首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 750 毫秒
1.
《地球科学》2021,(枯水)
地下水排泄在湖泊水量及营养盐均衡中发挥着重要作用,其中地下水向湖泊排泄的量化是关键,但目前对其时间变异性的研究却十分薄弱.针对这一科学问题,以长江中游重要调蓄湖泊-洞庭湖为例,通过收集1996~2017年洞庭湖流域的水文和气象数据,基于质量平衡模型,查明地下水排泄对洞庭湖水量均衡的贡献以及地下水向洞庭湖排泄强度随时间的变化.结果显示:(1)枯水期时地下水排泄量为(0.17~1.51)亿m3/d,地下水排泄强度为38.74~207.26 mm/d,地下水排泄对湖泊水量均衡的贡献为8.70%~30.37%;(2)地下水排泄量、地下水排泄强度、地下水排泄对湖泊水量均衡的贡献在1996~2017年间均呈现出明显的先降低再升高的变化趋势,三峡水库蓄水后至三峡工程全面竣工初期的地下水排泄相较于三峡水库蓄水前和三峡工程全面运行后显著降低;(3)三峡工程运行对长江水位及地下水位的改变可能是引起湖底地下水排泄时间变异性的重要原因.为洞庭湖区域的水量均衡提供了新的认识,也为今后洞庭湖区域水资源开发利用和区域生态安全管理提供了理论支撑.  相似文献   

2.
基于长江与洞庭湖一、二维耦合水动力模型,模拟了三峡水库蓄水前后洞庭湖湖区的水文过程,定量分析了蓄水期三峡水库蓄水与洞庭湖出湖水量的响应关系。结果表明:蓄水期三峡水库蓄水减少了荆江三口进入洞庭湖的水量,同时也改变了洞庭湖湖容变化的速度;相比还原情况,各典型年下9-10月洞庭湖出湖水量均明显减少,且10月份减少幅度大于9月份,11月变化不显著;9-10月荆江三口水量变化是洞庭湖出湖水量变化的主导因素,而11月主导因素是湖容的变化。通过多元回归分析,构建了三峡水库蓄水量与洞庭湖出湖水量、湖容变化量的响应关系,在湖容不变情况下,洞庭湖出湖水量减少量约为三峡水库蓄水量的23%。  相似文献   

3.
把滑坡体离散化为一定数量的条块,基于水均衡原理建立了滑坡体地下水一维非稳定渗流的差分方程组,其中考虑了滑坡体地下水通过弱透水滑动带的越流排泄,对动态边界提出了处理方法.以三峡库区黄蜡石滑坡群的石榴树包滑坡为例,根据三峡水库蓄水前和蓄水后排泄区的不同水位条件,模拟了在强降雨过程中滑坡地下水的动态过程.结合考虑地下水渗透力的传递系数法,计算了石榴树包滑坡稳定性系数随时间的变化,结果表明无论是在三峡水库蓄水前还是蓄水后的极端降雨条件下石榴树包滑坡都是不安全的.在地下水非稳定渗流的影响下,滑坡稳定性对降雨和排泄区水位的响应具有滞后性.  相似文献   

4.
黎鹏  李辉 《地球科学》2020,45(6):1956-1966
利用ICESat-1和CryoSat-2测高数据获取了2003—2017年洞庭湖流域内湖泊的水位信息,分析了湖泊水位的时间变化过程,并结合TRMM卫星降水数据及人类用水等数据,讨论了湖泊水位变化对气候及人类活动的响应.结果表明,流域中80%的湖泊在2003—2009年呈现出水位下降趋势(-0.18~-0.09 m/a);75%的湖泊在2010—2017年呈现出水位稳定或上升趋势(0~0.39 m/a);总体来看,75%的湖泊在2003—2017年呈现出水位上升趋势(0.02~0.22 m/a).分析表明,湖泊水位变化为多种因素共同作用的结果,降水为近年来洞庭湖流域内湖泊水位变化的主要驱动因子;以三峡水库为代表的水库运行会对湖泊水位产生季节性影响;同时,人类用水的持续增长也对湖泊水位有一定的影响.多源测高卫星为长时序大范围的湖泊水位监测提供了有力的手段,这对研究湖泊水位变化及其与气候和环境的响应具有重要意义.   相似文献   

