首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 614 毫秒
1.
Pelitic and calcareous rocks in the Whetstone Lake area havean unusually wide range of chemical composition. Metamorphicreactions have been deduced that represent the observed ‘discontinuities’in compatible mineral assemblages, and by plotting the reactantand the product assemblage of each reaction on a map, metamorphicisograds have been delincated ‘from both sides’.For the pelitic rocks, successively higher-grade isograds arebased on the following reactions: (1)chlorite+muscovite+garnetstaurolite+biotite+quartz+water; (2) chlorite+muscovite+staurolite+quartz kyanite+biotite+water; (3) kyanitesillimanite; (4)staurolite+museovite+quartzsillimanite+garnet+biotite+water. A fifth isograd, based on the reaction (5) biotite+calcite+quartzCa-amphibole+K-feldspar+carbon dioxide+water intersects the isograds based on reactions (2), (3), and (4)in such a manner as to indicate that the H2O/CO2 fugacity ratiowas significantly higher in the vicinity of a granite plutonthan in the metasedimentary rocks remote from the pluton. Chemicalanalyses of the coexisting minerals in reaction (5) indicatethat the real reaction may involve plagioclase, epidote, sphene,and Fe-Ti oxides as well.  相似文献   

2.
The unusual association of cordierite and cummingtonite (? gedrite+ chlorite + biotite + ilmenite + plagioclase + quartz) definesa metamorphic facies within aluminous, low-Ca amphibolites fromthe Proterozoic rocks of the Gold Brick District, east of Gunnison,Colorado. More Fe-rich bulk chemistries in the same facies arecharacterized by assemblages consisting of cordierite+-gedrite+ garnet + chlorite + biotite + ilmenite + plagioclase + quartz,whereas more Mg-rich compositions are characterized by cordierite+ anthophyllite + chlorite + biotite + ilmenite ? plagioclase+ quartz. The assemblage gedrite 4- cummingtonite + chlorite+ biotite + ilmenite + plagioclase + quartz was also observed.Coexisting cordierite+ anthophyllite + cummingtonite was notobserved in any rocks, apparently because this assemblage isstable over only a very narrow range of bulk compositions. Metamorphosedpelitic rocks are more iron rich than the assemblage cordierite+ gedrite + garnet + chlorite + biotite + ilmenite + plagioclase+ quartz and consist of garnet ?cordierite ?staurolite ? chlorite? andalusite + biotite + ilmenite + plagioclase + quartz? microclineor muscovite. Mineral rim compositions from cordierite-bearing amphibolitesand metapelites determined by electron microprobe analysis showsystematic Fe/Mg partitioning and define assemblages that occupynon-overlapping regions of the compositional system SiO2-TiO2-Al2O3-MnO-FeO-MgO-CaO-Na2O-K2O-H2Oas determined by algebraic and statistical methods developedby Braun & Stout (1975) and Fisher (1989). Graphical methods(projections) produced spurious overlaps not confirmed by themore rigorous algebraic tests. The spurious overlaps were generatedbecause standard projective analysis was not able simultaneouslyto account for the important effects of the components Na2O,CaO, and MnO on the AFM topologies. The results of algebraicand statistical analysis are consistent with an equilibriumorigin at constant values of temperature and pressure. The cordierite-cummingtonite facies encompasses the relativelylow-pressure and moderate-temperature conditions associatedwith the stability field of andalusite. Garnet-biotite geothermo-metry,and garnet, aluminosilicate, silica, plagioclase (GASP) geobarometrysuggest that temperatures and pressures were nearly constantacross the study area at 550( ? 70) ?C and 3 kb, respectively,near the peak of metamorphism. Other geothermometers and geobarometers,and independent pressure and temperature estimates, are compatiblewith garnet-biotite thermometry and GASP geo-barometry. Gradientsin fO2 or H2O are not required to explain the compatibilityof these assemblages at constant T and P. Cordierite + cummingtonite-bearingrocks can apparently be derived from anthophyllite +garnet-bearingrocks by increasing temperature or decreasing pressure.  相似文献   

3.
The most recent of two metamorphic events (M2) in the Snow Peakarea caused progressive changes in mineral parageneses in peliticrocks ranging from chlorite-biotite to kyanite grade. Systematicpartitioning of elements between coexisting phases indicatesa close approach to equilibrium during M2. Temperature estimatesfor M2 range from 440 ?C in the chlorite-biotite zone to 565?C in the kyanite zone. Coexistence of kyanite, garnet, ilmenite,and quartz places an upper pressure limit of approximately 60kb, and an upper temperature limit at the kyanite-sillimaniteboundary. Equilibrium of garnet, kyanite, plagioclase, and quartzindicates that total pressure of equilibration of kyanite-bearingassemblages was approximately 6 kb. Pressure estimates basedon equilibrium of garnet, muscovite, biotite, and plagioclaseindicate a pressure gradient between garnet and lower staurolitezone samples, which equilibrated at approximately 3? 5 kb, andupper staurolite to kyanite zone samples, which equilibratedat 5? 5 kb. Equilibrium of paragonite component of muscovitewith plagioclase, kyanite and quartz, distribution of speciesin C-O-H fluids in equilibrium with graphite, and the presenceof zoisite in adjacent calc-silicate rocks indicate that themetamorphic fluid in kyanite-bearing assemblages contained 65-90mole per cent H2O. However, the experimentally calibrated equilibriumof staurolite, quartz, garnet, and kyanite can be reconciledwith estimated temperature only if XH2O in the fluid was verylow ( 33 mole per cent). T-X(Fe-Mg) relations among chlorite, biotite, garnet, staurolite,kyanite, muscovite and quartz are calculated at 6 kb on thebasis of 3 independent Fe-Mg exchange equilibria: garnet-biotite,chlorite-biotite (empirical, this study), garnet-staurolite(empirical, this study), and three independent net transferequilibria. Alternative sets of data for Mg-chlorite and Fe-stauroliteare evaluated by comparing observed and calculated changes inmineral paragenesis and mineral composition with grade. Chloritedata from Helgeson et al., 1978 give T-X(Fe-Mg) relations consistentwith trends observed in these rocks, whereas data derived frombreakdown of clinochlore and clinochlore + dolomite do not.Calculation of T-X(Fe-Mg) relations consistent with observationsrequires lower values of and than those consistent with experiments on the breakdown of staurolite+quartz.  相似文献   

