首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
地表地质调查发现,位于滇西北菱形断块中南部的周城—清水断裂在上新世早期已经开始活动,而断裂强烈活动时期在中更新世,晚更新世以来活动性减弱。断裂运动方式以左旋走滑为主,兼有逆冲分量,并发生过从逆冲到正断的转换,全新世活动不明显。根据断裂断错的上新世昔格达组湖相沉积地质及河流地貌进行的初步分析,可以判断该断裂晚第四纪以来的垂直活动速率为0.1 mm/a左右,明显小于周城—清水断裂北侧川滇菱形块体向南东方向的运动速度(13~14 mm/a)。这表明周城—清水断裂对印度板块与欧亚板块碰撞所形成的次生构造———川滇菱形块体的侧向挤出的调节作用很有限。  相似文献   

2.
李德威 《地学前缘》2010,17(5):179-192
青藏高原东北部东昆仑、汶川、玉树等强震的同震地表破裂不对称发育,伴随余震有规律地分别向东、南东和北北东方向迁移,很可能是源于恒河盆地流经亚东、当雄、安多、库赛湖、治多、玉树、甘孜、汶川的弧形下地壳“热河”的流速和流向变化形成的,下地壳热流物质正在向云南及邻区汇聚形成下地壳“热海”,导致长时间跨季度构造热干旱,其影响超过大气环流的作用。地表破裂不一定受断层控制,震源也不在断层面上,下地壳流动导致中地壳发震并进一步影响上地壳形成同震脆性破裂系统。大陆板内盆山过渡带地震密集,大陆板内地震是在下地壳层流的热动力作用下导致活动地壳分层变形的产物。在大陆盆山耦合、圈层耦合的非线性开放系统中,从大洋底部的软流圈层流进入大陆底部使得地幔软流圈加厚,底辟上升为大陆下地壳流动,为地震活动提供了巨量热能;热软化的下地壳缓慢的韧性流动孕育了大陆板内地震;中地壳韧 脆性剪切带易于积累能量,发生热能与应变能的转化,产生地震,形成震源层;上地壳脆性断层活动和地表破裂是地震释放深部能量的载体和方式之一。地壳稳定性评价的依据应当是地壳的活动性而不是断层的活动性。大陆活动构造区地震活跃期与平静期交替实际上是下地壳地震能量的聚散过程,体现在下地壳热主导的韧性流动构造与上地壳应力主导的脆性破裂构造之间的相互作用。下地壳热软化物质流动过程中流速、流向等突然改变触发地震,并产生共振波。大陆下地壳流层在厚度、温度、粘度、流速、流向上的变化产生一定程度的温度异常、流体异常及与其相关的大气层、电场、磁场、重力场、地球化学场、应力场、应变场、生物场等异常。合理布置天空网、地面网、地下网,综合立体监测有效的地震前兆,系统地开展长期、中期和短临地震预测,能够不断地提高地震预测水平。  相似文献   

3.
周鹏哲  高锐  叶卓 《地学前缘》2022,29(4):265-277
青藏高原的隆升由印度-欧亚板块的碰撞而驱动,其生长演化,特别是从内到外的扩展机制仍尚存争议。祁连山地处青藏高原向东北扩展的前缘位置,其地壳结构与各向异性对于理解青藏高原向北扩展的生长机制具有重要意义。祁连山中部是青藏高原东北缘地壳遭受挤压强烈变形的区域,已有的研究已经揭示出地壳内部非耦合不均匀变形的几何行为,揭露其对应机制是亟待探索的前沿科学问题。此前该区域的各向异性研究大多基于面状台网数据,台站间距大,无法反映横跨祁连山地壳各向异性的精细变化。为此,本研究选用一条密集线性地震台阵,使用H-κ-c叠加方法,得到了横过祁连山中部的地壳厚度,泊松比以及地壳各向异性的横向变化。结果显示,在中祁连以及南祁连北部地壳厚度最大,平均泊松比最低,反映了地壳加厚过程中铁镁质下地壳的丢失以及长英质中上地壳的水平缩短。此外,偏长英质成分的泊松比值也不支持地壳流在该区域存在。在祁连山内部,地壳各向异性快波的偏振方向与地壳向外扩展方向一致,而与地幔各向异性快波方向近垂直,揭示了壳幔变形可能是解耦的。而在地壳较薄的南祁连和北祁连南部区域,快波方向与古缝合线的走向一致,说明早古生代的构造格局仍对现今的祁连山缩短隆升产生影响。  相似文献   

