首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 904 毫秒
1.
The Burhan Budai Shan in NE Tibet represents a key location for examining the variable influence of the mid‐latitude westerly and monsoonal circulations on late Quaternary glaciations in this sector of the Tibetan Plateau. Our study investigates the glacial history of mountains near Lake Donggi Cona (35°17′N, 98°33′E) using field mapping in combination with 10Be surface exposure dating and numerical reconstructions of former glacial equilibrium line altitudes (palaeo‐ELA). A set of 23 new exposure ages, collected from moraines in four glacial valleys, ranges from 45 to 190 ka, indicating ice expansion during the early and middle part of the last glacial cycle, and during the penultimate and possibly an earlier Mid‐Pleistocene glaciation. Ice advances reaching 12–15 km in length occurred at around 190–180 ka (≥MIS 6), between 140–100 ka (late MIS 6/MIS 5), and 90–65 ka (late MIS 5/early MIS 4), with a maximum ELA depression of 400–500 m below the estimated modern snowline. Exposure ages from the valley headwaters further indicate a small glaciation between c. 60–50 ka (late MIS 4/early MIS 3), which was essentially restricted to the cirque areas. Significantly, we find no evidence for any subsequent glaciation in the area during MIS 2 or the Holocene period. These results indicate a diminishing trend of glaciation in the region since at least MIS 4, and corroborate the case of a ‘missing LGM’ in the more interior parts of the northeastern Tibetan Plateau. The emerging pattern suggests that the most favourable conditions for glaciation during the Late Pleistocene correspond to periods of relatively moderate cooling combined with an intermediate or rising East Asian monsoon strength.  相似文献   

2.
The glacial history of the Tagliamento morainic amphitheater (southeastern Alpine foreland, Italy) during the last glacial maximum (LGM) has been reconstructed by means of a geological survey and drillings, radiocarbon dating and pollen analysis in the amphitheater and in the sandur. Two phases of glacial culmination, separated by a distinct recession, are responsible for glacial landforms and related sediments in the outer part of the amphitheater. The age of the younger advance fits the chronology of the culmination of the last glaciation in the Alps, well established between 24 and 21 cal ka BP (20 to 17.5 14C ka BP), whereas the first pulse between 26.5 and 23 cal ka BP (22 to 21 14C ka BP), previously undated, was usually related to older (pre-LGM) glaciations by previous authors. Here, the first pulse is the most extensive LGM culmination, but is often buried by the subsequent pulse. The onset and final recession of the late Würm Alpine glaciation in the Tagliamento amphitheater are synchronous with the established global glacial maximum between 30 and 19 cal ka BP. The two-fold LGM glacial oscillation is interpreted as a millennial-scale modulation within the late Würm glaciation, caused by oscillations in inputs of southerly atmospheric airflows related to Dansgaard-Oeschger cycles. Phases of enhanced southerly circulation promoted increased rainfall and ice accumulation in the southern Alps.  相似文献   

3.
Optically stimulated luminescence dating of Late Quaternary glaciogenic sediments was undertaken in critical areas of the Himalayas of northern Pakistan in order to examine the timing of glaciation. The dates demonstrate that several glaciations occurred during the last glacial cycle. In Swat, the Grabral 2 Stade and the Kalam I Stade were dated at ca. 77 ka and ca. 38 ka, respectively. The error on the former date is large and it is conceivable that the moraines may have formed during the early part of Oxygen Isotope Stage 3 rather than during Oxygen Isotope Stage 4. The Kalam I Stade, however, clearly represents a glaciation during Oxygen Isotope Stage 3. The oldest moraines and those at the lowest altitude in the Indus valley at Shatial have an age of ca. 60 ka. These also relate to a major glacial advance during Oxygen Isotope Stage 3. A younger series of moraines, the Jalipur Tillite, and glaciofluvial sands at Liachar in the Indus valley, and moraines at Rampur–Tarshing have ages of ca. 27 ka, ca. 21–23 ka and ca. 15 ka, respectively. These dates show that glaciers also occupied parts of the Indus valley during Oxygen Isotope Stage 2. These dates and the morphostratigraphy show that glaciation in the Pakistani Himalaya was more extensive during the early part of the last glacial cycle and that the local last glacial maximum in Pakistan was asynchronous with the maximum extent of Northern Hemisphere ice sheets. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

