首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Tunnel channels in southeast Alberta are attributed to erosion by channelized, subglacial meltwater flows. An anabranching tunnel channel network dissects the preglacial drainage divide of the ancestral Milk River. Channel morphology and landform associations are used to evaluate competing hypotheses of tunnel channel formation. Mechanisms that invoke subaerial channel incision, direct glacial erosion or steady state, time-transgressive erosion at the ice margin cannot explain convex-up longitudinal channel profiles, anabranching channel networks or confinement to the preglacial drainage divide. Results conclude that the tunnel channel network in southeast Alberta represents late-stage erosion by a channelised subglacial flow of catastrophic dimensions. Interpretations for this tunnel channel network are in agreement with conclusions obtained for the regional subglacial landform assemblage.  相似文献   

2.
Tunnel valleys are elongated incisions formed by meltwater underneath ice sheets that rest on unlithified bed materials. The formation of tunnel valleys is commonly believed to be influenced by the properties of the preglacial bed; however, a detailed analysis of this relationship has not been performed to date. To determine whether tunnel‐valley location and morphology are controlled by the substratum, a 3D seismic survey was combined with lithological data from the Wadden Sea area in the Dutch sector of the southern North Sea Basin. This study shows that tunnel‐valley floors often coincide with seismic reflectors that mark lithological boundaries in the substratum, and that the location and depth of tunnel‐valley incision vary as a function of the properties of the substratum as expressed by lithological and geophysical‐log variations. Tunnel valleys are incised preferentially into fine‐grained layers, while the top of coarser‐grained units commonly coincide with the tunnel‐valley floor. These observations indicate that the geometry and orientation of tunnel valleys in the study area are controlled by contrasts in lithological properties of the bed. An explanation for the observed lithological control might lie in large water‐pressure differences over fine‐grained and impermeable layers along the flow‐path of subglacial meltwater flowing through the substratum, from areas with high pore‐water pressure towards areas with relatively low pressures in the vicinity of meltwater channels. These pressure differences might have been sufficient for the fracturing and fluidization of these layers. The concepts presented here have implications for existing genetic models and for the prediction of tunnel‐valley morphology in understudied areas.  相似文献   

3.
《Geodinamica Acta》2013,26(3):177-195
Pluridisciplinary fieldwork highlights features generated by an extended ice-sheet in the Djado Basin during the Hirnantian. Two glacial palaeovalley systems associated with glacial pavements and separated by thin glaciomarine interstadial series are revealed. Rigid glacial pavements characterised by abrasion erosion are differentiated from soft glacial pavements characterised by soft-bed deformation. Glacial pavements are associated with subglacial bedforms such as megaflutes, flutes and meltwater channels. They are also associated with clastic dykes and glaciotectonic structures such as deformed flutes, subglacial folds and duplex structures. This record demonstrates that ice was warm-based and flowed rapidly on the highfluid- pressure soft substrate, as for ice streams. The erosional glacial landscape is typical of areal scouring, and the depositional sediment-landform assemblage corresponds to subglacial processes. These data afford a reconstruction of glacial events which is consistent with the two polyphased low-frequency glacial cycles inferred in previous studies. During interstadial and postglacial stages, grabens, normal faults, radial extensional microfaults and extensional dihedrons were generated by extensional tectonics during glacio-isostatic rebound. In sectors highly affected by this tectonics, doleritic dykes reflect a basal crust fusion increase induced by adiabatic decompression.  相似文献   

