首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Anthrosols (cf. plaggen soils) are commonly found across the homefields of Norse farms, yet the extent to which these taphonomically complex and heterogeneous deposits provide reliable archives of environmental change and vegetation history has rarely been investigated. This paper compares the palynological signature contained within an anthrosol located beside Norse farm ruins in the Eastern Settlement of Greenland, with that from a mire situated ~400 m from the nearest archaeological remains. The investigation covers a period of ~1000 years leading into, through, and beyond the Greenlandic landnám of AD 985. The results demonstrate that, as anticipated, the anthrosol contains a strong signal for human impact associated with settlement and occupation, although changes in both pollen percentages and accumulation rates (influx) through the profile appear smooth, not erratic, and radiocarbon dates are conformable. Thus the palynological signature contained in the anthrosol is broadly comparable to the patterns characteristic of stratified natural contexts (e.g. mires) with small pollen source areas that are located in close proximity to former Norse structures. Nevertheless, it is also demonstrated that secondary microfossils are a major component of the pollen assemblages within the anthrosol, and pollen influx is notably an order of magnitude higher when compared against the peat core taken from the mire. It is suggested that this may result from the addition of pollen contained in animal dung, augmenting that accumulating through the natural accretion of pollen derived from the surrounding vegetation and landing on the surface of the anthrosol. Although this complicates any palynological interpretation, by adopting a cautious approach we argue that anthrosols can be used to extract useful information about vegetation history at a local scale, as well as providing indirect evidence of landscape impacts and resource use around farmsteads.  相似文献   

2.
Adaptation of farming practices to inherent site conditions was essential to the success of Norse colonization in pristine landscapes. A key factor in the initial success of colonization, or landnám, of Iceland was management of the area adjacent to the domestic dwelling, the home‐field, to provide fodder for over‐wintering livestock. In this paper we examine three settlement home‐fields in the Mývatn and Laxá valley area of northeast Iceland. Contemporary evidence reveals a distinct climatic toposequence together with differences in the nature of the inherent soils between sites. By considering the influence of these differences, microscale adaptations in early land management practices in the production of hay are sought within a tightly defined chronological context. Using an integrated agroecosystem modeling approach, the factors affecting long‐term sustainability of hay production in the Norse home‐field are examined. Results indicate that regional‐level climate differences will have an impact on production, especially pronounced cold periods. It is also clear that small‐scale climate factors, as well as inherent soil differences between sites influenced productivity for the Norse farmer. However, productivities overall are at subsistence level, emphasizing the need for optimized land management to sustain home‐field production. After examining different management scenarios, it is apparent that the effect of an increased rate of manuring will be most apparent during the first century of settlement; thereafter the effect is relatively diminished. © 2008 Wiley Periodicals, Inc.  相似文献   

3.
Tephra-dated, high-resolution pollen profiles from Ketilsstaðir, southern Iceland, indicate a largely unwooded pre-settlement environment, a probable consequence of the exposed coastal location. The degree of change associated with the Norse landnám is more limited than in many Icelandic pollen diagrams. There are three main periods of change in the post-settlement vegetational development of the area. Firstly, Norse settlement affected the hydrology of the bog, resulting in the near-disappearance of Sphagnum and agricultural activity led to a reduction of some species (e.g. Angelica spp. and, Salix). Secondly, the establishment of probable permanent settlement in the mid-11th century AD initiated expansion of such apophytic taxa as Plantago spp. Lactuceae, Ranunculus spp. and Pteridophytes. Thirdly, the ≥ 10 cm thick Katla tephra, deposited in AD 1357, enhanced drainage of the bog surface, favouring dryland taxa (e.g. Poaceae, Galium and Lactuceae). The tephra deposit and the associated drainage probably caused or contributed to the local extinction of the wetland beetle Hydraena britteni. The study has enabled a series of natural and humanly-related issues to be addressed including tephra-vegetation relationships, the anthropogenic reduction in plant diversity, and comparisons between historical and environmental settlement records.  相似文献   