4.
Although glacial landscapes have previously been used for the reconstruction of late Quaternary glaciations in the Central Andes, only few data exist for the Eastern Cordillera in Bolivia. Here, we present results from detailed morphostratigraphic mapping and new data of surface exposure dating (SED), optically stimulated luminescence (OSL), and radiocarbon dating (14C) from the Huara Loma Valley, Cordillera de Cochabamba (Bolivia). Discrepancies between individual dating methods could be addressed within the context of a solid geomorphic framework. We identified two major glaciations. The older is not well constrained by the available data, whereas the younger glaciation is subdivided into at least four major glacial stages. Regarding the latter, a first advance dated to ~ 29-25 ka occurred roughly contemporaneous with the onset of the global last glacial maximum (LGM) and was followed by a less extensive (re-)advance around 20-18 ka. The local last glacial maximum (LLGM) in the Huara Loma Valley took place during the humid lateglacial ~ 17-16 ka, followed by several smaller readvances until ~ 10-11 ka, and complete deglaciation at the end of the Early Holocene.  相似文献   

5.
The volcanic island of Jan Mayen, remotely located in the Norwegian-Greenland Sea, was covered by a contiguous ice cap during the Late Weichselian. Until now, it has been disputed whether parts of the island south of the presently glaciated Mount Beerenberg area were ever glaciated. Based on extensive field mapping we demonstrate that an ice cap covered all land areas and likely also extended onto the shallow shelf areas southeast and east of the island. Chronological interpretations are based on K-Ar and 40Ar/39Ar dating of volcanic rocks, cosmogenic nuclide (36Cl) surface exposure dating of bedrock and glacial erratics, and radiocarbon dating. We argue that ice growth started after 34 ka and that an initial deglaciation started some 21.5–19.5 ka in the southern and middle parts of the island. In the northern parts, closer to the present glaciers, the deglaciation might have started later, as evidenced by the establishment of vegetation 17–16 cal. ka BP. During full glaciation, the ice cap was likely thickest over the southern part of the island. This may explain a seemingly delayed deglaciation compared with the northern parts despite earlier initial deglaciation. In a broader context, the new knowledge of the Late Weichselian of the island contributes to the understanding of glaciations surrounding the North Atlantic and its climate history.  相似文献   

6.
Glacial landforms and sediments mapped in three presently unglaciated mountain massifs, the Nanhuta Shan, the Hsueh Shan and the Yushan, support the concept of repeated, multi-stage glaciations in the Taiwanese high mountain range during the late Pleistocene. New results from surface exposure dating using in situ produced cosmogenic 10Be measured in samples taken from erratic and moraine boulders in Nanhuta Shan at altitudes between 3100 and 3500 m are presented here. The results confirm independent and previously reported Optically Stimulated Luminescence (OSL) ages and 10Be exposure ages from glacial deposits in the same area and suggest a Lateglacial and early Holocene glaciation, the so called Nanhuta glacier advance with two substages at about 12–15 ka and 9.5 ka BP. The respective equilibrium line altitudes (ELA) were calculated at 3340 m and 3440 m with corresponding ELA depressions of 610 ± 100 m and 510 ± 100 m relative to the present day (theoretical) ELA, which is estimated to be at about 3950 ± 100 m in Taiwan. Large-scale erosional landforms indicate a much wider glacier extent during an earlier stage, which is not dated in Nanhuta Shan so far. Luminescence dating from near Hsueh Shan suggests an age of marine isotope stage (MIS) 4 for this stage.  相似文献   

