首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
青海高原冻土退化的若干事实揭示   总被引:35,自引:14,他引:21  
利用地理信息系统技术和数理统计学方法,分析了青海高原冻土分布的时空演变规律,揭示了其退化的若干事实.研究表明:季节冻土和多年冻土在青海高原分布十分广泛;季节冻土具有显著的年内变化特征,冻土的融化过程通常较冻结过程复杂的多,且与地形因子和土壤特性等具有密切的关系.近几十年来,冻土表现为地温显著升高、冻结持续日数缩短、最大冻土深度减小和多年冻土面积萎缩、季节冻土面积增大以及冻土下界上升等总体退化的趋势.  相似文献   

2.
青藏高原冻土区活动层厚度分布模拟   总被引:16,自引:10,他引:6  
活动层夏季融化、冬季冻结的近地表土(岩)层,是冻土地区热力动态最活跃的岩层,在冻土研究中有着重要意义.根据青藏高原地区80个气象观测台站1991-2000年的地面温度观测资料结合数字高程模型,计算出青藏高原冻土区的地面冻结指数和地面融化指数,然后应用斯蒂芬公式分别得到多年冻土区的季节融化深度和季节冻土区的季节冻结深度.  相似文献   

3.
在多年冻土区进行煤矿井工开采,冻土稳定性是影响煤矿开采的制约性因素。采用数值模拟方法分析煤矿井工开采对冻土环境的影响。研究结果表明,最大融深随时间呈增大趋势;沿井壁深度,最大融深逐年增加,在多年冻土与季节冻土的交界附近,最大融深增加较快。由于开采巷道横截面较小,在有效的冻土保护措施下,井壁周围多年冻土温度升高幅度不会太大,因而井工开采会对井壁周围多年冻土造成一定影响,但不会造成大面积冻土的融化变形。   相似文献   

4.
青藏铁路普通路基下部冻土变化分析   总被引:5,自引:2,他引:3  
吴青柏  刘永智  于晖 《冰川冻土》2007,29(6):960-968
高温高含冰量冻土地区,青藏铁路采取了冷却路基、降低多年冻土温度的工程措施.然而青藏铁路仍有大量路段未采用任何工程措施,因此修筑普通路基后冻土变化也是普遍关心的问题.根据青藏铁路普通路基下部土体温度监测的近期结果,分析了季节冻土区、已退化多年冻土区和多年冻土区路基下部冻土变化特征.结果表明,不同区域修筑普通路基,其下部土体温度、最大季节冻结深度、多年冻土上限等存在较大的差异.在季节冻土和已退化多年冻土区,右路肩下部(阴坡)已形成冻土隔年层;在多年冻土强烈退化区,其路基下部形成融化夹层;在高温多年冻土区,其路基下部上限存在抬升和下降,上限附近土体温度有升高的趋势.在低温多年冻土区,其路基下部上限全部抬升,上限附近土体存在"冷量"积累,有利于路基下部多年冻土热稳定性.因此,低温多年冻土区修筑普通路基后,冻土变化基本是向着有利于路基稳定性的方向发展,在其它地段修筑普通路基,冻土变化是向着不利于路基稳定性的方向发展的.特别是阴阳坡太阳辐射差异,导致了土体热状态和多年冻土上限形态产生较大的差异,这种差异将会对路基稳定性产生一定的影响.  相似文献   

5.
青藏公路下伏多年冻土的融化分析   总被引:14,自引:6,他引:8  
基于青藏公路沿线高温冻土区和低温冻土区2组地温观测孔5 a的地温观测资料, 研究了路基下伏多年冻土的融化状态, 定量分析了进入路基下多年冻土内的热状况. 结果表明: 路基近地表地温明显高于对应天然地表下的地温, 路基近地表经历的融化期长于对应天然地表, 高温冻土区路基内已形成贯穿融化夹层;进入高温冻土区路基下伏多年冻土内的热收支处于持续不断的吸热状态, 进入低温多年冻土区的热收支也呈现出吸热明显大于放热的周期性变化;高温冻土区接近0℃的地温及其持续不断的热积累是引起下伏多年冻土不断融化的主要原因. 低温冻土区进入多年冻土的热积累暂时以增高地温耗热为主, 随着地温的增高, 低温冻土区也可能发生强烈的冻土融化.  相似文献   