4.
Striberger, J., Björck, S., Ingólfsson, Ó., Kjær, K. H., Snowball, I. & Uvo, C. B. 2010: Climate variability and glacial processes in eastern Iceland during the past 700 years based on varved lake sediments. Boreas, 10.1111/j.1502‐3885.2010.00153.x. ISSN 0300‐9483. Properties of varved sediments from Lake Lögurinn in eastern Iceland and their link to climate and glacial processes of Eyjabakkajökull, an outlet glacier of the Vatnajökull icecap, were examined. A varve chronology, which covers the period AD 1262–2005, was constructed from visual observations, high‐resolution images, X‐ray density and geochemical properties determined from X‐radiography and X‐ray fluorescence scanning. Independent dating provided by 137Cs analysis and eight historical tephras verify the varve chronology. The thickness of dark‐coloured seasonal laminae, formed mainly of coarser suspended matter from the non‐glacial river Grímsá, is positively correlated (r=0.70) with winter precipitation, and our 743‐year‐long varve series indicates that precipitation was higher and more varied during the later part of the Little Ice Age. Light‐coloured laminae thickness, controlled mainly by the amount of finer suspended matter from the glacial river Jökulsáí Fljótsdal, increased significantly during the AD 1972 surge of Eyjabakkajökull. As a consequence of the surge, the ice‐dammed Lake Háöldulón formed and recurrently drained and delivered significant amounts of rock flour to Lake Lögurinn. Based on these observations, and the recurring cyclic pattern of periods of thicker light‐coloured laminae in the sediment record, we suggest that Eyjabakkajökull has surged repeatedly during the past 743 years, but with an increased frequency during the later part of the Little Ice Age.  相似文献   

5.
Pollen productivity is one of the most critical parameters for pollen–vegetation relationships, and thus for vegetation reconstruction, in either pollen percentages or pollen accumulation rates. We obtain absolute pollen productivity of three major tree types in northern Finland: pine (Pinus sylvestris), spruce (Picea abies) and birch (Betula pubescens ssp. pubescens and B. pubescens ssp. czerepanovii treated as one taxon). Long‐term monitoring records of pollen traps from 15 sites (duration: 5–23 years) and tree volume estimates within a 14 km radius of each trap were compared to estimate pollen productivity (grains m?3 a?1) of these trees using a regression method. The slope of the linear relationship between pollen loading and distance‐weighted plant abundance represents pollen productivity. Estimated productivities of pollen (×108 grains m?3 a?1) for pine, spruce and birch are 128.7 (SE 31.5), 341.9 (SE 81.3) and 411.4 (SE 307.7), respectively. The birch estimate (P > 0.05) is not as good as the others and should be used with caution. Pollen productivities of pine, spruce and birch in northern Finland are, in general, comparable to those of congeneric species in other regions of Europe and Japan. Although the year‐to‐year variations are significant, our volume‐based estimates of pollen productivity for pine and spruce will be essential for quantitative reconstruction of vegetation in the region. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
Pollen accumulation rates (PARs) provide a potential proxy for quantitative tree volume (m3 ha?1) reconstruction with reliable absolute pollen productivity estimates (APPEs). We obtained APPEs for pine, spruce and birch at their range limits in northern Finland under two temperature periods (‘warm’ and ‘cold’) based on long‐term pollen trap and tree volume records within a 14‐km radius of each trap. APPEs (mean ± SE; × 108 grains m?3 a?1) tend to be higher for the ‘warm’ periods (pine 123.8 ± 24.4, birch 528.0 ± 398.4, spruce 434.3 ± 113.7) compared with the ‘cold’ periods (pine 95.5 ± 37.3, birch 317.3 ± 282.6, spruce 119.6 ± 37.6), although the difference is only significant for spruce. Using an independent temperature record and the APPEs obtained, we reconstruct a low‐frequency record of pine volume changes over the last 1000 years at Palomaa mire, where a high‐resolution record of Pinus PARs is available. Five phases are distinguished in the reconstruction: moderate pine volume, AD 1080–1170; high volume, AD 1170–1340; low volume, AD 1340–1630; very low volume, AD 1630–1810; and rising pine volume, AD 1810–1950. These phases do not coincide with periods of high or low June–July–August temperatures, and thus appear to reflect regional variations in tree volume, while high‐frequency changes within each time‐period block show variations in PARs in response to temperature. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
Werner, K., Tarasov, P. E., Andreev, A. A., Müller, S., Kienast, F., Zech, M., Zech, W. & Diekmann, B. 2009: A 12.5‐kyr history of vegetation dynamics and mire development with evidence of Younger Dryas larch presence in the Verkhoyansk Mountains, East Siberia, Russia. Boreas, 10.1111/j.1502‐3885.2009.00116.x. ISSN 0300‐9483. A 415 cm thick permafrost peat section from the Verkhoyansk Mountains was radiocarbon‐dated and studied using palaeobotanical and sedimentological approaches. Accumulation of organic‐rich sediment commenced in a former oxbow lake, detached from a Dyanushka River meander during the Younger Dryas stadial, at ~12.5 kyr BP. Pollen data indicate that larch trees, shrub alder and dwarf birch were abundant in the vegetation at that time. Local presence of larch during the Younger Dryas is documented by well‐preserved and radiocarbon‐dated needles and cones. The early Holocene pollen assemblages reveal high percentages of Artemisia pollen, suggesting the presence of steppe‐like communities around the site, possibly in response to a relatively warm and dry climate ~11.4–11.2 kyr BP. Both pollen and plant macrofossil data demonstrate that larch woods were common in the river valley. Remains of charcoal and pollen of Epilobium indicate fire events and mark a hiatus ~11.0–8.7 kyr BP. Changes in peat properties, C31/C27 alkane ratios and radiocarbon dates suggest that two other hiatuses occurred ~8.2–6.9 and ~6.7–0.6 kyr BP. Prior to 0.6 kyr BP, a major fire destroyed the mire surface. The upper 60 cm of the studied section is composed of aeolian sands modified in the uppermost part by the modern soil formation. For the first time, local growth of larch during the Younger Dryas has been verified in the western foreland of the Verkhoyansk Mountains (~170 km south of the Arctic Circle), thus increasing our understanding of the quick reforestation of northern Eurasia by the early Holocene.  相似文献   