7.
The Bayan Har Shan, a prominent upland area in the northeastern sector of the Tibetan Plateau, hosts an extensive glacial geological record. To reconstruct its palaeoglaciology we have determined 10Be exposure ages based on 67 samples from boulders, surface pebbles, and sediment sections in conjunction with studies of the glacial geology (remote sensing and field studies) and numerical glacier modelling. Exposure ages from moraines and glacial sediments in Bayan Har Shan range from 3 ka to 129 ka, with a large disparity in exposure ages for individual sites and within the recognised four morphostratigraphical groups. The exposure age disparity cannot be explained by differences in inheritance without using unrealistic assumptions but it can be explained by differences in post-depositional shielding which produces exposure ages younger than the deglaciation age. We present a palaeoglaciological time-slice reconstruction in which the most restricted glaciation, with glaciers less than 10 km long, occurred before 40–65 ka. More extensive glaciations occurred before 60–100 ka and 95–165 ka. Maximum glaciation is poorly constrained but probably even older. The Bayan Har Shan exposure age dataset indicates that glaciers on the northeastern Tibetan Plateau have remained surprisingly restricted for at least 40 ka, including the global last glacial maximum (LGM). This case of a missing LGM is further supported by high-resolution glacier modelling experiments.  相似文献   

8.
Twenty-two new radiocarbon ages from Skagit valley provide a detailed chronology of alpine glaciation during the Evans Creek stade of the Fraser Glaciation (early marine oxygen isotope stage (MIS) 2) in the Cascade Range, Washington State. Sediments at sites near Concrete, Washington, record two advances of the Baker valley glacier between ca. 30.3 and 19.5 cal ka BP, with an intervening period of glacier recession about 24.9 cal ka BP. The Baker valley glacier dammed lower Skagit valley, creating glacial Lake Concrete, which discharged around the ice dam along Finney Creek, or south into the Sauk valley. Sediments along the shores of Ross Lake in upper Skagit valley accumulated in glacial Lake Skymo after ca. 28.7 cal ka BP behind a glacier flowing out of Big Beaver valley. Horizontally laminated silt and bedded sand and gravel up to 20 m thick record as much as 8000 yr of deposition in these glacially dammed lakes. The data indicate that alpine glaciers in Skagit valley were far less extensive than previously thought. Alpine glaciers remained in advanced positions for much of the Evans Creek stade, which may have ended as early as 20.8 cal ka BP.  相似文献   

9.
Field stratigraphy and optical and radiocarbon dating of lateral moraines in the monsoon dominated Dunagiri valley of the Central Himalaya provide evidence for three major glaciations during the last 12 ka. The oldest and most extensive glaciation, the Bangni Glacial Stage-I (BGS-I), is dated between 12 and 9 ka, followed by the BGS-II glaciation (7.5 and 4.5 ka) and the BGS-III glaciation (∼1 ka). In addition, discrete moraine mounds proximal to the present day glacier snout are attributed to the Little Ice Age (LIA). BGS-I started around the Younger Dryas (YD) cooling event and persisted till the early Holocene when the Indian Summer Monsoon (ISM) strengthened. The less extensive BGS-II glaciation, which occurred during the early to mid-Holocene, is ascribed to lower temperature and decreased precipitation. Further reduction in ice volume during BGS-III is attributed to a late Holocene warm and moist climate. Although the glaciers respond to a combination of temperature and precipitation changes, in the Dunagiri valley decreased temperature seems to be the major driver of glaciations during the Holocene.  相似文献   