6.
青藏铁路格拉段多年冻土上限的确定方法   总被引:1,自引:0,他引:1  
影响多年冻土地区建筑物稳定性的主要部位是冻土上限附近及其上部的季节融化层.准确确定多年冻土上限的位置及掌握其变化规律是冻土地区工程勘察的基本工作和重要内容.介绍了青藏铁路多年冻土上限的勘察和确定方法.  相似文献   

7.
杨建平  杨岁桥  李曼  谭春萍 《冰川冻土》2013,35(6):1436-1445
冻土的脆弱性是指冻土对气候变化的脆弱性,是冻土易受气候变化,尤其是温度变化不利影响的程度. 研究冻土对气候变化的脆弱性是提高对自然生态系统、工程系统、生态-社会-经济系统对冻土变化影响的脆弱性的认知,科学适应冻土变化诸种影响的前提和基础. 基于科学性与实际相结合的原则、全面性与主导性原则、可操作性原则,以暴露度、敏感性与适应能力为标准,遴选构建了我国冻土脆弱性评价指标体系. 借助RS与GIS技术平台,使用空间主成分方法,构建了冻土脆弱性指数模型,在区域尺度上综合评价了冻土的脆弱性. 依据自然分类法,将冻土脆弱性分为潜在脆弱、轻度脆弱、中度脆弱、强度脆弱与极强度脆弱5级. 结果表明:总体上我国冻土以中度脆弱为主,但青藏高原多年冻土对气候变化尤为脆弱;冻土脆弱性具有显著的地域分布特点,青藏高原、西部高山、东北多年冻土区脆弱性相对较高,季节冻土区相对较低. 与季节冻土相比,多年冻土对气候变化更脆弱. 在当前升温幅度条件下,冻土脆弱程度主要取决于冻土的地形暴露与冻土对气候变化的适应能力.  相似文献   

8.
冻土的力学性质及研究现状   总被引:18,自引:1,他引:17  
齐吉琳  马巍 《岩土力学》2010,31(1):133-143
中国具有广大的季节冻土和多年冻土区,在冻土地区进行工程建设,就必须深入研究冻土的力学特性,以确保冻土地基上工程建筑物的稳定性。本文首先,简要介绍了我国冻土的分布状况和冻土区别于融土的基本特性,广义的冻土力学可分为冻融作用和已冻土力学性质两方面,冻胀、融沉和冻融循环引起的土力学性质的变化属于冻融作用的范畴。对于冻胀的研究较为深入,人们先后提出了多个理论来解释冻胀产生的机制,有的应用于计算分析中。对融沉的研究尽管具有较长的历史,但是多数停留在经验方法上,融化固结理论目前还有较大的局限性,因此提出一方面可以用人工神经网络法提高经验方法的精度和适用范围,另一方面应当发展融化固结大变形理论;冻融循环可以改变土的力学性质,介绍了作者的最近研究进展。针对已冻土的力学特性,从3方面进行了分析。冻土的强度主要沿用融土的强度理论,很难反映高应力下的压融现象;冻土动力学特性主要针对温度对动力学参数的影响,近年来冻土层对场地动力响应的影响越来越受到重视;冻土的本构关系多集中在蠕变研究,以经验公式法为主。最后,分析了多年冻土地区工程变形所涉及的物理力学过程。  相似文献   