4.
A combination of a dense reflection seismic grid and up to 50‐m‐long records from sediment cores and cone penetration tests was used to study the geometry and infill lithology of an E–W‐trending buried tunnel valley in the south‐eastern North Sea. In relation to previously known primarily N–S‐trending tunnel valleys in this area, the geometry and infill of this 38‐km‐long and up to 3‐km‐wide valley is comparable, but its E–W orientation is exceptional. The vertical cross‐section geometry may result from subglacial sediment erosion of advancing ice streams and secondary incision by large episodic meltwater discharges with high flow rates. The infill is composed of meltwater sands and reworked till remnants on the valley flanks that are overlain by late Elsterian rhythmic, laminated, lacustrine fine‐grained sediments towards the centre of the valley. A depression in the valley centre is filled with sediments most likely from the Holsteinian transgression and a subsequent post‐Holsteinian lacustrine quiet‐water setting. The exceptional axis orientation of this tunnel valley points to a regional N–S‐oriented ice front during the late Elsterian. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
The morphology of the Alpine and adjacent landscapes is directly related to glacial erosion and associated sediment transport. Here we report the effects of glacio-hydrologic erosion on bedrock topography in the Swiss Plateau. Specifically, we identify the presence of subsurface valleys beneath the city of Bern and discuss their genesis. Stratigraphic investigations of more than 4,000 borehole data within a 430 km2-large area reveal the presence of a network of >200 m-deep and 1,000 m-wide valleys. They are flat floored with steep sided walls and are filled by Quaternary glacial deposits. The central valley beneath Bern is straight and oriented towards the NNW, with valley flanks more than 20° steep. The valley bottom has an irregular undulating profile along the thalweg, with differences between sills and hollows higher than 50–100 m over a reach of 4 km length. Approximately 500 m high bedrock highlands flank the valley network. The highlands are dissected by up to 80 m-deep and 500 m-broad hanging valleys that currently drain away from the axis of the main valley. We interpret the valleys beneath the city of Bern to be a tunnel valley network which originated from subglacial erosion by melt water. The highland valleys served as proglacial meltwater paths and are hanging with respect to the trunk system, indicating that these incipient highland systems as well as the main gorge beneath Bern formed by glacial melt water under pressure.  相似文献   

6.
Western Lake Geneva (le Petit-Lac) was filled during the Quaternary over a major erosion surface truncating the cemented, folded and thrusted Tertiary sediments of the foreland Alpine basin. The carving of the lake occurred during Quaternary glaciations with ice originating from the Rhone valley catchment basin flowing in two branches oriented SW and NE over the Swiss Plateau. Lake Geneva is situated on the South-Western branch of this paleo ice-cap.For the first time, a dense grid of high-resolution seismic profiles (airgun 5-inch3, airgun 1-inch3 and echosounder) has imaged the whole Quaternary sequence, providing a paleoenvironmental interpretation and a detailed reconstruction of the Rhone glacier retreat stages during glacial events that led to the formation of western Lake Geneva.The Quaternary sequence filling up the bedrock valley is exceptionally thick with up to 220 m of deposits and consists of glacial, glacio-lacustrine and lacustrine sediments. Fourteen seismic units have been defined (units U1–U14). Unit U1 represents the remnants of glacial deposits older than the last glacial cycle, preserved in the deepest part of the lake and in secondary bedrock valleys. Unit U2 represents gravel and sands deposited by meltwater circulation at the bottom of the glacial valley. Unit U3 is a thick, stratified unit marking the beginning of the deglaciation, when the Rhone glacier became thinner and buoyant and allowed the formation of a subglacial lake. Younger glacial units (units U4, U5, U7, U9, U11) are acoustically chaotic sediments deposited subglacially under the water table (undermelt tills), while the glacier was thinning. These glacial units are bounded by synform erosion surfaces corresponding to readvances of the glacier.The transition from a glacial to a glacio-lacustrine environment started with the appearance of a marginal esker-fan system (unit U6). Esker formation was followed by a small advance–retreat cycle leading to the deposition of unit U7. Then, the ice front receded and stratified sediments were deposited in a glacio-lacustrine environment (units U8, U10 and U12). This retreat was punctuated by two readvances – Coppet (unit U9) and Nyon (unit U11) – producing large push moraines and proglacial debris flows. Finally, a lacustrine environment with a characteristic lake current pattern and mass movement deposits took place (units U13 and U14).Except for unit U1, the sedimentary sequence records the Würmian deglaciation in a fjord-like environment occupied by a tidewater glacier with a steep, calving ice front. The presence of an esker-fan system reveals the importance of subglacial meltwater flow in continental deglaciation. Push-moraines and erosion surfaces below the glacier indicate at least 5 readvances during the deglaciation thus revealing that oscillations of ice front are the key process in deglaciation of perialpine fjord-lakes. The dating of these continental glacier fluctuations would allow correlation with oceanic and ice records and help to understand the climatic mechanisms between oceans and continents.  相似文献   