4.
GPS观测的活动断裂滑动速率及其对现今大陆动力作用的制约   总被引:51,自引:2,他引:51  
活动断裂的滑动速率是晚第四纪构造变形的定量描述 ,是制约和研究现今大陆动力过程的重要基础数据。地震地质学研究给出主要活动断裂的长期和平均运动水平 ,横跨断裂的GPS观测能够提供断裂的现今滑动速率。文中利用重大科学工程“中国地壳运动观测网络”的 10 0 0多个GPS观测站的复测数据 ,计算中国大陆主要活动断裂的现今滑动速率。发现主要活动断裂的GPS滑动速率与晚第四纪滑动速率在运动方式和运动量上是大体一致的。从GPS观测到的断层滑动速率来看 ,中国大陆的大多数活动断裂的速率都在 10mm/a之下 ,而没有类似于板块边界的大于 2 0 30mm/a的滑动速率。这种现象意味着整个中国大陆的构造变形可能是分布式的 ,而不是仅仅集中在少数几条大型活动构造带上 ,沿主要活动断裂的刚性块体滑移可能不是构造变形的主要方式。现今构造变形的分块运动图像可能只是脆性上地壳的变形方式 ,中下地壳和上地幔的运动则以连续变形为特征 ,从下部驱动脆性上地壳的变形和运动 ,使得上部地壳的变形既表现出分块特征 ,又发生块内的变形。“连续变形”理论模型能够更好地描述大陆内部的构造变形。  相似文献   

5.
西秦岭位于东西向展布的秦岭-大别-苏鲁中央造山带与南北向展布的贺兰山-龙门山-川滇地震带构成的巨型"十字"构造区的交汇点,是中国大陆中部"西秦岭-松潘构造结"的重要组成部分。西秦岭晚新生代的构造变形与青藏高原的侧向扩展过程密切相关。该区构造变形的几何图像、运动特征及其深部动力学机制对于揭示青藏高原东北部的动力过程及强震活动具有重要意义。西秦岭地区主要断裂晚新生代以来的滑动速率及跨断裂GPS应变速率的结果表明,这一时期西秦岭构造带发生了明显的构造活动方式转换,主要的构造变形过程是通过其内部一系列低滑动速率的断裂活动以及断裂之间隆起山脉与盆地的变形,共同承担着自东昆仑断裂向西秦岭断裂之间的转换平衡。在调节这种构造转换过程中,西秦岭地区以"连续变形"为特征,即区域内的应变是以多条相对低滑动速率断裂的弥散变形遍布全区,并且西秦岭及其周缘块体的旋转作用也吸收了部分变形分量。综合已查明的区域构造活动特征、新生代岩浆活动、地球物理资料以及现今地貌特征可知,西秦岭在特提斯构造域的影响下,岩石圈的结构存在明显的流变学分层,一方面,西秦岭的上地壳保留了主造山期的地质构造形态,但中—下地壳的弱化使得莫霍面之上的圈层解耦,深部可流动的岩石圈地幔不但改变了陆内造山带的结构,同时也控制了现今上地壳连续变形的发育;另一方面,西秦岭内部的中强震主要发生在高速(或高阻)与低速(或低阻)的构造边界带附近。这种独特的流变学结构导致西秦岭在青藏高原向北生长和侧向扩展的过程中,不同阶段的构造变形过程是截然不同的。因此,进一步深入研究西秦岭地区的晚新生代构造转换过程及其机制,不仅对于理解青藏高原东北部的动力过程具有重要意义,更有助于深入认识南北地震构造带中段未来的强震危险性。   相似文献   