10.
Improved chronological control on the penultimate advance of the Cordilleran Ice Sheet in northwest Canada (the Reid glaciation) is required for a better understanding of late Quaternary palaeoclimatic and palaeoenvironmental change in eastern Beringia. However, reliable dating of glaciation events beyond the last glacial maximum is commonly hindered by a lack of directly dateable material. In this study we (i) provide the first combined minimum and maximum age constraint on the Reid glaciation at Ash Bend, its reference locale in the Stewart River valley, northwestern Canadian Cordillera, using single-grain optically stimulated luminescence dating of quartz; and (ii) compare the timing of the Reid glaciation with other penultimate ice sheet advances in the region with the aim of establishing improved glacial reconstructions in eastern Beringia. We obtain ages of 158 ± 18 ka and 132 ± 18 ka for glaciofluvial sands overlying and underlying the Reid till, respectively. These ages indicate that the Reid advance, at its reference locale, occurred during MIS 6. This precludes an earlier MIS 8 age, and suggests that the Reid advance may have been synchronous with the Delta glaciation of central Alaska, and is likely correlative with the Mirror Creek glaciation in southern Yukon.  相似文献   

11.
西藏东南部末次冰期早阶段冰川作用及其古气候意义   总被引:1,自引:1,他引:0  
西藏东南部的“古乡冰期”和“白玉冰期”是划分中国第四纪冰期的蓝本。其中,白玉冰期即末次冰期,分为早阶段和晚阶段,相对应的冰川沉积广泛分布于本区的波堆藏布谷地。已有的冰川数值年代结果显示,末次冰期晚阶段的冰川作用发生于海洋氧同位素阶段(MIS)2。然而,关于早阶段的冰进记录,目前却未有确切的年代学证据,此次冰川作用究竟发生于MIS 4还是MIS 3,是一个悬而未决的问题。在前人研究及野外地貌调查的基础上,运用光释光测年手段对波堆藏布谷地疑似形成于末次冰期早阶段的冰碛垄进行测年,年代结果介于(56.4±4.2)~(65.9±3.9) ka之间,相当于MIS 4。藏东南地区MIS 4冰期冰川作用年代与青藏高原及其周边山地具有可比性,表明该阶段冰川作用发生的普遍性。通过对比北半球低纬度地区夏季太阳辐射及亚洲季风区古气温与古降水指标记录,认为藏东南地区MIS 4冰期冰川作用可能是对北半球低纬度地区夏季太阳辐射减弱及气温下降的响应,与季风降水无关。  相似文献   

12.
Tasmania is important for understanding Quaternary climatic change because it is one of only three areas that experienced extensive mid‐latitude Southern Hemisphere glaciation and it lies in a dominantly oceanic environment at a great distance from Northern Hemisphere ice sheet feedbacks. We applied exposure dating using 36Cl to an extensive sequence of moraines from the last glacial at Mt. Field, Tasmania. Glaciers advanced at 41–44 ka during Marine oxygen Isotope Stage (MIS) 3 and at 18 ka during MIS 2. Both advances occurred in response to an ELA lowering greater than 1100 m below the present‐day mean summer freezing level, and a possible temperature reduction of 7–8°C. Deglaciation was rapid and complete by ca. 16 ka. The overall story emerging from studies of former Tasmanian glaciers is that the MIS 2 glaciation was of limited extent and that some glaciers were more extensive during earlier parts of the last glacial cycle. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