8.
Palynological research is increasingly revealing the landscape impacts of Norse colonisation in southern Greenland. Typically, although not exclusively, these studies are from depositional environments with highly localised pollen source areas close to fjord-side centres of medieval power. In contrast, this paper presents data from Vatnahverfi, an inland district of the Eastern Settlement, and explores the emergence of a cultural landscape through three pollen sequences at variable distances from Norse farms. Two are from mires with small pollen source areas close to (< 100 m) and distant from (≥ 1500 m) probable farming activities. The other provides a more regional signal of vegetation change, albeit one located close to a Norse settlement. Landnám is marked primarily through an increase in microscopic charcoal and the appearance of pollen from Rumex acetosella, although significant differences between profiles are noted. Close to Norse ruins, pollen productivity from grassland communities increases and woodland and scrub representation declines. Further from archaeological remains, palynologically inferred human activity is primarily characterised by decreased productivity, notably declining influx from woodland and scrub species, reflecting grazing herbivores or coppicing. Abandonment of Vatnahverfi is indicated from the late 14th to early 15th century AD.  相似文献   

9.
Complex interactions of climate and volcanic activity have shaped the environment of Iceland during the Holocene. Palaeoecological records from Iceland offer a unique look at a Holocene environment that was uninhabited by humans and free of mammal herbivores until about AD 870. We present a new reconstruction of Holocene vegetation and landscape dynamics from a small lake, Barðalækjartjörn, located near the highland margin in Northwest Iceland. A multi‐proxy approach was used to reconstruct vegetation based on pollen and plant macrofossil analysis and landscape stability based on lithological proxies. The record covers the period c. 10 300–200 cal. a BP. For the first two millennia aeolian processes probably played a part in vegetation development. This period is characterized by high input of minerogenic material into the lake and a vegetation assemblage in which plants tolerant of aeolian deposition are prominent. Betula pubescens woodland reached a maximum between c. 7400 and 6500 cal. a BP. Betula nana‐dominated dwarf shrub heath replaced woodland after c. 4000 cal. a BP, following the onset of Neoglaciation. Land use following human settlement caused an environmental shift at the highland margin. Betula pubescens probably disappeared from the vicinity of the lake soon thereafter. Large‐scale soil erosion began at c. 1000 cal. a BP in the wake of human activities, such as introduction of grazing livestock and woodcutting. This study offers an important long‐term perspective of the development of the highland ecosystem under both wholly natural and human‐influenced conditions.  相似文献   