9.
以北极规划输气管道工程为依托,建立埋地管道与冻土热交换相互作用数值计算模型,探究了埋地管道在连续多年冻土区、非连续多年冻土区和季节冻土区内,按照不同操作温度(5、-1和-5℃)运行情况下管道周围冻土温度演化过程.计算结果表明:同一区域不同管温对冻土上限值影响差异较大,尤其是在非连续多年冻土区,无论管道是正温输送还是负温输送,由于管道的运营,极大地影响了冻土上限值.5℃正温管道将导致冻土上限下降1~3倍管径;-1℃和-5℃负温管道将有助于提高冻土人为上限.建议在连续多年冻土区管道采用-1℃输送温度;在非连续多年冻土区冬季采用-1℃输送温度,夏季可以是正温,接近环境大气温度,但全年输气平均温度要小于0℃;在季节冻土区,若按照负温输送,反而容易引起管基土冻胀,建议输气温度不作特别控制,与温带地区管道类似,正温输送.希望能够为北极多年冻土区天然气管道建设提供新的思路.  相似文献   

10.
青藏铁路冻土区路桥过渡段沉降原因分析   总被引:4,自引:4,他引:0  
青藏铁路开通近10 a以来,各类冻土工程稳定,保证了列车平稳安全的运行。然而,青藏铁路工程也不可避免出现了一些病害问题。现场调查资料表明,冻土区路桥过渡段下沉现象较为严重。通过冻土区路桥过渡段的沉降特点和工程地质条件综合分析,结果表明:地表水或冻结层上水水热侵蚀,引起人为多年冻土上限下降、高含冰量冻土层融化,致使路基发生强烈的融化下沉。建议这类工程病害应采取主动降温措施增强地基土的冻结能力,并加强防排水设施和改善地表水条件,消除水热侵蚀所产生的融化下沉。研究结果为青藏铁路路桥过渡段的稳定性和养护提供了科学依据。  相似文献   

11.
东北冻土区积雪深度时空变化遥感分析   总被引:5,自引:5,他引:0  
积雪作为冰冻圈的重要组成部分,对地面有保温作用,在消融时又吸收热量降低地面温度,影响冻土发育,对气候的变化十分敏感。利用微波遥感数据1979-2014年逐日中国雪深长时间序列数据集,采用GIS空间分析和地学统计方法,分析了东北冻土区积雪深度的时空变化规律及其异常变化。结果表明,东北冻土区多年平均雪深为2.92 cm,年平均雪深最高值出现在岛状多年冻土区,最低值出现在季节冻土区。东北冻土区年平均积雪深度变化以减少为主,占区域面积的39.77%,减少速率为0.07 cm·(10a)-1。东北冻土区年平均积雪深度在1986年发生突变,开始出现减少的趋势,这与气温突变年份较为吻合。受地形和气温变化影响,年平均积雪深度减少的敏感区域主要发生在岛状多年冻土区。气温是影响东北冻土区年平均积雪深度变化最主要的因素,降水量、风速、湿度、日照时数对积雪深度均有影响。季节冻土区积雪深度对气候的敏感性要大于多年冻土区。  相似文献   

12.
在多年冻土地区铁路路基工程中,人为上限(即季节最大融化深度)的合理计算对断面形式的合理设计具有重要的意义。人为上限受很多因素影响,通常可大致分二类:(1)构筑物及其附近土体特性指标及构筑物几何形状;(2)外界(上、下边界和地中热流)条件。 然而,青藏高原多年冻土地区腹部地带又具有下述特点:年平均气温低(-5—-7℃),年内负温期长达7个月以上,年内季节冻深超过季节融深,年平均地温较季节冻土区要低得多,在融化过程中由融化界面传入冻土中的热量成为不可忽视的影响因素。因此,必须分析其主要因素,以便使路  相似文献   

