首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The accurate and precise determination of Li isotopic composition by MC‐ICP‐MS suffers from the poor performance of traditional column chromatography. Previously established chromatographic processes cannot completely remove Na in complex geological samples, which is currently interpreted to be a result of Na breakthrough. In this study, Na breakthrough during single‐column purification was found to differ between simply artificial Na‐containing sample solutions, where a little Na residue was found, and silicate rocks, where a large amount of breakthrough occurred. A revised two‐step column purification for Li using 0.5 and 0.3 mol l?1 HCl as eluents was designed to remove the Na. This modified method achieves high‐efficiency Li purification from Na and consequently avoiding high Na/Li ratio interference for subsequent MC‐ICP‐MS analyses. The proposed method was validated by the analysis of a series of reference materials, including Li2CO3 (IRMM‐016, ‐0.10‰), basalt (BCR‐2: 2.68‰; BHVO‐2: 4.39‰), andesite (AGV‐2: 6.46‰; RGM‐2: 2.59‰), granodiorite (GSP‐2: ?0.87‰) and seawater (CASS‐5, 30.88‰). This work reports early Na appearance prior to the elution curves in chromatography and emphasises its influence for subsequent Li isotope measurement. Based on the findings, the established two‐step method would be more secure than single‐column chemistry for Li purification.  相似文献   

2.
A novel preconcentration method is presented for the determination of Mo isotope ratios by multi‐collector inductively coupled plasma‐mass spectrometry (MC‐ICP‐MS) in geological samples. The method is based on the separation of Mo by extraction chromatography using N‐benzoyl‐N‐phenylhydroxylamine (BPHA) supported on a microporous acrylic ester polymeric resin (Amberlite CG‐71). By optimising the procedure, Mo could be simply and effectively separated from virtually all matrix elements with a single pass through a small volume of BPHA resin (0.5 ml). This technique for separation and enrichment of Mo is characterised by high selectivity, column efficiency and recovery (~ 100%), and low total procedural blank (~ 0.18 ng). A 100Mo‐97Mo double spike was mixed with samples before digestion and column separation, which enabled natural mass‐dependent isotopic fractionation to be determined with a measurement reproducibility of  < 0.09‰ (δ98/95Mo, 2s) by MC‐ICP‐MS. The mean δ98/95MoSRM 3134 (NIST SRM 3134 Mo reference material; Lot No. 891307) composition of the IAPSO seawater reference material measured in this study was 2.00 ± 0.03‰ (2s, n = 3), which is consistent with previously published values. The described procedure facilitated efficient and rapid Mo isotopic determination in various types of geological samples.  相似文献   

3.
Titanite is a common accessory mineral that preferentially incorporates considerable amounts of U and light rare earth elements in its structure, making it a versatile mineral for in situ U‐Pb dating and Sm‐Nd isotopic measurement. Here, we present in situ U‐Pb ages and Sm‐Nd isotope measurement results for four well‐known titanite reference materials (Khan, BLR‐1, OLT1 and MKED1) and eight titanite crystals that could be considered potential reference material candidates (Ontario, YQ‐82, T3, T4, TLS‐36, NW‐IOA, Pakistan and C253), with ages ranging from ~ 20 Ma to ~ 1840 Ma. Results indicate that BLR‐1, OLT1, Ontario, MKED1 and T3 titanite have relatively homogeneous Sm‐Nd isotopes and low common Pb and thus can serve as primary reference materials for U‐Pb and Sm‐Nd microanalysis. YQ‐82 and T4 titanite can be used as secondary reference materials for in situ U‐Pb analysis because of their low common Pb. However, internal structures and mineral inclusions in YQ‐82 will require careful selection of suitable target domains. Pakistan titanite is almost concordant with an age of 21 Ma and can be used as a reference material when dating Cenozoic titanite samples.  相似文献   