10.
High-resolution paleoenvironmental data from a peat profile with a small pollen source area are used to reconstruct the impacts of landnám on vegetation and soils at a Norse farm complex (∅2 at Tasiusaq) comprising two farms in the Eastern Settlement of Greenland. Analyses include the AMS 14C dating of plant macrofossil samples and the use of Bayesian radiocarbon calibration to construct improved age-depth models for Norse cultural horizons. The onset of a regional landnám may be indicated by the clearance of Betula pubescens woodland immediately prior to local settlement. The latter is dated to AD 950-1020 (2σ) and is characterised by possible burning of Betula glandulosa scrub to provide grassland pasture for domestic stock. Clearance and grazing resulted in accelerated levels of soil erosion at a westerly farm. This was followed by an easterly migration of settlement and agriculture. Site constraints prevent an assessment of the demise of the easterly farm, but pressures of overgrazing and land degradation may have been the major factors responsible for the abandonment of the earlier farm.  相似文献   

11.
Ma, L., Wu, J., Yu, H., Zeng, H. & Abuduwaili, J. 2011: The Medieval Warm Period and the Little Ice Age from a sediment record of Lake Ebinur, northwest China. Boreas, Vol. 40, pp. 518–524. 10.1111/j.1502‐3885.2010.00200.x. ISSN 0300‐9483. Lake Ebinur, Xinjiang, northwest China, is a closed‐basin, shallow lake that responds rapidly to changes in the ratio of precipitation to evaporation (P/E). A sediment record spanning the last 1500 years was obtained from the lake. We used δ18O and δ13C in bulk carbonate, and δ13C of organic matter in the lake sediments to infer environmental changes in the Ebinur region during the Medieval Warm Period (MWP) and the Little Ice Age (LIA). Decreased δ18O values of carbonate largely reflect an enhanced P/E ratio within the basin and a higher lake level. Bulk carbonates with higher δ13C values are deposited during periods when lake‐water pH is high, while lower δ13C values reflect a lower pH in the water column. δ13C in organic matter is associated with the amount of precipitation. The results indicate that the Ebinur region experienced a dry MWP and a wet LIA, although the MWP and LIA were warm and cold periods, respectively, as expected. Furthermore, the MWP and LIA were hydrologically complex and cannot be characterized as uniformly wet or dry. Peak wet periods are recorded in the sediment core around AD 1000, 1400 and 1700, and a dry event also occurred in the period of temperature change within the LIA (cold to warm around AD 1500). A comparison of the Lake Ebinur data with proxy records for the strength of the Siberian High and climate proxy indicators suggests that precipitation in the Ebinur region was a consequence, in part, of an enhanced Siberian High during the LIA.  相似文献   

12.
Paleolimnological techniques were used to identify environmental changes in and around Lake Dudinghausen (northern Germany) over the past 4800 yr. Diatom-inferred total phosphorus (DI-TP) changes identify four phases of high nutrient levels (2600-2200 BC, 1050-700 BC, 500 BC-AD 100 and AD 1850-1970). During these high DI-TP phases, fossil pollen, sediment geochemistry and archaeological records indicate human activities in the lake catchment. Although the same paleo-indicators suggest increased human settlement and agriculture activity during the late Slavonic Age, the Medieval Time and the Modern Time (AD 1000-1850), DI-TP levels were low during this period. In the sediments, iron and total phosphorus were high from ∼AD 100 to 1850, likely due to increased inflow of iron-rich groundwater into the lake. Increased iron input would have lead to a simultaneous binding and precipitation of phosphate in the upper sediment and overlying water column. As a result, anthropogenic impact on Lake Dudinghausen was masked by these phosphorus-controlling processes from AD 1000 to 1850 and was not evident by means of DI-TP. In accordance with fossil pollen, sediment geochemistry and limited archaeological records, DI-TP levels were low from AD 100-1000. Groundwater levels likely rose during this period as the climate gradually changed toward colder and/or moister conditions. Such climate change likely led to reduced settlement activities and forest regeneration in the catchment area. Our results are concordant with similar studies from central Europe which indicate rapid decreasing settlement activities from AD 100 to 1000.  相似文献   