6.
川滇地区重力场特征与地壳变形研究   总被引:10,自引:0,他引:10  
对川滇地区重力场特征进行了研究,获得了研究区内地壳厚度分布及变形特征。总体上,研究区内地壳厚度从西北向东南逐渐减小。川滇菱形块体中内部出现了广泛的地壳增厚现象,并可能一直延伸至菱形块体的最南端。丽江-小金河断裂带在重力场特征上表现为龙门山断裂带向西南的延伸,其东侧主体构造走向等特征与扬子地块一致,推测丽江-小金河断裂带与龙门山断裂、红河断裂带一起构成了扬子地块的西边界。滇西地区布格重力一阶导数与现今地壳变形格局总体一致,主体构造方向为北北西-近南北向,代表了“新”构造主体构造线的方向;上延至45km后,主体构造上转变为以近东西向为主。  相似文献   

7.
The north–south trending Xiaojiang fault system accommodates ~10–12 mm/yr sinistral motions between southeastern Tibet and south China. In the south segment, the fault system composes mainly of four parallel strike-slip faults, namely from west to east, the Luzhijiang fault, the Yimen fault, the Puduhe fault, and the Xiaojiang fault. Geological and Seismological observations have shown that these strike-slip faults are all of active, while the slip rates of the Luzhijiang, the Yimen, and the Puduhe faults are much less than that of the Xiaojiang fault. We use finite element modeling to explore the mechanical relation between crustal rheology, effective fault friction and long-term slip rate partitioning among the four parallel faults. The individual faults are simplified as vertical discontinuities embedded in the crust as geophysical explorations have predicted. A large number of models are tested, associating with variations of the crustal rheolohy and the effective fault friction of individual faults. Result shows that if crust bounding the faults trends to behave like rigid blocks and decoupled mechanically from underlying layer, the modeled result is hard to approximate slip rates of the individual faults. To better fit slip rates of the individual faults, viscous deformation of the lower crust should be included. With a heterogeneously viscous lower-crust model that is built upon thermal structure of the heat flow data, associating with relatively low effective friction of the Xiaojiang fault, the modeled results fit the geological slip rates well, with ~1–1.5 mm/yr for the Luzhijiang, the Yimen and the Puduhe faults, and ~6–6.5 mm/yr for the Xiaojiang fault. Thus, in the southward movement of the Tibetan plateau around the eastern Himalayan syntaxis, slip partitioning among the Xiaojiang fault system should be related to viscous deformation of the lower crust associated with different strength of the individual faults, highlighting that deformation of this fault system is coupled mechanically between the frictional upper crust and the viscous lower crust.  相似文献   

8.
亚洲东部存在一个巨大的三角形地震构造区域,大体上,喜马拉雅山脉、帕米尔—天山—阿尔泰山—贝加尔和东经105°线是它的3个边界,主要覆盖中国和蒙古国西部众多高原、山脉及山间盆地。三角区内现今构造活动和地震广泛强烈,地壳破碎,显示不均匀的块体边界和块内变形;区外基本上是稳定的刚性陆块,地震很少,变形较弱,处于整体缓慢运动之中。这个宽阔的板内变形区起源于印度、菲律宾海—西太平洋和欧亚三大板块之间的动力作用以及深部地幔流的影响。向北快速运动的印度次大陆已近水平地插入到西藏板块下,沿喜马拉雅弧产生多种运动和变形,并向亚洲内部远距离地扩散。沿东经95°~100°,向北的地壳运动向东和东南方向偏转,阻截了喜马拉雅弧东端的北向运动;而在喜马拉雅弧西端,帕米尔继续向北挤进中亚,受天山—阿尔泰山—贝加尔一线西北側稳定地壳的限制,扩散的变形被中国、蒙古、俄罗斯边境地区一系列EW向和NW向的老断层吸收并在它们的西端终止。菲律宾海—西太平洋向欧亚大陆的消减-俯冲导致沿海沟-岛弧的漫长而狭窄的地震带,但对亚洲大陆的水平挤压较小,未能阻挡亚洲大陆东部向东移动。其部分原因可能是俯冲板片受到来自欧亚大陆下的ES向地幔流的推挤,这个ES向地幔流与来自印度下面的N向地幔流在西藏中部汇合并向东偏转,在大尺度上与GPS观测到的地表移动图像一致。  相似文献   