4.
Measurement of Ba isotope ratios of widely available reference materials is required for interlaboratory comparison of data. Here, we present new Ba isotope data for thirty‐four geological reference materials, including silicates, carbonates, river/marine sediments and soils. These reference materials (RMs) cover a wide range of compositions, with Ba mass fractions ranging from 6.4 to 1900 µg g?1, SiO2 from 0.62% to 90.36% m/m and MgO from 0.08% to 41.03% m/m. Accuracy and precision of our data were assessed by the analyses of duplicate samples and USGS rock RMs. Barium isotopic compositions for all RMs were in agreement with each other within uncertainty. The variation of δ138/134Ba in these RMs was up to 0.7‰. The shale reference sample, affected by a high degree of chemical weathering, had the highest δ138/134Ba (0.37 ± 0.03‰), while the stream sediment obtained from a tributary draining carbonate rocks was characterised by the lowest δ138/134Ba (?0.30 ± 0.05‰). Geochemical RMs play a fundamental role in the high‐precision and accurate determination of Ba isotopic compositions for natural samples with similar matrices. Analyses of these RMs could provide universal comparability for Ba isotope data and enable assessment of accuracy for interlaboratory data.  相似文献   

5.
LA‐ICP‐MS is one of the most promising techniques for in situ analysis of geological and environmental samples. However, there are some limitations with respect to measurement accuracy, in particular for volatile and siderophile/chalcophile elements, when using non‐matrix‐matched calibration. We therefore investigated matrix‐related effects with a new 200 nm femtosecond (fs) laser ablation system (NWRFemto200) using reference materials with different matrices and spot sizes from 10 to 55 μm. We also performed similar experiments with two nanosecond (ns) lasers, a 193 nm excimer (ESI NWR 193) and a 213 nm Nd:YAG (NWR UP‐213) laser. The ion intensity of the 200 nm fs laser ablation was much lower than that of the 213 nm Nd:YAG laser, because the ablation rate was a factor of about 30 lower. Our experiments did not show significant matrix dependency with the 200 nm fs laser. Therefore, a non‐matrix‐matched calibration for the multi‐element analysis of quite different matrices could be performed. This is demonstrated with analytical results from twenty‐two international synthetic silicate glass, geological glass, mineral, phosphate and carbonate reference materials. Calibration was performed with the certified NIST SRM 610 glass, exclusively. Within overall analytical uncertainties, the 200 nm fs LA‐ICP‐MS data agreed with available reference values.  相似文献   

6.
The high abundances of the high field‐strength elements in ilmenite and rutile make these minerals particularly suitable for hafnium isotopic investigations. We present a technique for separating Hf by ion exchange chemistry from high‐TiO2 (> 40% m/m) minerals to achieve precise Hf isotopic composition analyses by MC (multiple collector)‐ICP‐MS. Following digestion and conversion to chlorides, the first elution column is used to separate iron and the rare earth elements, the second column is designed to separate most of the titanium from Hf, an evaporation step using HClO4 is then performed to remove any trace of HF in preparation for the third column, which is needed to eliminate any remaining trace of titanium. The modified chemistry helped to improve the yields from < 10 to > 78% as well as the analytical precision of the processed samples (e.g., sample 2033‐A1, 176Hf/177Hf = 0.282251 ± 25 before vs. 0.282225 ± 6 after). The technique was tested on a case study in which the Hf isotopic ratios of ilmenite and rutile (analysed prior to the chemistry improvement) were determined and permitted to evaluate that the origin of rutile‐bearing ilmenite deposits is from the same or similar magma than their, respectively, associated Proterozoic anorthosite massifs (Saint‐Urbain and Lac Allard) of the Grenville Province in Québec, Canada.  相似文献   

7.
Small mass‐dependent variations of molybdenum isotope ratios in oceanic and island arc rocks are expected as a result of recycling altered oceanic crust and sediments into the mantle at convergent plate margins over geological timescales. However, the determination of molybdenum isotope data precise and accurate enough to identify these subtle isotopic differences remains challenging. Large sample sizes – in excess of 200 mg – need to be chemically processed to isolate enough molybdenum in order to allow sufficiently high‐precision isotope analyses using double‐spike MC‐ICP‐MS techniques. Established methods are either unable to process such large amounts of silicate material or require several distinct chemical processing steps, making the analyses very time‐consuming. Here, we present a new and efficient single‐pass chromatographic exchange technique for the chemical isolation of molybdenum from silicate and metal matrices. To test our new method, we analysed USGS reference materials BHVO‐2 and BIR‐1. Our new data are consistent with those derived from more involved and time‐consuming methods for these two reference materials previously published. We also provide the first molybdenum isotope data for USGS reference materials AGV‐2, the GSJ reference material JB‐2 as well as metal NIST SRM 361.  相似文献   