13.
Previous absolute polien diagrams from northern Fennoscandia yielded evidence for a retreat of the pine limit from an earlier extended position to a position near the modern one between about 5000 and 3000 B.P. New absolute pollen data from the sediment core of Domsvatnet, a small tundra lake near the eastern coast of Varanger Peninsula, are used to demonstrate a parallel retreat in the birch limit. Areas outside the modern birch limit were colonized by early Flandrian pioneer birch woods between 9500 and 9000 B.P. and remained as birch woodland through middle Flandrian times until a retreat started around 5000 B.P. leading to the present tundra situation.
The Domsvatnet core shows anomalous high pollen deposition rates combined with relatively rapid matrix sedimentation, suggesting that pollen from outside the basin has been washed in with allochthonous material and concentrated in the sediment.  相似文献   

14.
Jiang, S., Liu, X., Sun, J., Yuan, L., Sun, L. & Wang, Y. 2011: A multi‐proxy sediment record of late Holocene and recent climate change from a lake near Ny‐Ålesund, Svalbard. Boreas, Vol. 40, pp. 468–480. 10.1111/j.1502‐3885.2010.00198.x. ISSN 0300‐9483 The Arctic constitutes a unique and important environment with a significant role in the dynamics and evolution of the earth system. Arctic lake sediments, which accumulate slowly over time, contain abundant information about the biological communities that lived within the water body, as well as in the surrounding catchment. In this study, we collected a sediment core from Ny‐Ålesund, Svalbard, performed multi‐proxy analyses on sediment pigments, mineral magnetic susceptibility, various sediment quality (i. e. organic matter content, CaCO3 content, carbon and nitrogen isotope), and diatom composition, and reconstructed the history of ecosystem responses to environmental variations, especially regarding aquatic productivity and lake catchment surface processes. Ny‐Ålesund has undergone distinct ecological and climatic changes. During the Little Ice Age, the cold climate was unfavourable for the growth of lake algae, and therefore the lake primary productivity declined. After about AD 1890 and during the 20th century, the warming climate and reduced ice cover led to rapid lithological change and growth of lake algae, enhanced lake primary productivity, and increased input of nutrients derived from increased chemical weathering into the lake. The lake ecosystem on Ny‐Ålesund has had rapid responses to climatic and environmental changes in the Arctic.  相似文献   

15.
A high-resolution pollen record from Lake Teletskoye documents the climate-related vegetation history of the northern Altai Mountain region during the last millennium. Siberian pine taiga with Scots pine, fir, spruce, and birch dominated the vegetation between ca. AD 1050 and 1100. The climate was similar to modern. In the beginning of the 12th century, birch and shrub alder increased. Lowered pollen concentrations and simultaneous peaks in herbs (especially Artemisia and Poaceae), ferns, and charcoal fragments point to colder and more arid climate conditions than before, with frequent fire events. Around AD 1200, regional climate became warmer and more humid than present, as revealed by an increase of Siberian pine and decreases of dry herb taxa and charcoal contents. Climatic conditions were rather stable until ca. AD 1410. An increase of Artemisia pollen may reflect slightly drier climate conditions between AD 1410 and 1560. Increases in Alnus, Betula, Artemisia, and Chenopodiaceae pollen and in charcoal particle contents may reflect further deterioration of climate conditions between AD 1560 and 1810, consistent with the Little Ice Age. After AD 1850 the vegetation gradually approached the modern one, in conjunction with ongoing climate warming.  相似文献   

