首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
本文在研究大庆铜矿床地质和工艺矿物学特征的基础上,对矿石进行了选矿工艺探索研究。通过三种选矿工艺的对比,表明选择性碎磨-浮选法是一种经济合理的,可获得高精矿品位和高回收率的最佳方法。  相似文献   

2.
四川省冶金地质勘查院对西藏冲江低品位含钼混合铜矿石进行选矿试验研究,针对氧化铜矿物的特性,使用螯合捕收剂B-135,采用的硫、氧混合浮选工艺使铜的回收率从77%提高至80%,同时采用铜钼混合浮选—精矿抑铜浮钼工艺流程,获得含铜20%、回收率79%的铜精矿和含钼48%、回收率87%的钼精矿。本研究使硫、氧混合浮选工艺在选别含钼混合铜矿石中得到了应用。  相似文献   

3.
伴生银矿石的工艺类型及其可选性特征(上)   总被引:1,自引:0,他引:1  
李艺 《矿产与地质》1998,12(1):45-54
根据有色金属矿床伴生银矿石中有用元素的赋存状态与分配、有用矿物的粒度和嵌布形态特征等工艺性质,提出了划分伴生银矿石工艺类型的依据,初步将伴生银矿石划分为伴生银铅锌矿石、伴生银铜矿石和伴生银钨锡矿石三大系列,并系统地研究各系列伴生银矿石的工艺特征,提出了按矿石工艺类型,选择合理的选矿工艺流程,确定或预测合理的选矿回收指标,达到提高伴生银选矿回收率,提高矿山开发经济效益的目的。  相似文献   

4.
为合理利用某堆存低品位萤石矿,采用光电-浮选联合流程进行选矿试验研究,光电选矿可以实现矿石中萤石和石英的有效分离,预先抛除大量尾矿,显著降低磨浮工段矿石处理量,使低品位萤石矿的合理利用成为可能。当原矿CaF2品位为17%左右时,采用光电-浮选联合流程,可获得CaF2品位为96.93%的萤石精矿,联合流程CaF2综合回收率为69.80%。  相似文献   

5.
夏瑜 《地质与勘探》2017,53(1):198-206
老挝班康姆某矿床位于老挝沙耶武里省巴莱县西南部,属于琅勃拉邦—黎府成矿带。前人已完成矿床铜、金资源量的预测,尚未对矿石工艺特性进行研究。本文利用化学分析、光学显微鉴定、X射线扫面电镜能谱分析、物相分析等方法,对该矿床铜金矿石的工艺特性进行了系统研究。研究确定矿石属原生硫化物型铜(伴生金)矿石,可选性好。选矿回收的目标元素为Cu、Au,品位分别为0.74%、0.94g/t。Cu主要以黄铜矿形式存在;Au主要以银金矿形式存在,以包裹金为主。黄铜矿为回收Cu、Au的目标矿物。当磨矿细度为-0.074mm占70%±之时,选矿试验得到Cu回收率90.8%、Au回收率63.5%,铜精矿产品达到国家二级标准。以上结果表明,矿石工艺矿物学研究对选矿试验具有良好的指导作用。  相似文献   

6.
本文简要介绍了铜山斑岩铜矿地质概况,论述了矿石矿物成分及化学成分,应用电子显微镜等方法,研究了伴生金、银的赋存状态,并根据选矿试验结果,获得铜钼精矿、铜、钼、硫选矿指标较高,其它有益组份金、银、铂、铼需通过冶金等方法的部分回收。  相似文献   

7.
针对河南某低品位难选石墨矿矿石特点,通过工艺矿物学研究,查明了影响石墨选矿的主要因素为原矿品位低,嵌布粒度微细,层状易浮脉石云母质量分数高,含可浮性好的黄铁矿。以此为基础开展了选矿试验研究,进行了大量的条件对比试验,通过药剂制度优化。结果表明,捕收剂复合柴油(柴油和十二烷基二甲基甜菜碱以4∶1混合)和杂醇类起泡剂MA的药剂组合可有效提高精矿品位和回收率、降低药剂用量,抑制剂石灰可实现石墨与黄铁矿的分离。闭路试验可以获得精矿石墨质量分数达到90.82%,回收率率为91.18%,有效提高矿石的综合利用价值。  相似文献   