8.
In this study the homogeneity of the zinc isotopic composition in the NIST SRM 683 reference material was examined by measuring the Zn isotopic signature in microdrilled sample powders from two metal nuggets. Zinc was purified using AG MP‐1M resin and then measured by MC‐ICP‐MS. Instrumental mass bias was corrected using the “sample‐standard bracketing” method and empirical external normalisation with Cu doping. After evaluating the potential effects of varying acid mass fractions and different matrices, high‐precision Zn isotope data were obtained with an intermediate measurement precision better than ± 0.05‰ (δ66Zn, 2s) over a period of 5 months. The δ66ZnJMC‐Lyon mean values of eighty‐four and fourteen drilled powders from two nuggets were 0.11 ± 0.02‰ and 0.12 ± 0.02‰, respectively, indicating that NIST SRM 683 is a good isotopic reference material with homogeneous Zn isotopes. The Zn isotopic compositions of seventeen rock reference materials were also determined, and their δ66Zn values were in agreement with most previously published data within 2s. The δ66Zn values of most of the rock reference materials analysed were in the range 0.22–0.36‰, except for GSP‐2 (1.07 ± 0.06‰, n = 12), NOD‐A‐1 (0.96 ± 0.03‰, = 6) and NOD‐P‐1 (0.78 ± 0.03‰, = 6). These comprehensive data should serve as reference values for quality assurance and interlaboratory calibration exercises.  相似文献   

9.
Lithium isotopes in carbonate rocks and minerals can serve as important tools for assessing palaeoclimates and palaeoenvironments. However, carbonate bulk rock samples are commonly mixtures of carbonate and silicate minerals, which require the complete digestion of the carbonate without digesting the silicate. Additionally, the low Li content (ng g?1 level) in carbonates provides an additional challenge. Hence, despite their wide applications, few carbonates have had their δ7Li values characterised, particularly carbonate reference materials, which hinders comparisons of Li isotope measurement results obtained in different laboratories and the further application of Li isotopes in geological studies. This study aimed to provide precise and accurate δ7Li values for carbonate reference materials based on an evaluation of sample leaching and the Li purification method for carbonates, as well as the adoption of soft extraction and 1012 Ω amplifiers to increase the intensity/blank ratio and matrix effect on Li isotope measurement. The precision and accuracy of the proposed procedure were verified by analysing synthetic carbonate samples and mono‐elemental Li solutions. With the developed method we provide δ7Li values for eleven carbonate reference materials with a precision of ~ 0.4‰. The accuracy of the δ7Li values was validated using the standard addition method.  相似文献   

10.
Matrix‐matched reference materials are necessary for accurate microbeam U‐Pb dating and Hf isotopic determination. This study introduces the RMJG rutile as a new potential reference material, which was separated from Palaeoproterozoic pelitic granulites collected in Hebei Province, China. LA‐ICP‐MS measurements indicate the RMJG rutile has extremely low Th (< 0.003 ± 0.01 µg g?1) and common Pb contents, but high Hf (102 ± 34 µg g?1), U (61 ± 11 µg g?1), and radiogenic Pb (~ 20 µg g?1) contents. Moreover, the rutile yields relatively constant U‐Pb ages and Hf isotopic data. The LA‐ICP‐MS analyses suggest that this rutile has a concordant U‐Pb age with a statistical mean 206Pb/238U and 207Pb/235U ages of 1749.9 ± 32.1 Ma and 1750.0 ± 26.4 Ma, respectively (2s), which are statistically indistinguishable from its ID‐TIMS ages (1750.6 ± 8.4 and 1750.1 ± 4.7 Ma). Precise determination of the 176Hf/177Hf ratio by MC‐ICP‐MS in solution mode (0.281652 ± 0.000006) is in good agreement with the statistical mean of the LA‐MC‐ICP‐MS measurements (0.28166 ± 0.00018). Therefore, the limited variations of RMJG U‐Pb age and Hf isotopic composition together with its extremely low common Pb and high Hf, U and Pb contents make it an ideal calibration and monitor reference material for LA‐ICP‐MS measurements.  相似文献   