13.
Alexanderson, H., Landvik, J. Y. & Ryen, H. T. 2010: Chronology and styles of glaciation in an inter‐fjord setting, northwestern Svalbard. Boreas, 10.1111/j.1502‐3885.2010.00175.x. ISSN 0300‐9483. A 30‐m‐thick sedimentary succession at Leinstranda on the southwestern coast of Brøggerhalvøya, northwestern Svalbard, spans the two last glacial–interglacial cycles and reveals information on glacial dynamics, sea‐level changes and the timing of these events. We investigated the deposits using standard stratigraphical and sedimentological techniques, together with ground‐penetrating radar, and established an absolute chronology based mainly on optically stimulated luminescence dating. We identified facies associations that represent depositional settings related to advancing, overriding and retreating glaciers, marine and littoral conditions and periglacial surfaces. The environmental changes show an approximate cyclicity and reflect glaciations followed by high sea levels and later regression. The luminescence chronology places sea‐level highstands at 185 ± 8 ka, 129 ± 10 ka, 99 ± 8 ka and 36 ± 3 ka. These ages constrain the timing of recorded glaciations at Leinstranda to prior to c. 190 ka, between c. 170 and c. 140 ka (Late Saalian) and between c. 120 ka and c. 110 ka (Early Weichselian). The glaciations include phases with glaciers from three different source areas. There is no positive evidence for either Middle or Late Weichselian glaciations covering the site, but there are hiatuses at those stratigraphic levels. A high bedrock ridge separates Leinstranda from the palaeo‐ice stream in Kongsfjorden, and the deposits at Leinstranda reflect ice‐dynamic conditions related to ice‐sheet evolution in an inter‐fjord area. The environmental information and the absolute chronology derived from our data allow for an improved correlation with the marine record, and for inferences to be made about the interaction between land, ocean and ice during the last glacial–interglacial cycles.  相似文献   

14.
本文采用多接收电感耦合等离子体质谱法(MC-ICP-MS),对柴达木盆地一里坪15YZK01钻孔中前336.2 m含石盐地层中的7个石膏样品进行230Th定年。依据年代-深度公式,获得S1-S4盐层的成盐年代分别为733.8~716.0 ka、581.9~573.8 ka、181.6~179.3 ka和158.0~154.2 ka;含芒硝粉砂地层的年代为171.6 ka。结合前人对一里坪表面盐壳的14C测年数据,证实一里坪表面盐层S5开始形成于末次冰期。15YZK01钻孔记录的成盐期与青藏高原第四纪冰期及构造运动存在一定的对应关系:石盐层S1对应于"昆黄运动"之后的望昆冰期,以及深海氧同位素第18阶段(MIS18);S2对应于大间冰期,但是该年代比较接近望昆冰期;S3和S4石盐层及含芒硝粉砂层对应于共和运动和倒数第二次冰期MIS6;S5石盐层开始形成的时代对应于末次冰期MIS2。同时,通过对柴达木盆地多个钻孔含盐地层的测年数据进行总结,证实中更新世以来青藏高原冰川活动与柴达木盆地盐类沉积存在着一定的对应关系。柴达木盆地西北部的成盐盆地中通常发于有倒数第二次冰期和末次冰期的石盐层;而盆地东南部的察尔汗盐湖区仅发现有末次冰期以来的石盐层。柴达木盆地成盐期受到青藏高原第四纪冰期和构造运动的影响,第四纪冰期中盐湖水源补给量的减少,是导致柴达木盆地成盐的重要驱动因素。  相似文献   

15.
《Quaternary Science Reviews》2003,22(5-7):581-593
During Pleistocene mountain glaciation of the Bavarian Forest, south Germany, the Wurmian Kleiner Arbersee glacier left behind glacial landforms and sediments which are described, classified and interpreted using a combination of geomorphological, sedimentological, pedological, surveying and absolute dating methods. The latest Kleiner Arbersee glacier with a maximum length of 2600 m, a minimum width of 800 m and a thickness of 115 m formed an elongated cirque, four lateral moraines, one divided end moraine, one recessional moraine, a proglacial lake and a basin in which lake Kleiner Arbersee was established after deglaciation. Beyond the glacial limit the landscape is denuded by periglacial slope deposits which are differentiated from the glacigenic sediments based upon clast fabrics, clast shapes and sediment consolidation. Within the glacial limit sandy–gravelly to silty–gravelly tills are widely distributed, whereas glaciolacustrine sediments are restricted to a small area north of the lake. Small variations in the sand and silt fraction of the tills are explained by melt-out processes. Quartz, mica and chlorite derived from gneiss bedrock are dominant in the clay mineral spectrum of tills, but also gibbsite as a product of pre-Pleistocene weathering is present giving evidence of glacially entrained saprolites. An IRSL-date of glaciolacustrine sediments (32.4±9.4 ka BP) confirms the Wurmian age for the glaciation and radiocarbon ages of the basal sediments (12.3±0.4 and 12.5±0.2 ka BP uncalibrated) in the lake Kleiner Arbersee prove that the basin was ice-free before the Younger Dryas.  相似文献   