8.
云南某铁矿含铜0.33%,镍0.14%,金0.11g/t,银0.13 g/t,铁14.60%,硅32.80%,氧化镁23.50%。利用了X射线衍射分析、扫描电镜等现代分析手段,进行了工艺矿物学研究,研究发现原矿中主要金属矿物为黄铜矿、磁铁矿、镍黄铁矿、赤铁矿,脉石矿物主要为蛇纹石、滑石、绿泥石。为了有效的回收矿石中的有价金属,进行了大量的试验研究。最终本文确定在磨矿细度60%-200目的条件下,以水玻璃+六偏磷酸钠+CMC做组合抑制剂,乙硫氮做捕收剂,采用一粗三精三扫的浮选流程,回收原矿中的铜、镍。所得混合精矿铜品位14.34%,回收率86.93%,镍品位4.30%,回收率64.17%。  相似文献   

9.
江山铅锌金矿选矿试验研究   总被引:1,自引:0,他引:1  
戴光发 《安徽地质》2015,(2):119-122
针对江山铅锌金矿品位低,矿物组成复杂的特点,采用"铅-锌-硫优先浮选,硫(金)精矿氧化焙烧预处理-焙砂氰化浸金"的工艺,金在铅(金)精矿、锌精矿、硫(金)精矿中的总回收率为81.25%。可使硫(金)精矿中96.89%的硫以二氧化硫的形式得到回收,对原矿的回收率为73.25%;金的作业浸出率达84.76%,对原矿的回收率为31.91%;浸渣中的铁品位达57.99%,对原矿的回收率为26.71%。通过试验研究与分析,确定适宜的选矿工艺及药剂制度,为今后合理开发该区矿石提供技术依据。  相似文献   

10.
针对云南某单一的低品位硫化钼矿,辉钼矿嵌布粒度粗细极不均匀,微细粒含量高的特点,进行了工艺矿物学与浮选回收技术研究.采用原矿粗磨—钼粗精矿再磨的阶段磨浮选矿回收工艺,以水玻璃和硫化钠做脉石矿物的抑制剂,以煤油和2#油分别作辉钼矿的捕收剂和起泡剂,对原矿Mo品位0.22%,全流程浮选闭路试验获得了钼精矿含M050.12%,回收率92.73%的浮选指标,浮选回收工艺流程合理、药剂制度简单环保.  相似文献   

11.
This paper reports the first results of a study of 11 isotope systems (3He/4He, 40Ar/36Ar, 34S/32S, 65Cu/63Cu, 62Ni/60Ni, 87Sr/86Sr, 143Nd/144Nd, 206–208Pb/204Pb, Hf–Nd, U–Pb, and Re–Os) in the rocks and ores of the Cu–Ni–PGE deposits of the Norilsk ore district. Almost all the results were obtained at the Center of Isotopic Research of the Karpinskii All-Russia Research Institute of Geology. The use of a number of independent genetic isotopic signatures and comprehensive isotopic knowledge provided a methodic basis for the interpretation of approximately 5000 isotopic analyses of various elements. The presence of materials from two sources, crust and mantle, was detected in the composition of the rocks and ores. The contribution of the crustal source is especially significant in the paleofluids (gas–liquid microinclusions) of the ore-forming medium. Crustal solutions were probably a transport medium during ore formation. Air argon is dominant in the ores, which indicates a connection between the paleofluids and the atmosphere. This suggests intense groundwater circulation during the crystallization of ore minerals. The age of the rocks and ores of the Norilsk deposits was determined. The stage of orebody formation is restricted to a narrow age interval of 250 ± 10 Ma. An isotopic criterion was proposed for the ore-bearing potential of mafic intrusions in the Norilsk–Taimyr region. It includes several interrelated isotopic ratios of various elements: He, Ar, S, and others.  相似文献   