5.
洞庭湖和鄱阳湖泥沙冲淤特征及三峡水库对其影响   总被引:6,自引:0,他引:6  
长江中游江湖关系复杂,分布有中国第一、二大淡水湖泊,江湖关系演变对防洪、生态等影响重大。通过分析反应长江中游洞庭湖和鄱阳湖泥沙冲淤的实测水沙和地形资料,初步掌握了湖区泥沙冲淤特征及主要影响因素,并着重探讨了三峡水库蓄水对两湖泥沙冲淤的影响。结果表明,近10年洞庭湖和鄱阳湖湖区泥沙淤积速度明显减缓,部分年份出现冲刷,其中洞庭湖湖区泥沙沉积率下降主要由来沙减少引起,三峡水库拦沙作用的影响明显;鄱阳湖区冲刷主要集中在入江水道,采砂活动影响显著,三峡水库蓄水影响尚不明显。  相似文献   

6.
地下水与河流的相互作用对于维持河流生态系统的健康十分关键,但是目前对于地下水向湿润地区大型河流排泄过程的定量化研究较为薄弱.针对这一问题,以长江中游荆江段为研究区,通过野外采样和水文气象数据收集,利用222Rn质量平衡模型定量估算长江中游荆江段的地下水排泄,并用EC质量平衡模型及水量平衡模型验证222Rn质量平衡的结果 .结果显示:长江中游荆江段的平均地下水排泄速率为133 mm/d,排泄总量为1.06×108 m3/d,对水量平衡的贡献约为10.99%.其中枝城-沙市段地下水排泄速率最大,监利-螺山段地下水排泄速率最低.含水层富水性和地下水位可能是控制地下水排泄速率的关键因素.本研究对于流域水资源管理具有重要意义,也可为今后长江中游地区水资源的合理开发利用以及生态环境保护提供理论依据.  相似文献   

7.
《地下水》2021,(2)
以新疆车尔臣河地下水为研究对象,对该地区的地下水资源量进行了数值模拟分析。研究结果表明:研究区2017年地下水资源处于均衡状态,地下水补给以河道入渗补给量为主,地下水排泄以蒸发排泄量为主,人类影响程度较小;研究区补给量为51 171.9×10~4m~3/a,排泄量为50 532.6×10~4m~3/a,地下水可开采资源量为33 272.1×10~4m~3/a;研究区各观测孔水位降深在-0.03~7 m之间,主要由于局部地段人工开采量大于补给量,造成其地下水位下降。  相似文献   

8.
为研究三峡水库运行前后洞庭湖水资源量变化情况,通过利用1994-2019年165个时相的多平台中高分辨率(15~30 m)卫星遥感数据,城陵矶多年日观测水位数据和洞庭湖区降水量、蒸发量等资料,采用掩膜处理、K-Means聚类分析提取水面信息,结合观测数据进行统计分析,研究了1994年以来洞庭湖水面面积与湖容变化情况.结果表明:三峡水库运行后洞庭湖年均水面面积由1 077.46 km2减少到857.13 km2,减幅达20.45%,但是2011年后当城陵矶水位大于26.34 m时水面有所增加;三峡水库对下泄量的调控在缓解洞庭湖洪涝灾害隐患的同时,也使得低枯水位提前1个月,且对洞庭湖枯水期的补给水量极其有限;三峡水库运行后洞庭湖湖容明显减小,且当城陵矶水位越高时,洞庭湖湖容减幅越大;当水位小于20 m时三峡水库运行前后两个时段的湖容逐渐接近.洞庭湖水资源量变化主要受出入湖径流影响,"四水"径流是影响洞庭湖水资源量的主要因素,"三口"径流的减少也对洞庭湖水资源量的变化起着重要作用.同时,湖区年均降水量的减少和蒸发量的增加也是引起洞庭湖水资源量减少的原因之一.研究成果为三峡工程运行后治湖思路调整、洞庭湖区水资源保护和长江流域生态修复提供了客观资料.   相似文献   