16.
Bińka, K., Nitychoruk, J. & Dzier?ek, J. 2010: Climate stability during the Eemian – new pollen evidence from the Nidzica site, northern Poland. Boreas, 10.1111/j.1502‐3885.2010.00179.x. ISSN 0300‐9483 Interglacial sediments at Nidzica, northern Poland were investigated by means of pollen and isotope analysis. These deposits accumulated in an extensive basin through most of the Eemian and Early Weichselian, practically without stratigraphic gaps. Continuous subsidence of the basin floor has resulted in the accumulation of a great thickness of lacustrine sediments, consisting mostly of calcareous gyttja. The course of pollen and isotope curves in the interglacial interval does not indicate the abrupt climatic shifts reported from some other continental climatic archives. Particularly important has been the reconstruction of the final stages of the Eemian, a potential analogue for future climatic change in the late Holocene. At Nidzica, this period is registered as a gradual modification of forest composition, devoid of any pulsations in which temperate forest is followed by terminal, boreal pine–birch communities.  相似文献   

17.
By mapping and summarizing 478 pollen counts from surface samples at 406 locations in eastern North America, this study documents the relationships between the distributions of pollen and vegetation on a continental scale. The most common pollen types in this region are pine, birch, oak, and spruce. Maps showing isopercentage contours or isopolls for 13 important pollen types reflect the general N-S zonation of the vegetation. The maps and tabulations of average pollen spectra for the six major vegetational regions indicate high values for the following pollen types in each region: (1) tundra-nonarboreal birch, sedge, and alder; (2) forest/tundra-spruce, nonarboreal birch and alder; (3) boreal forest-spruce, jack pine (type), and arboreal birch with fir in the southeastern part; (4) conifer/hardwood forest-white pine, arboreal birch, and hemlock with beech, maple, and oak in the southern part; (5) deciduous forest-oak, pine, hickory, and elm, with beech and maple in the northern part, and highest values of oak and hickory west of the Appalachian crest; and (6) southeastern forest-pine, oak, hickory, tupelo, and Myricaceae. In some cases, less abundant pollen types are diagnostic for the region, e.g., bald cypress in the southeast. In the conifer-hardwood region and southward, pollen of weeds associated with deforestation and agriculture is abundant. The maps also show that much of southeastern U.S. and the area just to the east of Hudson Bay are in need of additional sampling. At 51 of the sites, absolute pollen frequencies (APF; grains/ml lake sediment) were obtained. These confirm the major conclusions from the percentage data, but differences are evident, e.g., the percentages of alder pollen peak in the tundra whereas alder APFs peak in the boreal forest, and spruce percentages peak in the forest-tundra whereas spruce APFs peak in the boreal forest. Because the APF data reflect the patterns of absolute abundance of individual taxa in the vegetation as well as the overall forest densities, future counts of modern pollen should include APF determinations. The effects of sedimentation processes on APF quantities indicate that APF samples should be obtained from moderate size lakes of similar morphology and hydrology and that, in each lake, several samples from the profundal zone should be pooled to create a sample representative of that lake.  相似文献   

18.
Cook, S. J., Robinson, Z. P., Fairchild, I. J., Knight, P. G., Waller, R. I. & Boomer, I. 2009: Role of glaciohydraulic supercooling in the formation of stratified facies basal ice: Svínafellsjökull and Skaftafellsjökull, southeast Iceland. Boreas, 10.1111/j.1502‐3885.2009.00112.x. ISSN 0300‐9483. There is need for a quantitative assessment of the importance of glaciohydraulic supercooling for basal ice formation and glacial sediment transfer. We assess the contribution of supercooling to stratified facies basal ice formation at Svínafellsjökull and Skaftafellsjökull, southeast Iceland, both of which experience supercooling. Five stratified basal ice subfacies have previously been identified at Svínafellsjökull, but their precise origins have not been determined. Analysis of stratified basal ice stable isotope compositions (δ18O and δD), spatial distribution and physical characteristics demonstrates that two subfacies present at both glaciers are consistent with supercooling. These ‘supercool’ subfacies account for 42% of stratified facies exposed at Svínafellsjökull, although estimates at Skaftafellsjökull are precluded by limited basal ice exposure. Owing to their high debris contents, supercooling‐related facies contribute a debris flux of 4.8 to 9.6 m3 m?1 a?1 at Svínafellsjökull (83% of the stratified facies debris flux). Other stratified subfacies, formed by non‐supercooling processes, account for 58% of the stratified basal ice at Svínafellsjökull, but only contribute a debris flux of 1.0 to 2.0 m3 m?1 a?1 (17% of the stratified facies debris flux). We conclude that supercooling has a significant role in glacial sediment transfer, although in stratified basal ice formation its role is less significant at these locations than has been reported elsewhere.  相似文献   