7.
The Wicklow Trough is one of several Irish Sea bathymetric deeps, yet unusually isolated from the main depression, the Western Trough. Its formation has been described as proglacial or subglacial, linked to the Irish Sea Ice Stream (ISIS) during the Last Glacial Maximum. The evolution of the Wicklow Trough and neighbouring deeps, therefore, help us to understand ISIS dynamics, when it was the main ice stream draining the former British–Irish Ice Sheet. The morphology and sub-seabed stratigraphy of the 18 km long and 2 km wide Wicklow Trough is described here from new multibeam echosounder data, 60 km of sparker seismic profiles and five sediment cores. At a maximum water depth of 82 m, the deep consists of four overdeepened sections. The heterogeneous glacial sediments in the Trough overlay bedrock, with indications of flank mass-wasting and subglacial bedforms on its floor. The evidence strongly suggests that the Wicklow Trough is a tunnel valley formed by time-transgressive erosional processes, with pressurised meltwater as the dominant agent during gradual or slow ice sheet retreat. Its location may be fault-controlled, and the northern end of the Wicklow Trough could mark a transition from rapid to slow grounded ice margin retreat, which could be tested with modelling.  相似文献   

8.
The development of soft‐sediment deformation structures in clastic sediments is now reasonably well‐understood but their development in various deltaic subenvironments is not. A sedimentological analysis of a Pleistocene (ca 13·1 to 15 10Be ka) Gilbert‐type glaciolacustine delta with gravity‐induced slides and slumps in the Mosty‐Danowo tunnel valley (north‐western Poland) provides more insight, because the various soft‐sediment deformation structures in these deposits were considered in the context of their specific deltaic subenvironment. The sediments show three main groups of soft‐sediment deformation structures in layers between undeformed sediments. The first group consists of deformed cross‐bedding (inclined, overturned, recumbent, complex and sheath folds), large‐scale folds (recumbent and sheath folds) and pillows forming plastic deformations. The second group comprises pillar structures (isolated and stress), clastic dykes with sand volcanoes and clastic megadykes as examples of water‐escape structures. The third group consists of faults (normal and reverse) and extensional fissures (small fissures and neptunian dykes). Some of the deformations developed shortly after deposition of the deformed sediment, other structures developed later. This development must be ascribed to hydroplastic movement in a quasi‐solid state, and due to fluidization and liquefaction of the rapidly deposited, water‐saturated deltaic sediments. The various types of deformations were triggered by: (i) a high sedimentation rate; (ii) erosion (by wave action or meltwater currents); and (iii) ice‐sheet loading and seasonal changes in the ablation rate. Analysis of these triggers, in combination with the deformational mechanisms, have resulted – on the basis of the spatial distribution of the various types of soft‐sediment deformation structures in the delta under study – in a model for the development of soft‐sediment deformation structures in the topsets, foresets and bottomsets of deltas. This analysis not only increases the understanding of the deformation processes in both modern and ancient deltaic settings but also helps to distinguish between the various subenvironments in ancient deltaic deposits.  相似文献   

9.
Coastal valleys in the west part of Mid-Wales, such as the Mawddach, Dysynni, Tal-y-llyn and Dyfi, acted as corridors for ice which drained the Welsh Ice Cap during the Devensian. Analyses of detailed digital elevation models, and interpretation of satellite images and aerial photographs, show the existence of large variations in the amount of glacial modification between these valleys. Although all the valleys are glacially over-deepened along late Caledonian fault lines, only the Dyfi basin exhibits a dendritic pattern, with V-shaped cross-profiles and valley spurs typical of valleys formed by fluvial processes. Connectivity analysis of the Dyfi basin shows that it exhibits an almost completely dendritic pattern with connectivity α and β values of 0.74 and 1.01, respectively, with little glacial modification of the preglacial fluvial valley pattern in the form of glacial valley breaching. Several examples of glacial meltwater incision into a well-developed pre-existing river valley system, causing river capture across watersheds, have been identified in the Dyfi basin. The degree of preservation of the preglacial fluvial valley system within the Dyfi basin indicates limited modification by glacial processes, despite the area being subjected to glacier activity during the Late Devensian at least. It is possible that major parts of the basin were covered by cold-based or slow-moving ice, close to, or under, a migrating ice-divide, with the major ice drainage occurring along the weaker zone of the Pennal Fault along which teh Dyfi valley is located, causing minor adjustments to the surrounding interfluves and uplands. It is proposed here that the general river valley morphology of the Dyfi basin is of a pre-Late Devensian age.  相似文献   