9.
The special seismic tectonic environment and frequent seismicity in the southeastern margin of the Qinghai–Tibet Plateau show that this area is an ideal location to study the present tectonic movement and background of strong earthquakes in mainland China and to predict future strong earthquake risk zones. Studies of the structural environment and physical characteristics of the deep structure in this area are helpful to explore deep dynamic effects and deformation field characteristics, to strengthen our understanding of the roles of anisotropy and tectonic deformation and to study the deep tectonic background of the seismic origin of the block's interior. In this paper, the three-dimensional(3D) P-wave velocity structure of the crust and upper mantle under the southeastern margin of the Qinghai–Tibet Plateau is obtained via observational data from 224 permanent seismic stations in the regional digital seismic network of Yunnan and Sichuan Provinces and from 356 mobile China seismic arrays in the southern section of the north–south seismic belt using a joint inversion method of the regional earthquake and teleseismic data. The results indicate that the spatial distribution of the P-wave velocity anomalies in the shallow upper crust is closely related to the surface geological structure, terrain and lithology. Baoxing and Kangding, with their basic volcanic rocks and volcanic clastic rocks, present obvious high-velocity anomalies. The Chengdu Basin shows low-velocity anomalies associated with the Quaternary sediments. The Xichang Mesozoic Basin and the Butuo Basin are characterised by lowvelocity anomalies related to very thick sedimentary layers. The upper and middle crust beneath the Chuan–Dian and Songpan–Ganzi Blocks has apparent lateral heterogeneities, including low-velocity zones of different sizes. There is a large range of low-velocity layers in the Songpan–Ganzi Block and the sub–block northwest of Sichuan Province, showing that the middle and lower crust is relatively weak. The Sichuan Basin, which is located in the western margin of the Yangtze platform, shows high-velocity characteristics. The results also reveal that there are continuous low-velocity layer distributions in the middle and lower crust of the Daliangshan Block and that the distribution direction of the low-velocity anomaly is nearly SN, which is consistent with the trend of the Daliangshan fault. The existence of the low-velocity layer in the crust also provides a deep source for the deep dynamic deformation and seismic activity of the Daliangshan Block and its boundary faults. The results of the 3D P-wave velocity structure show that an anomalous distribution of high-density, strong-magnetic and high-wave velocity exists inside the crust in the Panxi region. This is likely related to late Paleozoic mantle plume activity that led to a large number of mafic and ultra-mafic intrusions into the crust. In the crustal doming process, the massive intrusion of mantle-derived material enhanced the mechanical strength of the crustal medium. The P-wave velocity structure also revealed that the upper mantle contains a low-velocity layer at a depth of 80–120 km in the Panxi region. The existence of deep faults in the Panxi region, which provide conditions for transporting mantle thermal material into the crust, is the deep tectonic background forthe area's strong earthquake activity.  相似文献   

10.
中国大陆现今构造运动的GPS速度场与活动地块   总被引:141,自引:11,他引:130  
张培震  王琪  马宗晋 《地学前缘》2002,9(2):430-441
GPS观测结果给出了在欧亚参考框架下周边板块的运动状态 ,印度板块的运动方向约NE2 0° ,速度是 40~ 42mm/a ;北美板块的运动方向约NW 2 80°~ 2 90° ,速度是 2 1~ 2 3mm/a ;菲律宾板块的运动方向是NW 2 90°~ 310° ,速度是 37~ 45mm/a ;哈萨克—西伯利亚地盾的运动方向约NE130° ,速度是 3~ 5mm/a。GPS所揭示的中国大陆现今运动场清晰地表现出了以活动地块为单元的分块运动特征。文中给出了各主要活动地块的运动方向和速度。大部分活动地块内部结构完整 ,以整体性的运动为主 ;个别活动地块内部发生构造变形 ,地块的整体性不好。中国大陆以活动地块为单元的现今构造变形可能与大陆岩石圈的结构和性质有关 ,上地壳以脆性变形为主 ,下地壳和上地幔以粘塑性的流变为特征 ,从底部驱动着上覆脆性地块的整体运动。  相似文献   