13.
在气候变暖背景下,多年冻土退化加剧,高温冻土将会在更大范围出现,保护冻土原则的适用性将受到经济、技术、环保合理性的挑战.在条件适宜高温冻土区,根据建筑结构和基础类型,采用预先融化技术(简称预融技术)处理冻土地基可在经济合理的前提下,保证工程的安全可靠性和长期稳定性.回顾了国内外冻土区预先融化技术的经验,总结和展望了预融技术在工程设计、施工及运行中的三个基本步骤,包括施工前多年冻土的融化、已融土的密实和固结,工程运行期间保持融化和防止冻胀措施的实施.预融技术主要利用蒸汽,热、冷水的对流换热和电流热效应,以及改变地表热状况来融化下伏多年冻土.保持融化的方法主要包括改变地表反射率和地基土的结构,融土保温以及利用主动和被动升温传热装置等(如热管技术).结合中国东北的一些预融技术运用实例,如漠河机场工程等,简要评述了预融技术的应用效果.  相似文献   

14.
基于自制的冻土-桩动力相互作用模型试验系统,对-5℃、-3℃及上层融化多年冻土中模型桩基进行了水平向动力试验,主要研究了冻结及上层融化冻土中模型桩基的桩头位移-荷载关系、桩基水平动刚度变化及桩身弯矩分布情况。结果表明:冻土中桩基动力响应特性与土体温度密切相关;正冻土中桩基有较大的侧向刚度,当冻土与桩接触面出现较大间隙时,桩头位移-荷载曲线呈反S形;桩基动力性能随多年冻土温度降低将有所改善;当冻土上部出现融化层时,桩基动响应变化显著,桩头动刚度明显减小,桩基在较小动载下可发生较大侧向位移,同时桩身最大弯矩值较正冻土中偏大,且此弯矩点埋深较大。对于多年冻土区桩基工程,应特别重视夏季上层冻土融化时可能出现的震害。  相似文献   

15.
冻土是冰冻圈要素的重要组成部分,是气候变化最敏感的区域之一,冻土环境变化引起水热条件差异是引发植被生态系统能量交换、水循环和碳循环的重要因素。水分利用效率(WUE)是联系生态系统碳循环与水循环关系的关键,反映了植被生态系统对冻土退化的调整和适应策略。本研究基于MODIS的植被总初级生产力(GPP)和蒸散发(ET)产品,估算并分析了2000—2020年祁连山多年冻土与季节冻土区植被GPP/ET/WUE空间变化特征,并结合自适应帕尔默干旱指数(scPDSI),研究了多年冻土区与季节冻土区植被WUE对干旱的响应。结果表明:2000—2020年祁连山地区植被WUE、GPP和ET的平均值分别为0.56 gC·m-2·mm-1,307.79 gC·m-2和443.02 mm,三者空间分布特征均为东南高、西北低;WUE高于0.8 gC·m-2·mm-1的植被主要分布在季节冻土区,WUE低于0.4 gC·m-2·mm-1的植被主要分布在多年冻土区。近...  相似文献   

16.
黄河源区冻土特征及退化趋势   总被引:17,自引:8,他引:9  
黄河源区位于青藏高原多年冻土区东北部边缘地带,是季节冻土、岛状多年冻土和在大片连续多年冻土并存地带.多年冻土层在垂向分布上有衔接状和不衔接状两大类.不衔接状又可分为浅埋藏(8m)、深埋藏(8m)和双层多年冻土等形式.从20世纪80年代以来,源区气温以0.02℃.a-1增温率持续上升,人类经济活动日益增强,导致冻土呈区域性退化.多年冻土下界普遍升高50~80m,最大季节冻深平均减少了0.12m,浅层地下水温度上升0.5~0.7℃.冻土退化总体趋势是由大片状分布逐渐变为岛状、斑状分布,多年冻土层变薄,冻土面积缩小,融区范围扩大.部分多年冻土岛完全消失变为季节冻土.  相似文献   