10.
Subglacial landsystems in and around Okanagan Valley, British Columbia, Canada are investigated in order to evaluate landscape development, subglacial hydrology and Cordilleran Ice Sheet dynamics along its southern margin. Major landscape elements include drumlin swarms and tunnel valleys. Drumlins are composed of bedrock, diamicton and glaciofluvial sediments; their form truncates the substrate. Tunnel valleys of various scales (km to 100s km length), incised into bedrock and sediment, exhibit convex longitudinal profiles, and truncate drumlin swarms. Okanagan Valley is the largest tunnel valley in the area and is eroded >300 m below sea level. Over 600 m of Late Wisconsin-age sediments, consisting of a fining-up sequence of cobble gravel, sand and silt fill Okanagan Valley. Landform–substrate relationships, landform associations, and sedimentary sequences are incompatible with prevailing explanations of landsystem development centred mainly on deforming beds. They are best explained by meltwater erosion and deposition during ice sheet underbursts.During the Late-Wisconsin glaciation, Okanagan Valley functioned as part of a subglacial lake spanning multiple connected valleys (few 100s km) of southern British Columbia. Subglacial lake development started either as glaciers advanced over a pre-existing sub-aerial lake (catch lake) or by incremental production and storage of basal meltwater. High geothermal heat flux, geothermal springs and/or subglacial volcanic eruptions contributed to ice melt, and may have triggered, along with priming from supraglacial lakes, subglacial lake drainage. During the underburst(s), sheetflows eroded drumlins in corridors and channelized flows eroded tunnel valleys. Progressive flow channelization focused flows toward major bedrock valleys. In Okanagan Valley, most of the pre-glacial and early-glacial sediment fill was removed. A fining-up sequence of boulder gravel and sand was deposited during waning stages of the underburst(s) and bedrock drumlins in Okanagan Valley were enhanced or wholly formed by this underburst(s).Subglacial lake development and drainage had an impact on ice sheet geometry and ice volumes. The prevailing conceptual model for growth and decay of the CIS suggests significantly thicker ice in valleys compared to plateaus. Subglacial lake development created a reversal of this ice sheet geometry where grounded ice on plateaus thickened while floating valley ice remained thinner (due to melting and enhanced sliding, with significant transfer of ice toward the ice sheet margin). Subglacial lake drainage may have hastened deglaciation by melting ice, lowering ice-surface elevations, and causing lid fracture. This paper highlights the importance of ice sheet hydrology: its control on ice flow dynamics, distribution and volume in continental ice masses.  相似文献   

11.
The Blackspring Ridge (BSR), located in south-central Alberta, Canada, is dominated by a prominent flute field. Flutes (elongated streamlined depressions) and ridges (elongate streamlined hills) are up to 15 km long and are composed of two material types: in situ bedrock, and in situ pre-Laurentide glaciation fluvial sand and gravel beds. The preglacial beds are Tertiary or early Quaternary in age. The beds are undisturbed, maintain primary bedding structures, and even maintain clast imbrication. No till overlies the gravel beds, although in places large granite boulder erratics lie on the surface, indicating that ice was present in the region in the past. Because the ridges are composed of preglacial materials, they are remnant erosional landforms rather than constructional landforms. Geomorphic and sedimentary evidence favor subglacial meltwater as the erosional agent, rather than ice. We suggest that the elevation of the BSR relative to basal ice would have resulted in confined subglacial meltwater flow, with associated flow acceleration and increased scouring resulting in flute formation. This meltwater stripped away any till cover, leaving behind only a few boulders. Observations at the BSR flute field preclude the possibility that flutes and remnant ridges are the result of deformation of soft clayey beds.  相似文献   