9.
基于1956-2015年洞庭湖主要控制站实测水文数据,运用Mann-Kendall检验法、主成分分析法对比分析了近60 a来洞庭湖东、南、西三个湖区水位演变特征及其影响因素。结果表明:从调弦口堵口至葛洲坝截流后,南咀和城陵矶站同流量下水位均升高,但南咀站平均水位受三口分流能力减弱而下降(0.03 m),城陵矶站平均水位受湖盆泥沙淤积和长江干流顶托作用而上升(1.33 m);三峡水库运行后,湖盆冲淤基本持平,湖泊同流量下水位基本不变,由于该时段长江流域整体为相对枯水期,因而与葛洲坝截流后相比湖泊年平均水位下降约0.31~0.58 m。近60 a来南咀站平均水位呈显著下降趋势(p<0.05),而城陵矶站水位呈显著上升趋势(p<0.01),说明湖泊水位影响因素作用存在空间异质性。洞庭湖年内水位存在涨(4-5月)~丰(6-9月)~退(10-11月)~枯(12月-次年3月)的变化特征,葛洲坝运行期丰水期水位上涨明显,三峡运行期各月水位均有下降,受水库调度方式影响7-10月水位降幅最大。洞庭湖流域降水量、四水入湖和出湖径流大小以及长江干流水情是洞庭湖水位变化的主要影响因素,三口来沙变异条件下的洞庭湖冲淤量变化是湖泊水位变化的次要因素。  相似文献   

10.
近50年来长江水沙变化规律研究   总被引:5,自引:1,他引:4  
许全喜  童辉 《水文》2012,(5):38-47,76
较为系统地研究了近50年来长江流域不同河段、不同时段的水沙变化特性。从多年平均情况来看,长江上游水沙异源、不平衡现象十分突出,干流石鼓至宜昌沙量沿程增大,宜昌以下干流河道输沙量沿程减小,悬沙中值粒径也沿程变细;1991~2002年长江干流各站径流量变化不大,输沙量明显减少;2003~2010年长江上游来沙减小趋势仍然持续,加之三峡水库蓄水拦沙作用,坝下游输沙量大幅减小,悬移质泥沙粒径沿程变粗,至监利站粗沙量已基本恢复到蓄水前的水平。三峡水库蓄水运用后,长江中下游径流年内分配、泥沙来源和地区组成均发生新变化;荆江三口分流分沙量继续减小,洞庭湖湖区淤积减缓;三峡工程蓄水运用不仅改变了长江上游与中下游的冲淤环境,而且也进一步促进了长江中游江湖泥沙分配格局的调整。  相似文献   

11.
三峡水库蓄水后长江中游水沙时空变化的定量评估   总被引:1,自引:0,他引:1       下载免费PDF全文
定量评价三峡蓄水后长江中游流域水文情势的时空变化,为长江中游生态保护和区域水资源管理提供科学依据。采用变化范围法分析了长江干流5个水文站的流量、含沙量日均数据,定量评估了三峡工程蓄水后,长江中游水沙变化度最大的江段和水文指标类别,及其对应的生态影响。研究结果表明三峡蓄水后,下游河道含沙量的变化度远大于流量,除城陵矶站外,含沙量较蓄水前有了大幅度下降,宜昌站的含沙量下降幅度达到了一个数量级,洞庭湖对长江干流含沙量有明显的调蓄作用。流量的变化度随着与大坝距离的增加而减小,且在7~11月流量下降幅度明显。这些水文节律的变化将影响下游鱼类产卵栖息地以及滞洪区水生生物与周边植被的生长。  相似文献   

12.
论三峡工程对洞庭湖区土壤潜育化和沼泽化的影响   总被引:1,自引:0,他引:1  
皮建高 《湖南地质》1995,14(1):58-60
三峡工程完工后,在坝下长江水位抬高的季节里,顶托洞庭湖的排泄,使东、西洞庭湖地段地表、地下水位相应抬高,对这些地区土壤的潜育化和沼泽化有明显影响,农业部门应引起重视。  相似文献   