19.
The development of a glacial lake impounded along the retreating, northeastern ice margin of the Fennoscandian Ice Sheet during the last deglaciation and environmental conditions directly following the early Holocene deglaciation have been studied in NE Finland. This so‐called Sokli Ice Lake has been reconstructed previously using topographic and geomorphologic evidence. In this paper a multiproxy approach is employed to study a 3‐m‐thick sediment succession consisting of laminated silts grading into gyttja cored in Lake Loitsana, a remnant of the Sokli Ice Lake. Variations in the sediment and siliceous microfossil records indicate distinct changes in water depth and lake size in the Loitsana basin as the Sokli Ice Lake was drained through various spillways opening up along the retreating ice front. Geochemical data (XRF core‐scanning) show changes in the influence of regional catchment geochemistry (Precambrian crystalline rocks) in the glacial lake drainage area versus local catchment geochemistry (Sokli Carbonatite Massif) within the Lake Loitsana drainage area during the lake evolution. Principal component analysis on the geochemical data further suggests that grain‐size is an additional factor responsible for the variability of the sediment geochemistry record. The trophic state of the lake changed drastically as a result of morphometric eutrophication once the glacial lake developed into Lake Loitsana. The AMS radiocarbon dating on tree birch seeds found in the glaciolacustrine sediment indicates that Lake Loitsana was deglaciated sometime prior to 10 700 cal. a BP showing that tree Betula was present on the deglaciated land surrounding the glacial lake. Although glacial lakes covered large areas of northern Finland during the last deglaciation, only few glaciolacustrine sediment successions have been studied in any detail. Our study shows the potential of these sediments for multiproxy analysis and contributes to the reconstruction of environmental conditions in NE Finland directly following deglaciation in the early Holocene.  相似文献   

20.
Ribeiro, S., Moros, M., Ellegaard, M. & Kuijpers, A. 2012 (January): Climate variability in West Greenland during the past 1500 years: evidence from a high‐resolution marine palynological record from Disko Bay. Boreas, Vol. 41, pp. 68–83. 10.1111/j.1502‐3885.2011.00216.x. ISSN 0300‐9483. Here we document late‐Holocene climate variability in West Greenland as inferred from a marine sediment record from the outer Disko Bay. Organic‐walled dinoflagellate cysts and other palynomorphs were used to reconstruct environmental changes in the area through the last c. 1500 years at 30–40 years resolution. Sea ice cover and primary productivity were identified as the two main factors driving dinoflagellate cyst community changes through time. Our data provide evidence for an opposite climate trend in West Greenland relative to the NE Atlantic region from c. AD 500 to 1050. For the same period, sea‐surface temperatures in Disko Bay are out‐of‐phase with Greenland ice‐core reconstructed temperatures and marine proxy data from South and East Greenland. This is probably governed by an NAO‐type pattern, which results in warmer sea‐surface conditions with less extensive sea ice in the area for the later part of the Dark Ages cold period (c. AD 500 to 750) and cooler conditions with extensive sea ice inferred for the first part of the Medieval Climate Anomaly (MCA) (c. AD 750 to 1050). After c. AD 1050, the marine climate in Disko Bay becomes in‐phase with trends described for the NE Atlantic, reflected in the warmer interval for the remainder of the MCA (c. AD 1050–1250), followed by cooling towards the onset of the Little Ice Age at c. AD 1400. The inferred scenario of climate deterioration and extensive sea ice is concomitant with the collapse of the Norse Western Settlement in Greenland at c. AD 1350.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号