12.
The creation of the huge fans observed in the western Barents Sea margin can only be explained by assuming extremely high glacial erosion rates in the Barents Sea area. Glacial processes capable of producing such high erosion rates have been proposed, but require the largest part of the preglacial Barents Sea to be subaerial. To investigate the validity of these proposals we have attempted to reconstruct the western preglacial Barents Sea. Our approach was to combine erosion maps based on prepublished data into a single mean valued erosion map covering the whole western Barents Sea and consequently use it together with a simple Airy isostatic model to obtain a first rough estimate of the preglacial topography and bathymetry of the western Barents Sea margin. The mean valued erosion map presented herein is in good volumetric agreement with the sediments deposited in the western Barents Sea margin areas, and as a direct consequence of the averaging procedures employed in its construction we can safely assume that it is the most reliable erosion map based on the available information. By comparing the preglacial sequences with the glacial sequences in the fans we have concluded that 1/2 to 2/3 of the total Cenozoic erosion was glacial in origin and therefore a rough reconstruction of the preglacial relief of the western Barents Sea could be obtained. The results show a subaerial preglacial Barents Sea. Thus, during interglacials and interstadials the area may have been partly glaciated and intensively eroded up to 1 mm/y, while during relatively brief periods of peak glaciation with grounded ice extending to the shelf edge, sediments have been evacuated and deposited at the margins at high rates. The interplay between erosion and uplift represents a typical chicken and egg problem; initial uplift is followed by intensive glacial erosion, compensated by isostatic uplift, which in turn leads to the maintenance of an elevated, and glaciated, terrain. The information we have on the initial tectonic uplift suggests that the most likely mechanism to cause an uplift of the dimensions and magnitude of the one observed in the Barents Sea is a thermal mechanism.  相似文献   

13.
Three‐dimensional (3D) seismic datasets, 2D seismic reflection profiles and shallow cores provide insights into the geometry and composition of glacial features on the continental shelf, offshore eastern Scotland (58° N, 1–2° W). The relic features are related to the activity of the last British Ice Sheet (BIS) in the Outer Moray Firth. A landsystem assemblage consisting of four types of subglacial and ice marginal morphology is mapped at the seafloor. The assemblage comprises: (i) large seabed banks (interpreted as end moraines), coeval with the Bosies Bank moraine; (ii) morainic ridges (hummocky, push and end moraine) formed beneath, and at the margins of the ice sheet; (iii) an incised valley (a subglacial meltwater channel), recording meltwater drainage beneath former ice sheets; and (iv) elongate ridges and grooves (subglacial bedforms) overprinted by transverse ridges (grounding line moraines). The bedforms suggest that fast‐flowing grounded ice advanced eastward of the previously proposed terminus of the offshore Late Weichselian BIS, increasing the size and extent of the ice sheet beyond traditional limits. Complex moraine formation at the margins of less active ice characterised subsequent retreat, with periodic stillstands and readvances. Observations are consistent with interpretations of a dynamic and oscillating ice margin during BIS deglaciation, and with an extensive ice sheet in the North Sea basin at the Last Glacial Maximum. Final ice margin retreat was rapid, manifested in stagnant ice topography, which aided preservation of the landsystem record. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
Beaufort's Dyke is a submarine depression located in the North Channel of the Irish Sea. With a maximum depth of 312 m, the dyke is one of the deepest areas within the European continental shelf. Integration and interpretation of 450 km of sparker seismic data and full‐coverage bathymetric data derived from multi‐beam echo sounder surveys allow for the investigation of the formation processes of Beaufort's Dyke and the evolution of geomorphological features within it. The dyke, formed by composite subglacial processes dominated by subglacial meltwater discharge, is interpreted as a tunnel valley. The regional isolation of Beaufort's Dyke may be explained by the bounding of the North Channel by the bedrock masses of Ireland and Scotland, coupled with the exploitation of structural weakness along a fault plane and presence of halite in the eroded substrate enhancing the erosive potential of the overlying glacier. Beaufort's Dyke has probably been maintained as an open feature by strong rectilinear tidal currents. The morphology of lunate sediment waves and a large parabolic bedform towards the south of the dyke contradict the observed dominant S–N mean hydrodynamic flow recorded within the North Channel, suggesting an alternative hydrodynamic regime either within the dyke or during bedform creation. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
This article presents the results of a geomorphological and sedimentological investigation of former glacial meltwater drainage in the region of the lower Afon Teifi, one of the major rivers of southwest Wales. Former drainage characteristics in the region are reconstructed concentrating on palaeo-drainage routes associated with successive Pleistocene glaciations and their role in the Quaternary evolution of the lower Teifi. Mapping of these features throughout a c. 100 km 2 area reveals a complex evolution in the establishment of the present-day drainage system, with evidence for the following surface channel types: (i) type 1 channels of primary subglacial origin cut during the late Devensian (late Wisconsinan/late Weichselian) glaciation; (ii) type 2 channels representing either pre-late Devensian subaerial fluvial run-off, unconnected to the course of the preglacial Afon Teifi, or originating as subglacial chute channels; (iii) type 3 channels developed as subglacially modified pre-late Devensian tributaries of the Afon Teifi. Two further features are also described: (iv) type 4 channels are drift-plugged abandoned preglacial courses of the Afon Teifi, and (v) type 5 channels formed as lateglacial and post-late Devensian gorges which bypass type 4 channels. A relative chronostratigraphy based on channel geomorphology and sedimentology reveals an evolutionary sequence considerably more complicated than identified in previous studies, with extensive modification of the lower Afon Teifi region by glacial meltwater during at least two periods of Pleistocene glaciation.  相似文献   