16.
Our knowledge about the glaciation history in the Russian Arctic has to a large extent been based on geomorphological mapping supplemented by studies of short stratigraphical sequences found in exposed sections. Here we present new geochronological data from the Polar Ural Mountains along with a high‐resolution sediment record from Bolshoye Shchuchye, the largest and deepest lake in the mountain range. Seismic profiles show that the lake contains a 160‐m‐thick sequence of unconsolidated lacustrine sediments. A well‐dated 24‐m‐long core from the southern end of the lake spans the last 24 cal. ka. From downward extrapolation of sedimentation rates we estimate that sedimentation started about 50–60 ka ago, most likely just after a large glacier had eroded older sediments from the basin. Terrestrial cosmogenic nuclide (TCN) exposure dating (10Be) of boulders and Optically Stimulated Luminescence (OSL) dating of sediments indicate that this part of the Ural Mountains was last covered by a coherent ice‐field complex during Marine Isotope Stage (MIS) 4. A regrowth of the glaciers took place during a late stage of MIS 3, but the central valleys remained ice free until the present. The presence of small‐ and medium‐sized glaciers during MIS 2 is reflected by a sequence of glacial varves and a high sedimentation rate in the lake basin and likewise from 10Be dating of glacial boulders. The maximum extent of the mountain glaciers during MIS 2 was attained prior to 24 cal. ka BP. Some small present‐day glaciers, which are now disappearing completely due to climate warming, were only slightly larger during the Last Glacial Maximum (LGM) as compared to AD 1953. A marked decrease in sedimentation rate around 18–17 cal. ka BP indicates that the glaciers then became smaller and probably disappeared altogether around 15–14 cal. ka BP.  相似文献   

17.
Dehnert, A., Preusser, F., Kramers, J. D., Akçar, N., Kubik, P. W., Reber, R. & Schlüchter, C. 2010: A multi‐dating approach applied to proglacial sediments attributed to the Most Extensive Glaciation of the Swiss Alps. Boreas, Vol. 39, pp. 620–632. 10.1111/j.1502‐3885.2010.00146.x. ISSN 0300‐9483. The number and the timing of Quaternary glaciations of the Alps are poorly constrained and, in particular, the age of the Most Extensive Glaciation (MEG) in Switzerland remains controversial. This ice advance has previously been tentatively correlated with the Riss Glaciation of the classical alpine stratigraphy and with Marine Isotope Stage (MIS) 6 (186–127 ka). An alternative interpretation, based on pollen analysis and stratigraphic correlations, places the MEG further back in the Quaternary, with an age equivalent to MIS 12 (474–427 ka), or even older. To re‐evaluate this issue in the Swiss glaciation history, a multi‐dating approach was applied to proglacial deltaic ‘Höhenschotter’ deposits in locations outside the ice extent of the Last Glacial Maximum. Results of U/Th and luminescence dating suggest a correlation of the investigated deposits with MIS 6 and hence with the Riss Glaciation. Cosmogenic burial dating suffered from large measurement uncertainties and unusually high 26Al/10Be ratios and did not provide robust age estimates.  相似文献   