4.
Amphibolites of the Post Pond Volcanics, south-west corner ofthe Mt. Cube Quadrangle, Vermont, are characterized by a greatdiversity of bulk rock types that give rise to a wide varietyof low-variance mineral assemblges. Original rock types arebelieved to have been intrusive and extrusive volcanics, hydrothermallyaltered volcanics and volcanogenic sediments with or withoutadmixtures of sedimentary detritus. Metamorphism was of staurolite-kyanitegrade. Geothermometry yields a temperature of 535 ± 20°C at pressures of 5–6 kb. Partitioning of Fe and Mg between coexisting phases is systematic,indicating a close approach to chemical equilibrium was attained.Relative enrichment of Fe/Mg is garnet > staurolite >gedrite > anthophyllite cummingtonite hornblende > biotite> chlorite > wonesite > cordierite dolomite > talc;relative enrichment in Mn/Mg is garnet > dolomite > gedrite> staurolite cummingtonite > hornblende > anthophyllite> cordierite > biotite > wonesite > chlorite >talc. between coexisting amphiboles varies as a function ofbulk Fe/Mg, which is inconsistent with an ideal molecular solutionmodel for amphiboles. Mineral assemblages are conveniently divided into carbonate+ hornblende-bearing, hornblende-bearing (carbonate-absent)and hornblende-absent. The carbonate-bearing assemblages allcontain hornblende + dolomite+ calcite + plagioclase (andesineand/or anorthite) + quartz with the additional phases garnetand epidote (in Fe-rich rocks) and chlorite ± cummingtonite(in magnesian rocks). Carbonate-bearing assemblages are restrictedto the most calcic bulk compositions. Hornblende-bearing (carbonate absent) assemblages occur in rocksof lower CaO content than the carbonate-bearing assemblages.All of these assemblages contain hornblende + andesine ±quartz + Fe-Ti oxide (rutile in magnesian rocks and ilmenitein Fe-rich rocks). In rocks of low Al content, cummingtoniteand two orthoamphiboles (gedrite and anthophyllite) are common.In addition, garnet is found in Fe-rich rocks and chlorite isfound in Mg-rich rocks. Several samples were found that containhornblende + cummingtonite + gedrite + anthophyllite ±garnet +chlorite + andesine + quartz + Fe-Ti oxide ±biotite. Aluminous assemblages contain hornblende + staurolite+ garnet ± anorthite/bytownite (coexisting with andesine)± gedrite ± biotite ± chlorite ±andesine ± quartz ± ilmenite. Hornblende-absentassemblages are restricted to Mg-rich, Ca-poor bulk compositions.These rocks contain chlorite ± cordierite ± staurolite± talc ± gedrite ± anthophyllite ±cummingtonite ± garnet ± biotite ± rutile± quartz ± andesine. The actual assemblage observeddepends strongly on Fe/Mg, Ca/Na and Al/Al + Fe + Mg. The chemistry of these rocks can be represented, to a firstapproximation, by the model system SiO2–Al2O3–MgO–FeO–CaO–Na2O–H2O–CO2;graphical representation is thus achieved by projection fromquartz, andesine, H2O and CO2 into the tetrahedron Fe–Ca–Mg–Al.The volumes defined by compositions of coexisting phases filla large portion of this tetrahedron. In general, the distributionof these phase volumes is quite regular, although in detailthere are a large number of phase volumes that overlap otherphase volumes, especially with respect to Fe/Mg ratios. Algebraicand graphical analysis of numerous different assemblages indicatethat every one of the phase volumes should shift to more magnesiancompositions with decreasing µH2O. It is therefore suggestedthat the overlapping phase volumes are the result of differentassemblages having crystallized in equilibrium with differentvalues of µH2O or µCO2 and that the different valuesmay have been inherited from the original H2O and CO2 contentof the volcanic prototype. If true, this implies that eithera fluid phase was not present during metamorphism, or that fluidflow between rocks was very restricted.  相似文献   

5.
The granulite complex at Anakapalle, which was metamorphosedat 1000 Ma, comprises orthopyroxene granulites, leptynite, khondalite,mafic granulites, calc-silicate rock, spinel granulites, andtwo types of sapphirine granulites—one quartz-bearingand migmatitic and the other devoid of quartz and massive. Reactiontextures in conjunction with mineral-chemical data suggest severalcontinuous and discontinuous equilibria in these rocks. In orthopyroxenegranulites, dehydration-melting of biotite in the presence ofquartz occurred according to the reaction biotite+quartz= garnet (Py37)+K-feldspar+orthopyroxene + liquid. Later, this garnet broke down by the reaction garnet (Py37)+quartz= orthopyroxene + plagioclase. Subsequently, coronal garnet (Py30) and quartz were producedby the same reaction but proceeding in the opposite direction.In spinel granulites, garnet (Py42) and sillimanite were producedby the breakdown of spinel in the presence of quartz. In thetwo types of sapphirine granulites, garnet with variable pyropecontent broke down according to the reaction garnet = sapphirine + sillimanite + orthopyroxene. The highest pyrope content (59 mol %) was noted in garnets fromquartz-free sapphirine granulites compared with the quartz-bearingone (53 mol % pyrope). The calculated positions of the mineralreactions and diserete P-T points obtained by thermobarometrydefine a retrograde P-T trajectory during which a steep decompressionof 1.5 kbar from P-Tmax of 8 kbar and 900C was followed bynear-isobaric cooling of 300C. During this decompression, garnetwith variable pyrope contents in different rocks broke downon intersection with various divariant equilibria. Near-isobariccooling resulted in the formation of coronal garnet around second-generationorthopyroxene and plagioclase replacing earlier porphyroblasticgarnet in orthopyroxene granulites. It has been argued thatthe deduced P-T trajectory originated in an extensional regimeinvolving either a crust of near-normal thickness of a slightlyoverthickened crust owing to magmatic underaccretion.  相似文献   