17.
青藏铁路路基下融化夹层特征及其对路基沉降变形的影响   总被引:1,自引:0,他引:1  
基于青藏铁路多年冻土区路基地温与变形现场监测资料, 研究了青藏铁路路基下融化夹层特征及其对路基沉降变形的影响. 结果表明:在已有监测场地中, 青藏铁路沿线天然场地融化夹层发育较少, 而路基下融化夹层发育较多. 低温冻土区路基下融化夹层能够逐渐完全回冻使其消失, 高温冻土区大部分路基下融化夹层有进一步发展的趋势. 当融化夹层下部为高含冰量冻土时, 融化夹层与路基沉降变形关系密切, 路基易产生较大的沉降变形; 当融化夹层下部为低含冰量冻土时, 路基沉降变形较小.  相似文献   

18.
黄河源区冻土对植被的影响   总被引:8,自引:1,他引:7  
黄河源区由于近年来气候变化的影响,打破了高寒植被与冻土环境之间稳定的适应性关系,由此引发了一系列生态环境退化的现象.在黄河源区多年野外工作的基础上,定量分析了冻土与植被之间的关系.研究表明:多年冻土埋深通过影响浅层土壤含水量影响植被生长的,多年冻土的埋深与浅层土壤含水率和植被的覆盖率具有良好的相关性规律.冻土埋深<2 m时,冻土埋深决定浅层土壤含水率,成为影响植被的生长主要因素;埋深>2 m时,冻结层上水水位低、补给量少,冻结层上水水量小,毛细上升高度不能达到植被根系分布的浅层土壤中,植被生长环境干旱化,多数植被生长受限制,这时只有少量根系发达的耐旱植被存活,覆盖率小,一般不超过35%.因此,2 m的多年冻土埋深为“生态冻土埋深”.近20 a来,黄河源区地温长期处于增温状态,多年冻土出现表层融化,形成深埋的或少冰的冻土等现象;部分地带完全融化消失,连续多年冻土变成不连续冻土或岛状冻土.多年冻土退化后,土壤含水量减少,导致植被物种更替、“黑土滩”等退化现象.  相似文献   

19.
东北多年冻土最大季节融化深度的确定   总被引:4,自引:1,他引:4  
多年冻土地区的最大季节融化深度,亦即天然上限深度,是多年冻土地区铁路工程设计的主要数据之一。因此确定上限深度及其变化,是多年冻土地区工程地质勘测工作中的一个重要内容。 确定上限深度的基本方法,是在最大融化深度达到时间(9、10月份),通过现场勘探或测温直接确定。但由于东北多年冻土地区多为衔接的多年冻土,不衔接的仅存在于大中河流的河床底部,大河岸边,岛状多年冻土区邻近季节冻土区的边缘地带,以及经过人类活动  相似文献   

20.
黄河源区高寒植被主要特征初探   总被引:3,自引:2,他引:1  
位于青藏高原东北部多年冻土与季节冻土交错带的黄河源区高寒生态环境及其变化一直备受关注. 气候变暖、冻土退化条件下,为了解黄河源区不同冻土区植被状况,在源区布设了4个场地:查拉坪(CLP,源区南部连续低温多年冻土区);扎陵湖南岸(ZLH,源区中南部岛状多年冻土区);麻多乡(MDX,源区西部的不连续多年冻土区);鄂陵湖北岸(ELH,源区中北部季节冻土区). 结合植被调查和场地监测,分析了源区各冻土区植被的差异. 结果显示:总体上低温多年冻土区植被盖度、多样性指数高,表现为连续多年冻土区(查拉坪)>不连续多年冻土区(麻多乡)>季节冻土区(鄂陵湖北岸),其中岛状多年冻土区(扎陵湖南岸)例外,该场地平均盖度最低,多样性指数介于查拉坪和麻多乡之间,局部植被退化较严重. 均匀度指数均表现为扎陵湖南岸最高,查拉坪次之. 地上生物量调查结果显示:查拉坪>麻多乡>扎陵湖南岸>鄂陵湖北岸,且鄂陵湖北岸出现指示植被退化的植物. 尽管黄河源区高寒植被研究为理解冻土退化条件下的生态环境变化提供了一些基础数据,评估气候变化和冻土退化的生态和水文效应需要更系统的调查和监测研究.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号