11.
N(187Os)/N(188Os) ratios of six geological reference materials were measured using static Faraday cups (FCs) with 1013 Ω amplifiers by N‐TIMS. Our results show that the repeatability precision was 2–3‰ (2 RSD,= 3), when taking ~ 1 g of BHVO‐2 with 76 pg g?1 of Os mass fraction and ~ 2 g of BCR‐2 with 21 pg g?1 of Os mass fraction for each sample, whether measured by FCs or by secondary electron multiplier. The repeatability precision measured by FCs was 1–0.2‰ (2 RSD,= 3) when taking ~ 1 g of BIR‐2 with 350 pg g?1 of Os mass fraction, ~ 1 g of WGB‐1 with 493 pg g?1 of Os mass fraction or ~ 0.5 g of WPR‐1 with 13.3 ng g?1 of Os mass fraction for each sample, which is much better than those measured by secondary electron multiplier. Instead, when taking ~ 2 g of AGV‐2 with 4 pg g?1 Os mass fraction, the repeatability precision measured by secondary electron multiplier is 3–4‰ (RSD,= 3), which is better than those measured by FCs. Of the six reference materials analysed, WPR‐1 and BIR‐1a are the most homogeneous with regard to Os isotopic composition (2 RSD of 0.08% and 0.23%, respectively) when test portion masses are 0.5–1 g.  相似文献   

12.
We report mass‐independent and mass‐dependent Ca isotopic compositions for thirteen geological reference materials, including carbonates (NIST SRM 915a and 915b), Atlantic seawater as well as ten rock reference materials ranging from peridotite to sandstone, using traditional ε and δ values relative to NIST SRM 915a, respectively. Isotope ratio determinations were conducted by independent unspiked and 43Ca‐48Ca double‐spiked measurements using a customised Triton Plus TIMS. The mean of twelve measurement results gave ε40/44Ca values within ± 1.1, except for GSP‐2 that had ε40/44Ca = 4.04 ± 0.15 (2SE). Significant radiogenic 40Ca enrichment was evident in some high K/Ca samples. At an uncertainty level of ± 0.6, all reference materials had the same ε43/44Ca and ε48/44Ca values. We suggest the use of δ44/42Ca to report mass‐dependent Ca isotopic compositions. The precision under intermediate measurement conditions for δ44/42Ca over eight months in our laboratory was ± 0.03‰ (with n ≥ 8 repeat measurements). Measured igneous reference materials gave δ44/42Ca values ranging from 0.27‰ to 0.54‰. Significant Ca isotope fractionation may occur during magmatic and metasomatism processes. Studied reference materials with higher (Dyn/Ybn) tend to have lower δ44/42Ca, implying a potential role of garnet in producing magmas with low δ44/42Ca. Sandstone GBW07106 had a δ44/42Ca value of 0.22‰, lower than all igneous rocks studied so far.  相似文献   

13.
Lithium separation technique for three reference materials has been established together with precise determination of lithium isotope using a Neptune multi collector-inductively coupled plasma mass spectrometry (MC-ICP-MS). The solutions of lithium element standard reference materials, potassium, calcium, sodium, magnesium and iron single element, were used to evaluate analytical methods applied. Three separate stages of ion-exchange chromatography were carried out using organic cation-exchange resin (AG 50W-X8). Lithium was enriched for the three stages using different eluants, which are 2.8 M HCl, 0.15 M HCl and 0.5 M HCl in 30% ethanol, respectively. The columns for the first and second stages are made of polypropylene, and those for the third stage are made of quartz. Total reagent volume for the entire chemical process was 35 mL for three reference materials. The recovery yielded for the three stages is 98.9–101.2% with an average of 100.0%, 97.6–101.9% with an average of 99.9%, and 99.8–103.3% with an average of 100.6%, respectively. The precision of this technique is conservatively estimated to be ±0.72–1.04‰ (2σ population), which is similar to the precision obtained by different authors in different laboratories with MC-ICP-MS. The δ7Li values (7Li/6Li relative to the IRMM-016 standard) determined for andesite (AGV-2) and basalt (BHVO-2) are 5.68‰ (n=18), 4.33‰ (n=18), respectively. The δ7Li value (7Li/6Li relative to the L-SVEC standard) determined for IRMM-016 is –0.01‰ (n=15). All these analytical results are in good agreement with those previously reported. In addition, the results for the same kinds of samples analyzed at the MLR Key Laboratory of Metallogeny and Mineral Assessment, Institute of Mineral Resources, Chinese Academy of Geological Sciences, are consistent with those obtained at the Plasma Laboratory, University of Maryland, within analytical uncertainty. According to these experiment results, it is concluded that this proposed procedure is a suitable method for determining the lithium isotopic composition of natural samples.  相似文献   