6.
Spinel granulites, with or without sapphirine, occur as lensesin garnetiferous quartzofeldspathic gneisses (leptynites) nearGokavaram in the Eastern Ghats Belt, India. Spinel granulitesare mineralogically heterogeneous and six mineral associationsoccur in closely spaced domains. These are (I) spinel–quartz–cordierite,(II) spinel–quartz–cordierite–garnet–orthopyroxene–sillimanite,(III) spinel–cordierite–orthopyroxene–sillimanite,(IV) spinel–quartz–sapphirine–sillimanite–garnet,(V) spinel–quartz-sapphirine–garnet and (IV) rhombohedral(Fe–Ti) oxide–cordierite–orthopyroxene–sillimanite.Common to all the associations are a porphyroblastic garnet(containing an internal schistosify defined by biotite, sillimaniteand quartz), perthite and plagioclase. Spinel contains variableamounts of exsolved magnetite and is distinctly Zn rich in thesapphirine-absent associations. XMg in the coexisting phasesdecreases in the order cordierite–biotite–sapphirine–orthopyroxene–spinel–garnet–(Fe–Ti)oxides. Textural criteria and compositional characteristicsof the phases document several retrograde mineral reactionswhich occurred subsequent to prograde dehydration melting reactionsinvolving biotite, sillimanite, quartz, plagioclase and spinel.The following retrograde mineral reactions are deduced: (1)spinel + quartz cordierite, (2) spinel + quartz garnet + sillimanite,(3) garnet + quartz cordierite + orthopyroxene, (4) garnet+ quartz + sillimanite cordierite, (5) spinel + cordierite orthopyroxene + sillimanite, (6) spinel + sillimanite + quartz sapphirine, (7) spinel + sapphirine + quartz garnet + sillimanite,and (8) spinel + quartz sapphirine + garnet. A partial petrogeneticgrid for the system FeO–MgO–Al2O3–SiO2–K2O–H2Oat high fo2, has been constructed and the effects of ZnO andFe2O3 on this grid have been explored Combining available experimentaland natural occurrence data, the high fo2 invariant points inthe partial grid have been located in P–T space. Geothermobarometricdata and consideration of the deduced mineral reactions in thepetrogenetic grid show that the spinel granulites evolved throughan anticlockwise P–T trajectory reaching peak metamorphicconditions >9 kbar and 950C, followed by near-isobaric cooling(dT/dP = 150C/kbar). This was superimposed by an event of near-isothermaldecompression (dT/dP = 15C/kbar). The studied spinel granulites,therefore, preserve relic prograde mineral associations andreaction textures despite being metamorphosed at very high temperatures,and bear evidence of polymetamorphism. KEY WORDS: spinel granulite; Eastern Ghats; India; polymetamorphism; geothermometry; geobarometry Corresponding author  相似文献   

7.
Garnet clinopyroxenite and garnet websterite layers occur locallywithin mantle peridotite bodies from the External Liguride Jurassicophiolites (Northern Apennines, Italy). These ophiolites werederived from an ocean–continent transition similar tothe present-day western Iberian margin. The garnet clinopyroxenitesare mafic rocks with a primary mineral assemblage of pyrope-richgarnet + sodic Al-augite (Na2O 2·5 wt %, Al2O3 12·5wt %), with accessory graphite, Fe–Ni sulphides and rutile.Decompression caused Na-rich plagioclase (An50–45) exsolutionin clinopyroxene porphyroclasts and extensive development ofsymplectites composed of secondary orthopyroxene + plagioclase(An85–72) + Al-spinel ± clinopyroxene ±ilmenite at the interface between garnet and primary clinopyroxene.Further decompression is recorded by the development of an olivine+ plagioclase-bearing assemblage, locally under syn-kinematicconditions, at the expense of two-pyroxenes + Al-spinel. Mg-richgarnet has been also found in the websterite layers, which arecommonly characterized by the occurrence of symplectites madeof orthopyroxene + Al-spinel ± clinopyroxene. The enclosingperidotites are Ti-amphibole-bearing lherzolites with a fertilegeochemical signature and a widespread plagioclase-facies myloniticfoliation, which preserve in places a spinel tectonite fabric.Lu–Hf and Sm–Nd mineral isochrons (220 ±13 Ma and 186.0 ± 1·8 Ma, respectively) have beenobtained from a garnet clinopyroxenite layer and interpretedas cooling ages. Geothermobarometric estimates for the high-pressureequilibration have yielded T 1100°C and P 2·8 GPa.The early decompression was associated with moderate cooling,corresponding to T 950°, and development of a spinel tectonitefabric in the lherzolites. Further decompression associatedwith plagioclase–olivine growth in both peridotites andpyroxenites was nearly isothermal. The shallow evolution occurredunder a brittle regime and led to the superposition of hornblendeto serpentine veining stages. The garnet pyroxenite-bearingmantle from the External Liguride ophiolites represents a raretectonic sampling of deep levels of subcontinental lithosphereexhumed in an oceanic setting. The exhumation was probably accomplishedthrough a two-step process that started during Late Palaeozoiccontinental extension. The low-pressure portion of the exhumationpath, probably including also the plagioclase mylonitic shearzones, was related to the Mesozoic (Triassic to Jurassic) riftingthat led to continental break-up. In Jurassic times, the studiedmantle sequence became involved in an extensional detachmentprocess that resulted in sea-floor denudation. KEY WORDS: garnet pyroxenite; ophiolite; non-volcanic margin; mantle exhumation; Sm–Nd and Lu–Hf geochronology  相似文献   