12.
Mining induced subsidence can significantly affect mining costs where major surface facilities and natural environment need to be protected. Overburden grout injection is a technology used to control coal mine subsidence by injecting the mine waste material extracted from the coal back into the inter-burden rock during longwall mining. The flowing slurry is here categorised as a nonlinear viscous cohesive (Bingham plastic) fluid. During longwall mining the grout slurry is pumped into the separated beds of the rock mass through a central vertical borehole, which is drilled deep into the inter-burden rock strata above the coal seam. However, a blockage can occur in the injection system when the slurry velocity falls below a certain critical threshold velocity, indicating a material phase change from cohesive-viscous to cohesive-frictional. In situ field injection tests through boreholes have been simulated at a smaller scale at the CSIRO laboratory in Brisbane by pumping the slurry through a radial disk (gap = 4 mm) from its centre. Laboratory experiments indicate a general, nonlinear, cohesive, viscous, frictional model for shear behaviour of the slurry, in which the material shear parameters are functions of the disk radial distance. Complete dimensional and dimensionless analytical solutions have been developed based on an approach related to Bingham–Herschel–Bulkley fluid mechanics. The derived formulae include relations for minimum pump pressure, local pressure and pressure gradient, wall shear stress, volume rate, velocity and velocity gradient. The theoretical results match the experimental measurements. The experiments covered slurries with maximum particle sizes of 0.5 to 2 mm with about 50% being larger than 100 µm. The viscosities at the various solids concentrations were measured with a standard torsion viscometer. This study differs from the previous research in several distinct aspects, namely, consideration of the variable shear parameters rather than fixed values, inclusion of total nonlinear behaviour, and implementation of a friction function to mimic behaviour of the deposited and consolidating stiff slurry, which can cause a significant pressure rise as a result of the increased shear resistance.  相似文献   

13.
Most sulfide-rich magmatic Ni-Cu-(PGE) deposits form in dynamic magmatic systems by partial melting S-bearing wall rocks with variable degrees of assimilation of miscible silicate and volatile components, and generation of barren to weakly-mineralized immiscible Fe sulfide xenomelts into which Ni-Cu-Co-PGE partition from the magma. Some exceptionally-thick magmatic Cr deposits may form by partial melting oxide-bearing wall rocks with variable degrees of assimilation of the miscible silicate and volatile components, and generation of barren Fe ± Ti oxide xenocrysts into which Cr-Mg-V ± Ti partition from the magma. The products of these processes are variably preserved as skarns, residues, xenoliths, xenocrysts, xenomelts, and xenovolatiles, which play important to critical roles in ore genesis, transport, localization, and/or modification. Incorporation of barren xenoliths/autoliths may induce small amounts of sulfide/chromite to segregate, but incorporation of sulfide xenomelts or oxide xenocrysts with dynamic upgrading of metal tenors (PGE > Cu > Ni > Co and Cr > V > Ti, respectively) is required to make significant ore deposits. Silicate xenomelts are only rarely preserved, but will be variably depleted in chalcophile and ferrous metals. Less dense felsic xenoliths may aid upward sulfide transport by increasing the effective viscosity and decreasing the bulk density of the magma. Denser mafic or metamorphosed xenoliths may also increase the effective viscosity of the magma, but may aid downward sulfide transport by increasing the bulk density of the magma. Sulfide wets olivine, so olivine xenocrysts may act as filter beds to collect advected finely dispersed sulfide droplets, but other silicates and xenoliths may not be wetted by sulfides. Xenovolatiles may retard settling of – or in some cases float – dense sulfide droplets. Reactions of sulfide melts with felsic country rocks may generate Fe-rich skarns that may allow sulfide melts to fractionate to more extreme Cu-Ni-rich compositions. Xenoliths, xenocrysts, xenomelts, and xenovolatiles are more likely to be preserved in cooler basaltic magmas than in hotter komatiitic magmas, and are more likely to be preserved in less dynamic (less turbulent) systems/domain/phases than in more dynamic (more turbulent) systems/domains/phases. Massive to semi-massive Ni-Cu-PGE and Cr mineralization and xenoliths are often localized within footwall embayments, dilations/jogs in dikes, throats of magma conduits, and the horizontal segments of dike-chonolith and dike-sill complexes, which represent fluid dynamic traps for both ascending and descending sulfides/oxides. If skarns, residues, xenoliths, xenocrysts, xenomelts, and/or xenovolatiles are present, they provide important constraints on ore genesis and they are valuable exploration indicators, but they must be included in elemental and isotopic mass balance calculations.  相似文献   