18.
玉龙雪山冰川沉积序列OSL定年   总被引:3,自引:3,他引:0  
位于青藏高原东南缘的玉龙雪山分布有欧亚大陆纬度最低的海洋型冰川,其主峰及周边地区保存了大量清晰完整的第四纪冰川遗迹。研究该区第四纪冰川作用遗迹及其冰川作用史,具有重要的理论与实际价值。应用光释光(OSL)测年技术对玉龙雪山冰川沉积物进行了定年,结合前人研究资料,重建玉龙雪山冰川作用史。研究结果表明:玉龙雪山东麓的末次冰期冰碛物主要形成于晚更新世末次冰期最盛时期,其平均年代约在25ka,西麓末次冰期冰碛物形成年代约为50ka,对应于深海氧同位素3阶段中期(MIS3b)。而倒数第二次冰期的年代在240ka左右,处于中更新世晚期,对应于MIS8阶段,当时玉龙雪山存在多条复式山谷冰川。该研究可为玉龙雪山第四纪冰川作用历史的重新认识以及光释光测年技术在该区的应用提供基础资料。  相似文献   

19.
The cumulative effect of repeated extensive glaciations represents a poorly constrained component in the understanding of landscape evolution in mid-latitude mountain ranges such as the Alps. Timing, extent, and paleo-climatic conditions of these glaciations are generally poorly understood due to the often-fragmentary character of terrestrial Quaternary records. In this context, the sedimentary infills of subglacial basins may serve as important archives to complement the Quaternary stratigraphy over several glacial–interglacial cycles. In this study, sedimentary facies, valley-fill architecture, and luminescence dating are used to describe nine erosional and depositional cycles (Formations A–I) in the Lower Glatt valley, northern Switzerland. These cycles can be related to the ‘Birrfeld’ Glaciation (~ MIS2), the ‘Beringen’ Glaciation (~ MIS6), and up to three earlier Middle Pleistocene glaciations that can be tentatively correlated to the regional glaciation history. Evidence suggests that deep bedrock trough incision and/or partial re-excavation last occurred mainly during the ‘Beringen’ and ‘Habsburg’ Glaciations. Second-order, ‘inlaid’ glacial basins document separate glacier re-advances during the Beringen Glaciation. The arrangement of subglacial basins in the Glatt valley with different sub-parallel or bifurcating bedrock troughs, re-excavated segments, and inlaid basins document changes in the magnitude and the spatial focus of subglacial erosion over time. The Glatt valley may thus serve as a key example for the glacial landscape evolution in many other repeatedly glaciated forelands.  相似文献   

20.
A 10.5 m core from Changeable Lake in the Severnaya Zemlya Archipelago just north of the Taymyr Peninsula intersects ca. 30 cm of diamicton at its base, interpreted as a basal till. Because the upper 10.13 m of this core consists of non‐glacial sediments, a maximum numeric age for these non‐glacial sediments would provide a clear lower limit to the timing of the last glaciation in the area of Changeable Lake. Radiocarbon (14C) dating of several materials from this core yielded widely scattered results. Consequently we applied photonic dating to sediments above the diamicton. The experimental single‐aliquot‐regenerative (SAR) dose fine‐grain method was applied to two samples, using the ‘double SAR’ approach. With one exception, these fine‐grain SAR results and the results of application of the SAR method to sand‐sized quartz grains from two samples, at ca. 9.95 m and ca. 10.05 m depth, are discrepant with age estimates from the multi‐aliquot infrared‐photon‐stimulated luminescence (IR‐PSL) method applied to fine grains. Multi‐aliquot IR‐PSL dating of 10 samples produces ages increasing monotonically from ca. 4 ka at 2 m to 53 ± 4 ka at 9.97 m. These self‐consistent multi‐aliquot IR‐PSL ages, along with limiting 14C ages of >47 ka at ca. 10 m, provide direct evidence that glacial ice did not advance over this lake basin during the Last Glacial Maximum, and thus delimit the northeastern margin of the Barents–Kara Sea ice‐sheet to somewhere west of this archipelago. The last regional glaciation probably occurred during marine isotope stage (MIS) 4 or earlier. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号