8.
Mineral chemistries and textures are described from a suiteof sapphirine-bearing granulites from the Gruf Complex of theItalian Central Alps. The granulites contain combinations ofgarnet, orthopyroxene, sapphirine, sillimanite, cordierite,biotite, quartz, spinel, corundum, staurolite, plagioclase,K-feldspar, ilmenite and rutile, in assemblages with low (usuallynegative) variance. They are outstanding in that they preservea textural and chemical record of a protracted metamorphic evolution. Reaction textures are common and include: (i) pseudomorphs (e.g.of sillimanite after kyanite); (ii) relatively coarse-grainedmonomineralic reaction rims (e.g. of cordierite between sapphirineand quartz); (iii) fine-grained symplectitic coronas (e.g. oforthopyroxene + sapphirine round garnet); (iv) inclusions, ingarnet cores, of minerals (e.g. staurolite) not found elsewherein the rocks. Detailed microprobe study has revealed large chemical variationswithin each phase. Different textural types of each phase havedifferent compositions, and strong zoning is preserved in garnet(Mg/(Mg + Fe) from 0.30 to 0.61) and coarse sapphirine. Inclusionpopulations in garnet correlate with host composition. The textural and chemical features are interpreted in termsof successive equilibrium assemblages and reactions. Metamorphicconditions operative at each stage in the evolution are calculatedusing published geothermometers and geobarometers as well asthermodynamically calibrated MAS and FASH equilibria. The resultsare used to construct a P—T-time path for the sapphirine-granulites,which can be summarized as follows: (i) Increasing T at high P (>7 kb). Partial melting. (ii) A maximum T of 830 ?C attained at 10 kb. (iii) Almost isothermal decompression, reaching 750 ?C at 5kb, under conditions of low µH2O. (iv) Further cooling, and decompression. Localized hydration.Rocks exposed. The P—T-time path is interpreted as the product of a singlemetamorphic cycle (the tertiary ‘Lepontine’ event)and is extrapolated to the Gruf Complex as a whole. When combinedwith published geochronological data, the results indicate anaverage uplift rate in excess of 2 mm/yr for the Gruf Complexbetween 38 and 30 Ma ago. An in situ partial melting origin for the sapphirine-granulitesis favoured. Extraction of an iron-rich granitic liquid froma normal pelitic palaeosome could generate a refractory residuewith the required Mg, Al-rich composition. The change in bulksolid composition during partial melting is thought to accountfor the extraordinarity strong zoning in the garnets.  相似文献   

9.
Proterozoic migmatitic paragneisses exposed in the McCulloughRange, southern Nevada, consist of cordierite+almanditic garnet+biotite+sillimanite+plagioclase+K-feldspar+quartz+ilmenite+hercynite.This assemblage is indicative of a low-pressure fades seriesat hornblende-granulite grade. Textures record a single metamorphicevent involving crystallization of cordierite at the expenseof biotite and sillimanite. Thermobarometry utilizing cation exchange between garnet, biotite,cordierite, hercynite, and plagioclase yields a preferred temperaturerange of 590–750?C and a pressure range of 3–4 kb.Equilibrium among biotite, sillimanite, quartz, garnet, andK-feldspar records aH2O between 0?03 and 0?26. The low aH2Otogetherwith low fO2 (QFM) and optical properties of cordierite indicatemetamorphism under fluid-absent conditions. Preserved mineralcompositions are not consistent with equilibrium with a meltphase. Earlier limited partial melting was apparently extensiveenough to cause desiccation of the pelitic assemblage. The relatively low pressures attending high-grade metamorphismof the McCullough Range paragneisses allies this terrane withbiotite-cordierite-garnet granulites in other orogenic belts.aosure pressures and temperatures require a transient apparentthermal gradient ofat least 50?C/km during part of this Proterozoicevent in the southern Cordillera. *Present address: Institute of Geophysics and Planetary Physics, University of California, Los Angeles, CA 90024-1567  相似文献   

10.
The garnet–muscovite (GM) geothermometer and the garnet–muscovite–plagioclase–quartz(GMPQ) geobarometer have been simultaneously calibrated underconditions of T = 450–760°C and P = 0·8–11·1kbar, using a large number of metapelitic samples in the compositionalranges = 0·53–0·81, = 0·05–0·24, = 0·03–0·23 in garnet, = 0·17–0·74 in plagioclase, and Fe = 0·04–0·16, Mg =0·04–0·13, AlVI = 1·74–1·96in muscovite on the basis of 11 oxygens. The resulting GM thermometeryielded similar temperature estimates (mostly within ±50°C)to that of the garnet–biotite thermometer, and successfullydiscerned the expected systematic temperature change of progradesequences, thermal contact zones and an inverted metamorphiczone. The resulting GMPQ barometer yielded similar pressureestimates (mostly within ±1·0 kbar) to the garnet–aluminumsilicate–plagioclase–quartz (GASP) barometer andplaced the aluminosilicate-bearing samples in the appropriatealuminosilicate stability fields. Application of the GMPQ barometerto thermal contact aureoles or rocks within limited geographicalareas confirmed the expected constant pressures that shouldexist in these settings. The random errors of the GM thermometerand the GMPQ barometer are estimated to be ±16°Cand ±1·5 kbar, respectively. When biotite or aluminosilicateis absent in metapelites, metamorphic P–T conditions maybe determined by simultaneously applying the GM thermometerand the GMPQ barometer. KEY WORDS: application; calibration; geobarometer; geothermometer; metapelite  相似文献   