14.
The Markandeya River Basin stretches geographically from 15o56′ to 16o08′ N latitude and 74o37′ to 74o58′ E longitude, positioned in the midst of Belgaum district, in the northern part of Karnataka. The groundwater quality of 54 pre-monsoon samples in the Markandeya River Basin was evaluated for its suitability for drinking and irrigation purposes by estimating pH, EC, TDS, hardness and alkalinity besides major cations (Na+, K+, Ca2+, Mg2+) and anions (HCO3–, Cl–, SO42–, PO43-, F-, NO3–), boron, SAR, % Na, RSC, RSBC, chlorinity index, SSP, non-carbonate hardness, Potential Salinity, Permeability Index, Kelley’s ratio, Magnesium hazard and Index of Base Exchange. Negative Index of Base Exchange indicates the chloro-alkaline disequilibrium in the study area and the majority of water samples fall in the rock dominance field based on Gibbs’ ratio. Permeability indices of classes I and II suggest suitability of groundwater for irrigation. Based on Cl, SO4, HCO3 concentrations, water samples can be classified as normal chloride (96.3%) and normal sulfate (94.4%) and normal bicarbonate (44.4%) water types.  相似文献   

15.
Komatiites are mantle-derived ultramafic volcanic rocks. Komatiites have been discovered in several States of India, notably in Karnataka. Studies on the distribution of trace-elements in the komatiites of India are very few. This paper proposes a simple, accurate, precise, rapid, and non-destructive wavelength-dispersive x-ray fluorescence (WDXRF) spectrometric technique for determining Sc, V, Cr, Co, Ni, Cu, Zn, Rb, Sr, Y, Zr, Nb, Ba, Pb, and Th in komatiites, and discusses the accuracy, precision, limits of detection, x-ray spectral-line interferences, inter-element effects, speed, advantages, and limitations of the technique. The accuracy of the technique is excellent (within 3%) for Sc, V, Cr, Co, Ni, Cu, Zn, Rb, Sr, Zr, Nb, Ba, Pb, and Th and very good (within 4%) for Y. The precision is also excellent (within 3%) for Sc, V, Cr, Co, Ni, Cu, Zn, Rb, Sr, Y, Zr, Nb, Ba, Pb, and Th. The limits of detection are: 1 ppm for Sc and V; 2 ppm for Cr, Co, and Ni; 3 ppm for Cu, Zn, Rb, and Sr; 4 ppm for Y and Zr; 6 ppm for Nb; 10 ppm for Ba; 13 ppm for Pb; and 14 ppm for Th. The time taken for determining Sc, V, Cr, Co, Ni, Cu, Zn, Rb, Sr, Y, Zr, Nb, Ba, Pb, and Th in a batch of 24 samples of komatiites, for a replication of four analyses per sample, by one operator, using a manual WDXRF spectrometer, is only 60 hours.  相似文献   