14.
To assess the homogeneity of and provide the first Sr‐Nd‐Hf‐Pb isotopic reference values for the Chinese Geological Standard Glasses CGSG‐1, CGSG‐2, CGSG‐4 and CGSG‐5, we measured these isotopes in several measurement sessions over the course of nearly 3 years. The results were obtained by high‐precision MC‐ICP‐MS and TIMS. Our investigation indicates that these CGSG glass reference materials are homogenous with regard to Sr‐Nd‐Hf‐Pb isotopic distribution and are therefore suitable geochemical materials for Sr‐Nd‐Hf‐Pb isotope measurements. Clear differences in Sr‐Nd‐Hf‐Pb isotopic composition were observed between the glasses and the original powdered rock reference materials (CGSG‐2 and GSR‐7, and especially CGSG‐5 and GSR‐2) because of flux addition during preparation of the glasses. The new Sr‐Nd‐Hf‐Pb isotope data provided here might be useful to the geochemical community for in situ and bulk analysis.  相似文献   

15.
A new natural zircon reference material SA01 is introduced for U‐Pb geochronology as well as O and Hf isotope geochemistry by microbeam techniques. The zircon megacryst is homogeneous with respect to U‐Pb, O and Hf isotopes based on a large number of measurements by laser ablation‐inductively coupled plasma‐mass spectrometry (LA‐ICP‐MS) and secondary ion mass spectrometry (SIMS). Chemical abrasion isotope dilution thermal ionisation mass spectrometry (CA‐ID‐TIMS) U‐Pb isotopic analyses produced a mean 206Pb/238U age of 535.08 ± 0.32 Ma (2s, n = 10). Results of SIMS and LA‐ICP‐MS analyses on individual shards are consistent with the TIMS ages within uncertainty. The δ18O value determined by laser fluorination is 6.16 ± 0.26‰ (2s, n = 14), and the mean 176Hf/177Hf ratio determined by solution MC‐ICP‐MS is 0.282293 ± 0.000007 (2s, n = 30), which are in good agreement with the statistical mean of microbeam analyses. The megacryst is characterised by significant localised variations in Th/U ratio (0.328–4.269) and Li isotopic ratio (?5.5 to +7.9‰); the latter makes it unsuitable as a lithium isotope reference material.  相似文献   

16.
This study uses MC‐ICP‐MS for the precise analysis of the stable tin isotopic composition in ore minerals of tin (cassiterite, stannite), tin metal and tin bronze. The ultimate goal is to determine the provenance of tin in ancient metal objects. We document the isotope compositions of reference materials and compare the precision of different isotope ratios and the accuracy of different procedures of mass fractionation correction. These data represent a base with which isotopic data of future studies can be directly compared. The isotopic composition of cassiterite and stannite can be determined after reduction to tin metal and bronze, respectively. Both metals readily dissolve in HCl, but while the solutions of tin metal can be directly measured, the bronze solutions must be purified with an anion exchanger. The correction of the mass bias is best performed with an internal Sb standard and an empirical regression method. A series of Sn isotope determinations on commercially available mono‐element Sn solutions as well as reference bronze materials and tin minerals show fractionations ranging from about ?0.09‰ to 0.05‰/amu. The combined analytical uncertainty (2s) was determined by replicate dissolutions of reference materials of bronze (BAM 211, IARM‐91D) and averages at about 0.005‰/amu.  相似文献   