11.
Dehydration-melting of Biotite Gneiss and Quartz Amphibolite from 3 to 15 kbar   总被引:80,自引:20,他引:60  
We performed vapor-absent melting and crystallization experimentson two bulk compositions that model metamorphic rocks containinga single hydrous phase: a biotite gneiss [37% bio (mg-number55), 34% qtz, 27% plg (An38), 2% ilm] and a quartz amphibolite[54% hbl (mg-number 60), 24% qtz, 20% plg (An38), 2% ilm]. Experimentswere performed at 3 and 5 kbar in internally heated pressurevessels (IHPV), and at 7, 10, 125 and 15 kbar in piston cylinderapparatus (PC), from the vapor-absent solidi to (at least) thetemperature at which the hydrous mineral disappeared. Dehydration-meltingbegins at similar temperatures in both bulk compositions, rangingfrom T850C at P = 3 kbar T930C at P = 15 kbar. The hydrousmineral disappears 50C above the solidus in both systems, exceptin IHPV experiments at f(O2) above Ni–NiO, in which biotitestability extends up to atleast 80C above the solidus. At theT at which the hydrous minerals disappear the biotite gneissproduces 2–3 times more melt than the quartz amphibolite(50–60 wt% vs 20–30 wt%). In both systems, variationsin melt productivity with P are controlled by three competingfactors: (1) the positive d P/dT slopes of the solidi, (2) decreasingH2O activity with increasing P at constant H2O content, and(3) Na2O activity, which increases with P concomitantly withbreakdown of plagioclase. Melt productivities at T = 920–950Care maximized at intermediate pressures (7 kbar). The biotitegneiss produces strongly peraluminous granitic melts (SiO2>70wt%) and residual assemblages of quartz norite (P>125 kbar)or garnet pyroxenite (P>125 kbar). The quartz amphiboliteproduces strongly peraluminous granodioritic melts (SiO2>70wt%) that coexist with clinopyroxene + orthopyroxene + plagioclase+ quartz at P>10 kbar)garnet. The results of coupled meltingand crystallization experiments on the quartz amphibolite suggestthat strongly peraluminous granitoid rocks (e.g. cordierite-bearingand two-mica granites) can be derived from melting of Al-poorprotoliths. KEY WORDS: dehydration-melting; biotite gneiss; amphibolite; felsic magmas *Corresponding author  相似文献   

12.
The melting relations of two proposed crustal source compositionsfor rhyolitic magmas of the Taupo Volcanic Zone (TVZ), New Zealand,have been studied in a piston-cylinder apparatus at 10 kb totalpressure and a range of water activities generated by H2O-CO2vapour. Starting materials were glasses of intermediate composition(65 wt.% Si02 representing a metaluminous ‘I-type’dacite and a peraluminous ‘S-type’ greywacke. Crystallizationexperiments were carried out over the temperature range 675to 975?C, with aH2O values of approximately 1?0, 0?75, 0?5,and 0?25. Talc-pyrex furnace assemblies imposed oxygen fugacitiesclose to quartz-fayalite-magnetite buffer conditions. Assemblages in both compositions remain saturated with quartzand plagioclase through 675–700?C at high aH2O, 725–750?Cat aH2O0?5, and 800–875?C at aH2O0?25, corresponding to<60–70% melting. Concentrations of refractory mineralcomponents (Fe, Mg, Mn, P, Ti) in liquids increase throughoutthis melting interval with increasing temperature and decreasingaH2O. Biotite and hornblende are the only mafic phases presentnear the solidus in the dacite, compared with biotite, garnet,gedritic orthoamphibole, and tschermakitic clinoamphibole inthe greywacke. Near-solidus melting reactions are of the type:biotite + quartz + plagioclase = amphibole ? garnet, potentiallyreleasing H2O for dehydration melting in the greywacke, butproducing larger amounts of hornblende and releasing littleH2O in the dacite. At aH2O0?25 and temperatures 825–850?C,amphibole dehydration produces anhydrous mineral phases typicalof granulite fades assemblages (clinopyroxene, orthopyroxene,plagioclase?quartz in the dacite; garnet, orthopyroxene, plagioclase?quartzin the greywacke) coexisting with melt proportions as low as40%. Hornblendce-saturated liquids in the dacite are weaklyperaluminous (0?3–1?6 wt.% normative C—within therange of peraluminous TVZ rhyolites), whereas, at aH2O0?25 andtemperatures 925?C, metaluminous partial melt compositions (upto 1?8 wt.% normative Di) coexist with plagioclase, orthopyroxene,and clinopyroxene. At all water activities, partial melts ofthe greywacke are uniformly more peraluminous (1?5–2?6wt.% normative C), reflecting their saturation in the componentsof more aluminous mafic minerals, particularly garnet and Al-richorthopyroxene. A metaluminous source for the predominantly Di-normativeTVZ rhyolites is therefore indicated. With decreasing aH2O the stability fields of plagioclase andquartz expand, whereas that of biotite contracts. These changesare reflected in the proportions of normative salic componentsin partial melts of both the dacite and greywacke. At high aH2O,partial melts are rich in An and Ab and poor in Or (trondhjemitic-tonalitic);with decreasing aH2O they become notably poorer in An and richerin Or (granodioritic-granitic). These systematic variationsin salic components observed in experimental metaluminous tostrongly peraluminous melts demonstrate that a wide varietyof granitoid magmas may be produced from similar source rocksdepending upon P-T-aH2O conditions attending partial melting.Some peraluminous granitoids, notably trondhjemitic leucosomesin migmatites, and sodic granodiorites and granites emplacedat deep crustal levels, have bulk compositions similar to nearsolidus melt compositions in both the dacite and greywacke,indicating possible derivation by anatexis without the involvementof a significant restite component.  相似文献   