16.
We describe the new mineral species titanium,ideally Ti,found in the podiform chromitites of the Luobusha ophiolite in Tibet,People’s Republic of China.The irregular crystals range from 0.1 to 0.6 mm in diameter and form an intergrowth with coesite and kyanite.Titanium is silver grey in colour,the luster is metallic,it is opaque,the streak is grayish black,and it is non-fluorescent.The mineral is malleable,has a rough to hackly fracture and has no apparent cleavage.The estimated Mohs hardness is 4,and the calculated density is 4.503 g/cm3.The composition is Ti 99.23-100.00 wt%.The mineral is hexagonal,space group P63 /mmc.Unit-cell parameters are a 2.950(2),c 4.686(1),V 35.32(5) 3,Z = 2.The five strongest powder diffraction lines [d in(hkl)(I/I0)] are: 2.569(010)(32),2.254(011)(100),1.730(012)(16),1.478(110)(21),and 0.9464(121)(8).The species and name were approved by the CNMNC(IMA 2010–044).  相似文献   

17.
Rb-Sr isotopic dating of phlogopite megacryst samples separated from Sturgeon Lake kimberlite, Saskatchewan, yields a crystallization age of 98±1 Ma (2 , MSWD=1.2; 87Sr/86Sr(t)=0.7059). The 40Ar/39Ar analyses of a phlogopite megacryst sample indicate the presence of large amounts of excess 40Ar and yield an excessively old age of 410 Ma. Assessment of the Ar data using isotope correlation plots indicates clustering of the data points about a mixing line between the radiogenic 40Ar component at 98 Ma and a trapped component with uniform 36Ar/40Ar and Cl/40Ar. Values of {ie212-1} as high as +20%. (VSMOW) for calcite from the groundmass and a whole-rock sample indicate pervasive lowtemperature alteration. The {ie212-2} of matrix carbonate is-11.3%. (PDB), slightly lighter than typical values from the literature. The {ie212-3} values of about +5%. (VSMOW) for brown phlogopite megacrysts may be primary, green phlogopites are interpreted to be an alteration product of the brown variety and are 2%. heavier. Initial Nd-Sr-Pb isotopic ratios for a whole-rock sample {ie212-4}; 87Sr/86Sr=0.7063, 206Pb/204Pb=18.67, 207Pb/204Pb=15.54, 208Pb/204Pb=38.97) suggest an affinity with group I kimberlites. Initial {ie212-5} values of +1.7 and +0.5 (87Sr/ 86Sr(t)=0.7053 and 0.7050) for eclogitic and lherzolitic garnet megacryst samples, and values of 0.0 for two phlogopite megacryst samples reflect an origin from an isotopically evolving melt due to assimilation of heterogeneous mantle. Lilac high-Cr lherzolitic garnet megacrysts give an unusually high {ie212-6} of +28.6 (87Sr/86Sr=0.7046) indicating a xenocrystic origin probably from the lithospheric mantle. The very radiogenic 87Sr/86Sr and 206Pb/204Pb ratios of the kimberlite are consistent with melting of EM II (enriched) mantle components.  相似文献   

18.
The field setting, petrography, mineralogy, and geochemistry of a suite of picrite basalts and related magnesian olivine tholeiites (New Georgia arc picrites) from the New Georgia Volcanics, Kolo caldera in the active ensimatic Solomon Islands arc are presented. These lavas, with an areal extent in the order of 1002 km and almost 1 km thick in places, are located close to the intersection of the Woodlark spreading zone with the Pacific plate margin. They contain abundant olivine (Fo94-75) and diopside (Cr2O3 1.1-0.4%, Al2O3 1–3%), and spinels characterised by a large range in Cr/(Cr+Al) (0.85–0.46) and Mg/(Mg+ Fe++) (0.65–0.1). The spinels are Fe+++ rich, with Fe+++/ (Fe++++Cr+Al) varying from 0.06 to 1.0. A discrete group of spinels with the highest Cr/(Cr+Al) (0.83–0.86) and lowest Fe+++ contents are included in the most Mg-rich olivine (Fo91–94) and both may be xenocrystal in origin.The lavas, which range between 10–28% MgO, define linear trends on oxide (element) — MgO diagrams and these trends are interpreted as olivine (0.9) clinopyroxene (0.1) control lines. For the reconstructed parent magma composition of these arc picrites, ratios involving CaO, Al2O3, TiO2, Zr, V and Sc are very close to chondritic. REE patterns are slightly LREE — enriched ((La/Sm)N 1.3–1.43) and HREE are flat. All lavas show marked enrichments in K, Rb, Sr, Ba, and LREE relative to MORB with similar MgO contents, but the TiO2 content of the proposed parent magma is close to those of postulated primary MORB liquids. It is proposed that the arc parent magma was produced by partial melting of sub-oceanic upper mantle induced by the introduction of LILE — enriched hydrous fluids derived by dehydration and/or partial melting of subducted ocean crust and possibly minor sediments.  相似文献   