17.
Apatite incorporates variable and significant amounts of halogens (mainly F and Cl) in its crystal structure, which can be used to determine the initial F and Cl concentrations of magmas. The amount of chlorine in the apatite lattice also exerts an important compositional control on the degree of fission‐track annealing. Chlorine measurements in apatite have conventionally required electron probe microanalysis (EPMA). Laser ablation inductively coupled plasma‐mass spectrometry (LA‐ICP‐MS) is increasingly used in apatite fission‐track dating to determine U concentrations and also in simultaneous U‐Pb dating and trace element measurements of apatite. Apatite Cl measurements by ICP‐MS would remove the need for EPMA but the high (12.97 eV) first ionisation potential makes analysis challenging. Apatite Cl data were acquired using two analytical set‐ups: a Resonetics M‐50 193 nm ArF Excimer laser coupled to an Agilent 7700× quadrupole ICP‐MS (using a 26 μm spot with an 8 Hz repetition rate) and a Photon Machines Analyte Excite 193 nm ArF Excimer laser coupled to a Thermo Scientific iCAP Qc (using a 30 μm spot with a 4 Hz repetition rate). Chlorine concentrations were determined by LA‐ICP‐MS (1140 analyses in total) for nineteen apatite occurrences, and there is a comprehensive EPMA Cl and F data set for 13 of the apatite samples. The apatite sample suite includes different compositions representative of the range likely to be encountered in natural apatites, along with extreme variants including two end‐member chlorapatites. Between twenty‐six and thirty‐nine isotopes were determined in each apatite sample corresponding to a typical analytical protocol for integrated apatite fission track (U and Cl contents) and U‐Pb dating, along with REE and trace element measurements. 35Cl backgrounds (present mainly in the argon gas) were ~ 45–65 kcps in the first set‐up and ~ 4 kcps in the second set‐up. 35Cl background‐corrected signals ranged from ~ 0 cps in end‐member fluorapatite to up to ~ 90 kcps in end‐member chlorapatite. Use of a collision cell in both analytical set‐ups decreased the low mass sensitivity by approximately an order of magnitude without improving the 35Cl signal‐to‐background ratio. A minor Ca isotope was used as the internal standard to correct for drift in instrument sensitivity and variations in ablation volume during sessions. The 35Cl/43Ca values for each apatite (10–20 analyses each) when plotted against the EPMA Cl concentrations yield excellently constrained calibration relationships, demonstrating the suitability of the analytical protocol and that routine apatite Cl measurements by ICP‐MS are achievable.  相似文献   

18.
Over 1400 electron probe and 700 ion probe microanalyses were performed on eleven mineral separates to evaluate their potential as reference materials for in situ Li isotopic determination. Our results suggest the homogenous distributions of major elements, Li and its isotopes for each sample. Hence, these samples are suitable to be used as reference materials for in situ measurements of Li abundance and Li isotopes by secondary ion mass spectrometry (SIMS) or laser ablation‐inductively coupled plasma‐mass spectrometry (LA‐ICP‐MS). These samples have the advantage of mitigating probable matrix effects during calibration owing to the wide range of compositions. The effect of composition on the δ7Li of olivine measured by SIMS is a linear function of composition, with δ7Li increasing by 1.0‰ for each mole per cent decrease in forsterite component.  相似文献   

19.
Atmospheric dust is an integral component of the Earth system with major implications for the climate, biosphere and public health. In this context, identifying and quantifying the provenance and the processes generating the various types of dust found in the atmosphere is paramount. Isotopic signatures of Pb, Nd, Sr, Zn, Cu and Fe are commonly used as sensitive geochemical tracers. However, their combined use is limited by the lack of (a) a dedicated chromatographic protocol to separate the six elements of interest for low‐mass samples and (b) specific reference materials for dust. Indeed, our work shows that USGS rock reference materials BHVO‐2, AGV‐2 and G‐2 are not applicable as substitute reference materials for dust. We characterised the isotopic signatures of these six elements in dust reference materials ATD and BCR‐723, representatives of natural and urban environments, respectively. To achieve this, we developed a specific procedure for dust, applicable in the 4–25 mg mass range, to separate the six elements using a multi‐column ion‐exchange chromatographic method and MC‐ICP‐MS measurements.  相似文献   

20.
Three synthetic reference glasses were prepared by directly fusing and stirring 3.8 kg of high‐purity oxide powders to provide reference materials for microanalytical work. These glasses have andesitic major compositions and are doped with fifty‐four trace elements in nearly identical abundance (500, 50, 5 µg g?1) using oxide powders or element solutions, and are named ARM‐1, 2 and 3, respectively. We further document that sector‐field (SF) ICP‐MS (Element 2 or Element XR) is capable of sweeping seventy‐seven isotopes (from 7Li to 238U, a total of sixty‐eight elements) in 1 s and, thus, is able to quantify up to sixty‐eight elements by laser sampling. Micro‐ and bulk analyses indicate that the glasses are homogeneous with respect to major and trace elements. This paper provides preliminary data for the ARM glasses using a variety of analytical techniques (EPMA, XRF, ICP‐OES, ICP‐MS, LA‐Q‐ICP‐MS and LA‐SF‐ICP‐MS) performed in ten laboratories. Discrepancies in the data of V, Cr, Ni and Tl exist, mainly caused by analytical limitations. Preliminary reference and information values for fifty‐six elements were calculated with uncertainties [2 relative standard error (RSE)] estimated in the range of 1–20%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号