13.
The terrane in the Panamint Mountains, California, was regionallymetamorphosed under low-pressure conditions and subsequentlyunderwent retrograde metamorphism. Prograde metamorphic isogradsthat mark the stability of tremolite + calcite, diopside, andsillimanite indicate a westward increase in grade. The studywas undertaken to determine the effects of the addition of Caon the types of assemblages that may occur in pelitic schists,to contribute to the understanding of the stability limits inP – T – aH2O – XFe of the pelitic assemblagechlorite + muscovite + quartz, and to estimate the change inenvironment from prograde to retrograde metamorphism. Peliticassemblages are characterized by andalusite + biotite + stauroliteand andalusite + biotite + cordierite. Within a small changein grade, chlorite breaks down over nearly the entire rangein Mg/(Mg + Fe) to biotite + aluminous mineral. Chlorite withMg/(Mg + Fe) = 0.55 is stable to the highest grade, and thegeneralized terminal reaction is chlorite + muscovite + quartz= andalusite + biotite + cordierite + H2O. Calcic schists arecharacterized by the assemblage epidote + muscovite + quartz+ chlorite + actinolite + biotite + calcite + plagioclase atlow grades and by epidote + muscovite + quartz + garnet + hornblende+ biotite + calcite + plagioclase at high grades. Epidote doesnot coexist with any AFM phase that is more aluminous than garnetor chlorite. Lithostatic pressure ranged from 2.3 kb to 3.0kb. During prograde-metamorphism temperatures ranged from lessthan 400° to nearly 700°C, and XH2O (assuming PH2O +PCO3 = Ptotal) is estimated to be 0.25 in siliceous dolomite,0.8 in pelitic schist, and 1.0 in calcic schist. Temperatureduring retrograde metamorphism was 450° ± 50°C,and all fluid were H2O-rich. A flux of H2O-rich fluid duringfolding is believed to have caused retrograde metamorphism.The petrogenetic grid of Albee (1965b) is modified to positionthe (A, Cd) invariant point relative to the aluminosilicatetriple point, which allows the comparison of facies series thatinvolve different chloritoid-reactions.  相似文献   

14.
The second of two periods of regional metamorphism that affectedpelitic rocks near Snow Peak caused complete re-equilibrationof mineral assemblages and resulted in a consistent set of metamorphicisograds. Metamorphic chlorite and biotite occur in the lowestgrade rocks. With increasing grade, garnet, staurolite, andkyanite join the assemblage, resulting in a transition zonecontaining all the above phases. At higher grade, chlorite,and finally staurolite disappear. Mass balance relations at isograds and among minerals of low-varianceassemblages have been modelled by a non-linear least-squaresregression technique. The progressive sequence can be describedin terms of schematic T-XH2O relations among chlorite, biotite,garnet, staurolite, and kyanite at Ptotal above the KFMASH invariantpoint involving those phases. The first appearance of garnetwas the result of an Fe-Mg-Mn continuous reaction. As temperaturerose, the garnet zone assemblage encountered the stauroliteisograd reaction, approximated by the model reaction: 3?0 chlorite + 1?5 garnet + 3?3 muscovite + 05 ilmenite = 1?0staurolite + 3?1 biotite + 1?5 plagioclase + 3?3 quartz + 10?3H2O. The staurolite zone corresponds to buffering along this reactionto the intersection where chlorite, biotite, garnet, staurolite,and kyanite coexist. The transition zone assemblage formed byreaction at this T–X H2O intersection which migrates towardmore H2O-rich fluid composition with progressive reaction. Thenet reaction at the intersection is approximated by the transitionzone reaction: 1?0 chlorite +1?1 muscovite + 0?2 ilmenite = 2?7 kyanite + 1?0biotite + 0?4 albite + 4?2 H2O. Chlorite was commonly the first phase to have been exhaustedand the remaining assemblage was buffered along a staurolite-outreaction, represented by the model reaction: 1?0 staurolite + 3?4 quartz + 0?4 anorthite + 1?4 garnet + 0?1ilmenite + 7?9 kyanite + 2?0 H2O. Consumption of staurolite by this reaction resulted in the highestgrade assemblage, which contains kyanite, garnet, biotite, muscovite,quartz, plagioclase, ilmenite, and graphite.  相似文献   