13.
洞庭湖区与城陵矶水位关联性的临界特征分析   总被引:1,自引:0,他引:1       下载免费PDF全文
采用典型测站观测资料与水力学原理相结合,分析不同情况下城陵矶水位与洞庭湖区水位关联性强弱转化的机理和临界条件以及三峡水库对其影响等问题。理论解析表明,固定流量下,湖区水位与城陵矶水位相关关系应为单调指数函数,受到区间距离、湖槽形态等多因素影响,据此提出和率定了各湖区水位的经验计算模式。利用经验计算模式对实测数据进行延展,构建了各种可能出现的湖区来流和干流水位组合下的湖区水位特征曲线族,发现湖区水位与城陵矶水位之间的关联强度存在无影响区、影响区和决定区等状态区间,通过对临界条件的定义和计算,实现了各状态区间的定量划分,并提出了各状态区间内洞庭湖区水位的估算方法。通过对三峡水库蓄水后湖床冲淤和水文条件变化的影响分析,论证了以上方法和认识在水库蓄水后的适用性。  相似文献   

14.
三峡水库运行前后洞庭湖洲滩面积变化遥感认识   总被引:1,自引:0,他引:1       下载免费PDF全文
为研究三峡水库运行前后洞庭湖洲滩面积的变化特征及原因,利用1994-2016年128个时相的多平台卫星遥感数据,结合城陵矶多年水位观测资料、洞庭湖的多年泥沙出入资料,建立水位与洲滩面积的关系曲线.结果表明,三峡水库运行后,洞庭湖水位和洲滩面积的变化幅度小于运行前,二者呈线性关系.洞庭湖洲滩面积在不同时间段线性趋势不同,总体呈先扩张后萎缩的特征.与三峡水库运行前相比,三峡水库运行后同一水位下洞庭湖洲滩面积更大;且水位越高,增幅越大.三峡水库运行前,洞庭湖泥沙处于不断淤积的状态;运行后,泥沙淤积量降低直至负数,洲滩高程以1.59 mm/a的速率降低.三峡水库的运行和湖砂开采,是影响洞庭湖洲滩面积变化的重要原因.   相似文献   

15.
长江流域“2012·07”暴雨洪水分析   总被引:1,自引:1,他引:0       下载免费PDF全文
尹志杰  刘晓音  张海燕 《水文》2014,34(5):81-87
2012年7月,长江流域先后出现4次强降雨过程,发生了4次洪水,其中朱沱江段水位超过历史实测最高记录,寸滩江段发生1981年以来最大洪水,三峡水库出现建库以来最大入库洪峰;长江上游干流宜宾至寸滩江段全线超过保证水位,中游干流石首至螺山江段及洞庭湖全线超过警戒水位。在调控"2012·07"洪水过程中,三峡水库有效降低荆江江段最高水位超过2m,洪湖江段超过1m,避免了长江荆江江段出现接近保证水位的高水位,缩短了长江中下游超警江段240km,大大减轻了中下游的防洪压力。  相似文献   

16.
洞庭湖萎缩对湖内洪水影响   总被引:1,自引:0,他引:1       下载免费PDF全文
为了更好地理解湖泊萎缩对湖内洪水过程的影响,在假定洞庭湖将继续萎缩的前提下,通过建立荆江-洞庭湖水动力模型,定量分析洞庭湖萎缩对湖内洪水的影响。研究结果表明,湖内水位及洪峰流量随湖泊面积的萎缩而增加,洪峰水位到达时刻随着湖泊萎缩而提前。若遇1996年型洪水,洞庭湖面积若从目前的2 670 km2减小至1 380 km2时,西洞庭湖及南洞庭湖内最高水位将抬高2.0 m左右,东洞庭湖水位将抬升0.4 m左右,城陵矶站点洪峰水位到达时刻将提前约11 h,洪峰流量增加约4 800 m3/s。因此,若洞庭湖湖泊面积在目前基础上(面积2 670 km2)继续萎缩,湖区特别是西洞庭湖及南洞庭湖将面临更为严峻的洪水灾害。虽然湖泊萎缩对西洞庭湖与南洞庭湖内水面坡降影响较小,但东洞庭湖内水位同时受湖泊萎缩及长江来流的影响,水面坡降发生较大变化,在距离蔡家洲80~110 km(鹿角站附近)河段水面坡降出现大幅增大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号