16.
A pit located near Ballyhorsey, 28 km south of Dublin (eastern Ireland), displays subglacially deposited glaciofluvial sediments passing upwards into proglacial subaqueous ice‐contact fan deposits. The coexistence of these two different depositional environments at the same location will help with differentiation between two very similar and easily confused glacial lithofacies. The lowermost sediments show aggrading subglacial deposits indicating a constrained accommodation space, mainly controlled by the position of an overlying ice roof during ice‐bed decoupling. These sediments are characterized by vertically stacked tills with large lenses of tabular to channelized sorted sediments. The sorted sediments consist of fine‐grained laminated facies, cross‐laminated sand and channelized gravels, and are interpreted as subglaciofluvial sediments deposited within a subglacial de‐coupled space. The subglaciofluvial sequence is characterized by glaciotectonic deformation structures within discrete beds, triggered by fluid overpressure and shear stress during episodes of ice/bed recoupling (clastic dykes and folds). The upper deposits correspond to the deposition of successive hyperpycnal flows in a proximal proglacial lake, forming a thick sedimentary wedge erosively overlying the subglacial deposits. Gravel facies and large‐scale trough bedding sand are observed within this proximal wedge, while normally graded sand beds with developed bedforms are observed further downflow. The building of the prograding ice‐contact subaqueous fan implies an unrestricted accommodation space and is associated with deformation structures related to gravity destabilization during fan spreading (normal faults). This study facilitates the recognition of subglacial/submarginal depositional environments formed, in part, during localized ice/bed coupling episodes in the sedimentary record. The sedimentary sequence exposed in Ballyhorsey permits characterization of the temporal framework of meltwater production during deglaciation, the impact on the subglacial drainage system and the consequences on the Irish Sea Ice Stream flow mechanisms.  相似文献   

17.
Passchier, S., Laban, C., Mesdag, C.S. & Rijsdijk, K.F. 2010: Subglacial bed conditions during Late Pleistocene glaciations and their impact on ice dynamics in the southern North Sea. Boreas, Vol. 39, pp. 633–647. 10.1111/j.1502‐3885.2009.00138.x. ISSN 0300‐9483. Changes in subglacial bed conditions through multiple glaciations and their effect on ice dynamics are addressed through an analysis of glacigenic sequences in the Upper Pleistocene stratigraphy of the southern North Sea basin. During Elsterian (MIS 12) ice growth, till deposition was subdued when ice became stagnant over a permeable substrate of fluvial sediments, and meltwater infiltrated into the bed. Headward erosion during glacial retreat produced a dense network of glacial valleys up to several hundreds of metres deep. A Saalian (MIS 6) glacial advance phase resulted in the deposition of a sheet of stiff sandy tills and terminal moraines. Meltwater was at least partially evacuated through the till layer, resulting in the development of a rigid bed. During the later part of the Saalian glaciation, ice‐stream inception can be related to the development of a glacial lake to the north and west of the study area. The presence of meltwater channels incised into the floors of glacial troughs is indicative of high subglacial water pressures, which may have played a role in the onset of ice streaming. We speculate that streaming ice flow in the later part of the Saalian glaciation caused the relatively early deglaciation, as recorded in the Amsterdam Terminal borehole. These results suggest that changing subglacial bed conditions through glacial cycles could have a strong impact on ice dynamics and require consideration in ice‐sheet reconstructions.  相似文献   