15.
Garnet-rich xenoliths in a Tertiary dike in the eastern MojaveDesert, California, preserve information about the nature andhistory of the lower crust. These xenoliths record pressuresof 10–12 kbar and temperatures of 750–800C. Approximately25% have mafic compositions and bear hornblende + plagioclase+ clinopyroxene + quartz in addition to garnet. The remainder,all of which contain quartz, include quartzose, quartzofeldspathic,and aluminous (kyanitesillimanite-bearing) varieties. Mostxenoliths have identifiable protoliths—mafic from intermediateor mafic igneous rocks, quartzose from quartz-rich sedimentaryrocks, aluminous from Al-rich graywackes or pelites, and quartzofeldspathicfrom feldspathic sediments and/or intermediate to felsic igneousrocks. However, many have unusual chemical compositions characterizedby high FeO(t), FeO(t)/MgO, Al2O3, and Al2O3/CaO, which correspondto high garnet abundance. The mineralogy and major-and trace-elementcompositions are consistent with the interpretation that thexenoliths are the garnet-rich residues of high-pressure crustalmelting, from which granitic melt was extracted. High 87Sr/86Srand low 143Nd/144Nd, together with highly discordant zirconsfrom a single sample with Pb/Pb ages of 1.7 Ga, demonstratethat the crustal material represented by the xenoliths is atleast as old as Early Proterozoic. This supracrustal-bearinglithologic assemblage may have been emplaced in the lower crustduring either Proterozoic or Mesozoic orogenesis, but Sr andNd model ages> 4 Ga require late Phanerozoic modificationof parent/daughter ratios, presumably during the anatectic event.Pressures of equilibration indicate that peak metamorphism andmelting occurred before the Mojave crust had thinned to itscurrent thickness of <30 km. The compositions of the xenolithssuggest that the lower crust here is grossly similar to estimatedworld-wide lower-crustal compositions in terms of silica andmafic content; however, it is considerably more peraluminous,has a lower mg-number, and is distinctive in some trace elementconcentrations, reflecting its strong metasedimentary and restiticheritage. * Author to whom correspondence should be addressed. Present address: Rensselaer Polytechnic Institute, Department of Earth and Environmental Sciences, Troy, New York 12180, USA. Fax: 518–276–8627; email: hanchj{at}rpi.edu.  相似文献   

16.
We present results of dehydration melting experiments [3–15kbar, 810–950C f(O2) QFM (quartz-fayalite-magetite)and Ni-NiO] on two Fe-rich mixtures of biotite (37%), plagioclaseAn38 (27%), quartz (34%) and ilmenite (2%), which differ onlyin their biotite compositions (mg-number 23 and 0.4). Dehydrationmelting of metagreywackes of constant modal composition generatesa wide range of melt fractions, melt compositions and residualassemblages, through the combined effects of pressure, Fe/Mgratio and f(O2). Crystallization of garnet is the chief controlon melting behavior, and is limited by two reactions: (1) thebreakdown of garnet + quartz to orthopyroxene + plagioclaseat low P, and (2) the oxidation of garnet to magnetite + anorthite+ quartz (enstatite), which is sensitive to both f(O2) andP. Because of these reactions, melting of Mg-rich metagreywackesis rather insensitive to f(O2) but strongly sensitive to P;the converse is true for Fe-rich metagreywackes. Garnet crystallizationrequires that plagioclase break down incongruently, liberatingalbite. This increases the Na2O content of the melts and enhancesmelt production. Thus, melting of metagreywacke in a reducingdeep-crustal environment (with garnet stable) would producemore, and more sodic, melt than would garnet-absent meltingof the same source material in a relatively oxidizing, shallow-crustalenvironment. KEY WORDS: anatexis; metasediments; gneisses; granites; garnet *Corresponding author. Telephone: 706-542-2394; fax: 706-542-2425; e-mail: alpatino{at}uga.cc.uga.edu  相似文献   

17.
Talc-phengite, an assemblage hitherto believed to be rare, isfound in regional distribution in the Gran Paradiso area, whereit occurs in the characteristic mineral association chloritoid-talc-phengite(Si3·43·5). Talc contains up to 15 moleper cent minnesotaite, and chloritoid up to 45 mole per centof the magnesium end member. The talc-phengite stability resultsbasically from the disappearance of chlorite + quartz in rockswith low and moderate MgO/FeO ratios through the divariant reactionsfirst recognized here: Fe-Mg-Chlorite+quartz talc + garnet + H2O and Fe-Mg-chlorite + quartz talc + Chloritoid + H2O These reactions imply the disappearance of the join biotite-chloritein the presence of quartz and thus open a talc-phengite stabilityfield (±garnet or chloritoid or Mg-chlorite) which extends,with increasing P and T, toward Mg-richer compositions. Whetheror not it reaches the magnesian subsystem in the Gran Paradisoarea cannot be ascertained. However, the sporadic occurrenceof the high-pressure assemblage talc-kyanite-chloritoid 50 to70 km further northeast in the vicinity of the Monte Rosa massifwithin the same lithological unit (Zermatt-Saas Fee zone s.l.)indicates the instability of any chlorite in quartz-bearingrocks, and implies that talc-phengite must also be stable forpurely magnesian compositions in that area. This progressivestabilization of talc-phengite with increasing metamorphic gradesupports Abraham & Schreyer's (1976) hypothesis of a high-pressurefield for this assemblage, and rules out Chernosky's construction(1978) implying a low-pressure field. The following paragenetic sequence is proposed for pelitic compositionswith intermediate Mg/Fe ratios and excess quartz subjected tohigh-pressure metamorphism with maximum temperatures near 400–500°C: chlorite-illite chlorite-phengite chloritoid-talc-phengite.The absence of biotite is a compositional effect due to thehigh degree of phengite substitution in the white mica. *Present address: Institut fr Mineralogic, Ruhr-Universitt, Postfach 10 21 48, D-4630 Bochum 1, Federal Republic of Germany.  相似文献   

