的不足。研究结果表明,隧道轴线各点的地应力与隧道的埋深、地形地貌有关,且在K42段处于极高的应力状态,为隧道的开挖、支护及稳定性分析提供了科学依据。  相似文献   

12.
宝塔山特长隧道地应力场研究及岩爆预测   总被引:1,自引:0,他引:1       下载免费PDF全文
为了确定宝塔山特长隧道的围岩应力状态,采用水压致裂法进行了地应力测试,并根据测试成果,通过有限元回归分析,预测了整个隧道围岩的应力分布。测试结果表明:宝塔山隧道深埋段地应力场以自重应力场为主导,在测试深度内最大水平主应力值为2.3~8.4MPa,具中等应力水平,最大水平主应力方向为N53°E,与隧道走向的夹角较大,即地应力对隧道围岩稳定性不利。最后,根据地应力资料对隧道围岩进行了施工期岩爆预测分析,表明隧道岩爆等级为弱-中等岩爆,但在完整坚硬岩石区,发生中等岩爆的可能性比较大。  相似文献   

13.
通过华东某公路隧洞3个深钻孔的水压致裂法地应力测量结果,分析并推导得到了隧洞轴线水平面上的应力和隧洞轴线横截面内最大切向应力的估算公式,并用于隧洞形状选择及隧洞开挖时岩爆可能性判断。认为测区应力以水平作用为主,在测试深度域内最大水平主应力的数值在4.69~14.07MPa,优势方向约N61°W,用应力估算公式和岩爆判据得出岩爆发生的临界埋深厚度约304m。  相似文献   

14.
虹梯关隧道隧址围岩以硬质岩为主,该隧道属特长深埋隧道,其附近地质构造也十分发育,工程地质条件复杂,发生岩爆可能性很大。通过对岩爆影响因素的分析,采用水压致裂法地应力测试,经陶振宇判别法、切应力准则等应力判断方法,认为虹梯关隧道隧址部分地段可能会发生轻微~中等岩爆。  相似文献   

15.
以沪蓉西高速公路上大量深埋长隧道为研究对象,采用水压致裂法进行了地应力测量,然后根据实测地应力资料,运用工程岩体分级标准判据法、陶振宇判据法和Hoek判据法对隧道岩爆进行了预测研究。结果表明:鄂西灰岩山区应力水平总体为中等偏高,最大水平主应力方向近EW向;埋深较深的坚硬岩石隧道有可能发生岩爆。为了充分保证施工的安全性,建议在施工过程中采取合理的开挖方式和防爆措施。  相似文献   

16.
青藏高原板块缝合带为印度板块和欧亚板块两大陆块的缝合区域,带区地质条件复杂,构造运动强烈。川藏线拉林铁路几乎沿雅鲁藏布江缝合带展布,高地应力问题十分突出,但目前针对板块缝合带隧道的地应力研究相对较少。本文采用空心包体法对拉林铁路沿线隧道进行了原位地应力测量,并与成兰、兰渝和锦屏等几个典型工程的地应力进行对比分析。研究表明:拉林铁路沿线隧道埋深大,构造应力突出,总体表现为最大水平主应力 > 垂直主应力 > 最小水平主应力;平均侧压系数(1.0~1.5)分布较为集中且处于较高水平;最大主应力量值大多在20~50 MPa之间,最大主应力与埋深的梯度为0.033 7 MPa/m,方向以北北西-北北东向为主。建议采用仰拱结构减小隧道墙脚处的应力集中现象。  相似文献   

17.
高速铁路大断面黄土隧道深浅埋分界深度研究   总被引:4,自引:0,他引:4  
郑州-西安铁路客运专线穿越西部黄土分布的主要地区,该线含大量单洞双线隧道,其开挖面积大于160 m2,跨度大于15 m,属于超大断面隧道。由于黄土的特殊性质以及开挖跨度与断面的增大,隧道围岩压力随埋深的变化尚不清楚,目前对该类型隧道的深、浅埋分界深度界定认识不统一。通过郑西线12座隧道地表裂缝与埋深关系的现场调查,初步确定了大断面黄土隧道的深、浅埋分界范围,指出小于11 m可作为超浅埋,40~60 m为浅埋与深埋分界深度,大于60 m为深埋;基于裂缝调查,按剪切滑移破坏极限状态理论对以上分界范围进行了理论分析与验证;精心设计现场试验,在浅、深埋等地段布置17个量测断面进行围岩-初期支护间接触压力的量测,发现实测围岩压力与界定的深浅埋计算结果吻合良好,表明所给深、浅埋界定范围正确。  相似文献   

18.
新疆西部地应力测量在隧道工程中的应用   总被引:10,自引:7,他引:3  
随着西部地区建设的投资力度逐年加大,地应力测量与研究工作越来越显得重要.通过在新疆西部拟建精伊霍铁路北天山越岭隧道(最大埋深约1100m)工程区进行的水压致裂地应力测量,获得了北天山地区应力场的主应力值及其方向.本文根据地应力测量结果,对工程区应力场的应力状态进行了研究,分析了隧道围岩的稳定性和地质灾害发生的可能性.   相似文献   

19.
蒙伟  何川  汪波  张钧博  吴枋胤  夏舞阳 《岩土力学》2018,39(11):4191-4200
为准确获得桑珠岭隧址区初始地应力场分布规律,提出在岩爆区初始地应力场的二次反演方法。采用最小二乘法寻优准则对隧址区初始地应力场进行多元线性回归分析,利用叠加原理得到在一次反演下的初始地应力场;采用表面应力解除法测量隧道开挖后的洞壁二次应力,记录发生岩爆的部位并据此判断侧压力系数的大小,与在一次反演下相应位置的侧压力系数进行对比,如果两者都大于或者等于或者小于1,则以在一次反演下计算得到的侧压力系数为基准,以其大小不变作为约束条件对初始地应力进行修正,当采用修正后的初始地应力作为应力边界条件,计算得到隧道开挖后的洞壁二次应力与实测洞壁二次应力最接近时,以此时修正后的初始地应力和原位地应力进行回归得到在二次反演下的地应力场。结果表明:当测量原位地应力的钻孔较少且计算区域较大时,一次反演回归得到离钻孔较远位置的应力计算值与实测值存在一定的误差;二次反演在原位地应力的基础上增加实测洞壁二次应力进行修正,得到离钻孔较远位置的应力计算值与实测值吻合更好,所提出的二次反演方法可为类似工程的研究提供参考。  相似文献   

20.
陈兴强 《地球科学》2022,(6):2120-2129
正确认识岩体结构、地质构造对地应力场的影响是评估地下工程岩爆和软岩大变形的基础.但由于缺乏单点大量实测数据的支撑,目前断层破碎带对地应力特征的影响还不是很清楚.依托川藏交通廊道通麦隧道勘察设计,开展了嘉黎断裂带及两侧完整岩体的大量地应力实测,并分析了其量值的离散性、极大值等分布规律.结果表明通麦隧道在埋深1 107.4 m处完整岩体实测最大水平应力SH为41.57 MPa(兆帕),属于极高地应力.而断层破碎带内实测应力量值离散且相同深度范围的平均值低于完整岩体,因此完整岩体内的实测数据才能用于区域地应力场评估.受断裂构造影响的岩体应力局部集中有一定限度,与正常应力值相比,可能不会达到量级的差异.预测隧道最大埋深处SH的中间值约为55 MPa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号