18.
Glaciofluvial De Geer moraines have rarely been described in detail in the literature. This study presents a model for the genesis of moraines of this type in the Chapais area, Québec. The model is based mainly on facies and deformatin structures analysis, and geomorphological data. Well-stratified glaciofluvial material is commonly found in the core of the moraines, whereas till or glacial diamicton may be present as surficial cover on their proximal side or as injected lenses in the sorted sediments. The paleocurrents are systematically directd downglacier. The moraines were built up in subglacial crevasses in areas where meltwater was channelized. Water flowed under pressure from small upglacier cavities, carrying a load of coars-grained material When flowing water entered crevasses already occupied by water, flow sparation occurred, reducing the capacity of the flow to carry the particles, and avalanching glaciofluvial material on the leeside of the piled sediments. The occurrence, in these sediments, of glaciotectonic deformation structures such as overturned to recumbent folds and thrust faults is evidence that the glacier was still active to some degree during and after the sedimentation phase.  相似文献   

19.
Subglacial erosional forms are commonly found on bedrock substrates inside the Late Weichselian ice margin in County Donegal, northwest Ireland, and can be used to provide detailed information on subglacial processes and environments. The erosional forms occur on spatial scales from whalebacks (tens of metres in scale), to asymmetric and channelized bedrock-cut scours (tens of cm in scale) and striations (mm scale). Processes responsible for development of subglacial erosional forms occur along a continuum, from free meltwater existing as a laterally extensive sheet at the ice-bed interface, to abrasion by basal ice. Channelized bedrock-cut scours are particularly common in County Donegal, and show asymmetric and meandering thalwegs, U-shaped cross-profiles and steep lateral margins. Innermost parts of the scours are highly polished and have striations that follow thalweg direction. In places, bedrock surfaces are overlain by a delicate polish and thin calcite cement, and are buried beneath glacial till. Based on their morphology, the bedrock scours are interpreted as s-forms caused by high-pressure subglacial meltwater erosion. Striations within the scoured channels reflect periods of ice-bed coupling and subglacial abrasion. The range of features observed here was used to consider relationships between subglacial topography, hydraulic processes and ice-bed coupling. Precipitation of calcite cement took place in depressions on the bedrock surface by CO2 degassing. Infilling of depressions by glacial till formed a new type of 'sticky spot' related to spatial variations in subglacial water pressure. The temporal evolution of sticky spots reflects interactions within the subglacial environment between subglacial relief, hydraulic regime and ice-bed coupling.  相似文献   

20.
The efficiency of subglacial drainage is known to have a profound influence on subglacial deformation and glacier dynamics with, in particular, high meltwater contents and/or pressures aiding glacier motion. The complex sequence of Middle Pleistocene tills and glacial outwash sediments exposed along the north Norfolk coast (Eastern England) were deposited in the ice-marginal zone of the British Ice Sheet and contain widespread evidence for subglacial deformation during repeated phases of ice advance and retreat. During a phase of easterly directed ice advance, the glacial and pre-glacial sequences were pervasively deformed leading to the development of a thick unit of glacitectonic mélange. Although the role of pressurised meltwater has been recognised in facilitating deformation and mélange formation, this paper provides evidence for the subsequent development of a channelised subglacial drainage system beneath this part of the British Ice Sheet filled by a complex assemblage of sands, gravels and mass flow deposits. The channels are relatively undeformed when compared to the host mélange, forming elongate, lenticular to U-shaped, flat-topped bodies (up to 20–30 m thick) located within the upper part of this highly deformed unit. This relatively stable channelised system led to an increase in the efficiency of subglacial drainage from beneath the British Ice Sheet and the collapse of the subglacial shear zone, potentially slowing or even arresting the easterly directed advance of the ice sheet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号