18.
Marbles and metapelites from the Reynolds Range Group (centralAustralia) were regionally metamorphosed at low pressure duringM2 at 1.6 Ga, M2 ranged in grade from greenschist to granulitefacies along the length of the Reynolds Range, and overprinted1.78 Ga granites and their contact aureoles in the ReynoldsRange Group metasediments. At all M2 grades the marbles andmetapelites have highly variable oxygen isotope ratios [marbles:18O(carb) 14–20%; metapelites: 18O 6–14%). Similarly, 1.78 Ga granites have highly variable oxygen isotope ratios(18O 5–13%), with the lowest values occurring at thegranite margins. In all rock types, the lowest oxygen isotopevalues are consistent with the infiltration of channelled magmaticand/or meteoric fluids. The variable lowering of oxygen isotopevalues resulted from pre-M2 contact metamorphism and fluid—rockinteraction around the 1.78 Ga granites. In contrast, mineralassemblages in the marbles define a trend of increasing XCO2with increasing grade from <0.05 (greenschist facies) to0.7–1.0 (granulite facies). This, together with the lackof regionally systematic resetting of oxygen isotope ratios,implies that there was little fluid—rock interaction duringprograde regional metamorphism. KEY WORDS: low pressure; polymetamorphism; fluids; stable isotopes; petrology *Corresponding author Fax: 61–3–94791272. e-mail: geoisb{at}lure.latrobe.edu.au  相似文献   

19.
Integrated metamorphic and geochronological data place new constraintson the metamorphic evolution of a Neoproterozoic orogen in eastAntarctica. Granulite-facies rocks from a 150 km stretch ofthe Kemp Land coast reflect peak conditions involving T 870–990°Cat P 7·4–10 kbar, with pressure increasing westwardtowards an Archaean craton. Electron microprobe-derived (Th+ U)–Pb monazite ages from metapelitic assemblages indicatethat the major mineral textures in these rocks developed duringthe c. 940 Ma Rayner Orogeny. Complex compositional zoning inmonazite suggests high-T recrystallization over c. 25 Myr. Diversityin metapelitic reaction textures reflects silica and ferromagnesiancontent: Si-saturated Fe-rich metapelites contain garnet thatis partially pseudomorphed by biotite and sillimanite, whereasSi-saturated Mg-rich metapelites and Si-undersaturated metapeliticpods have reaction microstructures involving cordierite enclosingorthopyroxene, garnet and/or sapphirine, cordierite + sapphirinesymplectites around sillimanite and coarse-grained orthopyroxene+ corundum separated by sapphirine coronae. Interpretationsbased on PT pseudosections provide integrated bulk-rockconstraints and indicate a clockwise PTt pathcharacterized by a post-peak PT trajectory with dP/dT 15–20 bar/ °C. This moderately sloped decompressive-coolingPT path is in contrast to near-isothermal decompressionPT paths commonly cited for this region of the RaynerComplex, with implications for the post-collisional tectonicresponse of the mid- to lower crust within this orogenic belt. KEY WORDS: electron microprobe monazite dating; granulite facies; Rayner Complex; sapphirine; THERMOCALCMinerals abbreviations: q, quartz; g, garnet; sill, sillimanite; ky, kyanite; opx, orthopyroxene; cd, cordierite; ksp, alkali feldspar; pl, plagioclase; bi, biotite; sp, spinel; ilm, ilmenite; mt, magnetite; ru, rutile; sa, sapphirine; cor, corundum; osm, osumilite; liq, silicate melt; mnz, monazite  相似文献   

20.
Pan-African high-grade metamorphism in the Kerala KhondaliteBelt (South India) led to the in situ formation of garnet-bearingleucosomes (L1) in sodic quartz—alkali feldspar—biotitegneisses. Microtextures, mineralogy and the geochemical characteristicsof in situ leucosomes (L1) and gneiss domains (GnD) indicatethat the development of leucosomes was mainly controlled bythe growth of garnet at the expense of biotite. This is documentedby the selective transfer of FeO, MgO, , Sm and the heavy rareearth elements into the L1 domains. P-T constraints (T>800C,P>6kbar, aH2O0.3) suggest that the leucosomes were formedthrough complete melting of biotite in fluid-absent conditions,following the model reaction Biotite+Alkali feldspar+QuartzlGarnet+Ilmenite+Melt.The fraction of melt generated during this process was low (<10vol.%). The identical size of the leucosomes as well as theirhomogeneous and isotropic distribution at outcrop scale, whichlacks any evidence for melt segregation, suggest that the migmatiteremained a closed system. Subsequent to migmatization, the leptyniticgneisses were intruded by garnet-bearing leucogranitic melts(L2), forming veins parallel and subperpendicular to the foliation.The leucogranites are rich in potassium (K2O5.5 wt%), (Ba400p.p.m.) and Sr (300 p.p.m.), and exhibit low concentrationsof Zr (40 p.p.m.), Th (<1 p.p.m.) and (<10 p.p.m.). Thechondrite-normalized REE spectra show low abundances (LaN20,LuN3) and are moderately fractionated (LaN/LuN7). An Eu anomalyis absent or weakly negative. The higher 87Sr/86Sr ratio at550 Ma (0.7345) compared with the migmatite (0.7164) precludesa direct genetic relationship between leptynitic gneisses andleucogranites at Manali.Nevertheless, the chemical and mineralogicalcompositions of the leuocogranites strongly favour a derivationthrough fluid-absent biotite melting of isotopically distinctbut chemically comparable Manali-type gneisses. The undersaturationof Zr, Th and REE, a typical feature of leucogranitic meltsgenerated during granulite facies anatexis of psammo-peliticlithologies and attributed to disequilibrium melting with incompletedissolution of accessory phases (zircon, monazite), is weaklydeveloped in the leucogranites of Manali.It is concluded thatthis is mainly due to the sluggish migration of the melts instatic conditions, which facilitated equilibration with therestitic gneisses. *Fax: 0228-732763; e-mail: ingo.braun{at}uni-bonn.de  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号