19.
《Chemical Geology》2007,236(1-2):13-26
We examined the coprecipitation behavior of Ti, Mo, Sn and Sb in Ca–Al–Mg fluorides under two different fluoride forming conditions: at < 70 °C in an ultrasonic bath (denoted as the ultrasonic method) and at 245 °C using a Teflon bomb (denoted as the bomb method). In the ultrasonic method, small amounts of Ti, Mo and Sn coprecipitation were observed with 100% Ca and 100% Mg fluorides. No coprecipitation of Ti, Mo, Sn and Sb in Ca–Al–Mg fluorides occurred when the sample was decomposed by the bomb method except for 100% Ca fluoride. Based on our coprecipitation observations, we have developed a simultaneous determination method for B, Ti, Zr, Nb, Mo, Sn, Sb, Hf and Ta by Q-pole type ICP-MS (ICP-QMS) and sector field type ICP-MS (ICP-SFMS). 9–50 mg of samples with Zr–Mo–Sn–Sb–Hf spikes were decomposed by HF using the bomb method and the ultrasonic method with B spike. The sample was then evaporated and re-dissolved into 0.5 mol l 1 HF, followed by the removal of fluorides by centrifuging. B, Zr, Mo, Sn, Sb and Hf were measured by ID method. Nb and Ta were measured by the ID-internal standardization method, based on Nb/Mo and Ta/Mo ratios using ICP-QMS, for which pseudo-FI was developed and applied. When 100% recovery yields of Zr and Hf are expected, Nb/Zr and Ta/Hf ratios may also be used. Ti was determined by the ID-internal standardization method, based on the Ti/Nb ratio from ICP-SFMS. Only 0.053 ml sample solution was required for measurement of all 9 elements. Dilution factors of ≤ 340 were aspirated without matrix effects. To demonstrate the applicability of our method, 4 carbonaceous chondrites (Ivuna, Orgueil, Cold Bokkeveld and Allende) as well as GSJ and USGS silicate reference materials of basalts, andesites and peridotites were analyzed. Our analytical results are consistent with previous studies, and the mean reproducibility of each element is 1.0–4.6% for basalts and andesites, and 6.7–11% for peridotites except for TiO2.  相似文献   

20.
A new mineral species, named naquite(FeSi), is found in the podiform chromitites of the Luobusha ophiolite in Qusong County, Tibet, China. The detailed composition is Fe 65.65, Si 32.57 and Al 1.78 wt%. The mineral is cubic, space group P213. The irregular crystals range from 15 to 50 μm in diameter and form an intergrowth with luobusaite. Naquite is steel grey in color, opaque, with a metallic lustre and gives a grayish-black streak. The mineral is brittle, has a conchoidal fracture and no apparent cleavage. The estimated Mohs hardness is 6.5, and the calculated density is 6.128 g/cm3. Unit-cell parameters are a 4.486 (4) ?, V 90.28 (6) ?3, Z=4. The five strongest powder diffraction lines [d in ? (hkl) (I/I0)] are: 3.1742 (110) (40), 2.5917(111) (43), 2.0076 (210) (100), 1.8307 (211) (65), and 1.1990 (321) (36). Originally called ‘fersilicite’, the species and new name have now been approved by the CNMNC (IMA 2010–010).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号