11.
《Gondwana Research》2013,23(3-4):1060-1067
Convergence between the Indian plate and the Eurasian plate has resulted in the uplift of the Tibetan Plateau, and understanding the associated dynamical processes requires investigation of the structures of the crust and the lithosphere of the Tibetan Plateau. Yunnan is located in the southwest edge of the plateau and adjacent to Myanmar to the west. Previous observations have confirmed that there is a sharp transition in mantle anisotropy in this area, as well as clockwise rotations of the surface velocity, surface strain, and fault orientation. We use S receiver functions from 54 permanent broad-band stations to investigate the structures of the crust and the lithosphere beneath Yunnan. The depth of the Moho is found to range from 36 to 40 km beneath southern Yunnan and from 55 to 60 km beneath northwestern Yunnan, with a dramatic variation across latitude 25–26°N. The depth of the lithosphere–asthenosphere boundary (LAB) ranges from 180 km to less than 70 km, also varying abruptly across latitude 25–26°N, which is consistent with the sudden change of the fast S-wave direction (from NW–SE to E–W across 26–28°N). In the north of the transition belt, the lithosphere is driven by asthenospheric flow from Tibet, and the crust and the upper mantle are mechanically coupled and moving southward. Because the northeastward movement of the crust in the Burma micro-plate is absorbed by the right-lateral Sagaing Fault, the crust in Yunnan keeps the original southward movement. However, in the south of the transition belt, the northeastward mantle flow from Myanmar and the southward mantle flow from Tibet interact and evolve into an eastward flow (by momentum conservation) as shown by the structure of the LAB. This resulting mantle flow has a direction different from that of the crustal movement. It is concluded that the Sagaing Fault causes the west boundary condition of the crust to be different from that of the lithospheric mantle, thus leading to crust–mantle decoupling in Yunnan.  相似文献   

12.
In New Guinea, the upper crust is rich in Late Miocene and Pliocene copper‐gold deposits, yet the host intrusives are mainly in the New Guinea Fold Belt and are of mantle origin and not directly subduction‐related. Structural, thermochronological and geodynamic analyses of the Grasberg, Porgera, Ok Tedi and Frieda River deposits show that the richest deposits occur along the eastern edge of the intersections between long‐lived crustal transfers perpendicular to strike and strike‐parallel crustal extensional faults that were strongly inverted during Late Miocene ‐ Pliocene orogenesis. The deposits are all associated with north‐northeast‐trending transfers, parallel to the aeromagnetic grain in basement, across which the continent‐ocean suture shows >50 km horizontal separation, as identified by the southern limit of the central New Guinea ophiolites. In the fold belt, the transfers coincide with the termination of regional anticlines or uplifts that are 150–200 km long and 30–60 km wide. Balanced sections reveal that the southern limit of these regional anticlines is commonly fault‐bound and coincides with major facies and thickness changes, indicating long‐lived, crustal extensional faults that were inverted. Fission track and 40Ar/39Ar cooling ages show that mineralisation occurred during inversion of these faults and, hence, correlates with propagation of orogenesis from northeast to southwest. It is proposed that the pre‐compression New Guinea margin comprised step‐like promontories and embayments delineated by long‐lived crustal fracture zones, as on Australia's North West Shelf. During Late Miocene ‐ Pliocene compression the crust was thickened, accompanying melting of the underlying mantle, and the crustal fracture zones were reactivated as transfers. Where the transfers intersected crustal extensional faults that were being inverted, local zones of dilation occurred, allowing emplacement of mantle magmas and associated mineralisation. When the deformation propagated southwards, so did the crustal thickening and the reactivation of major faults, allowing emplacement of younger magmas and mineralisation.  相似文献   

13.
Teleseismic earthquake data recorded by 11 broadband digital seismic stations deployed in the India–Asia collision zone in the eastern extremity of the Himalayan orogen (Tidding Suture) are analyzed to investigate the seismic anisotropy in the upper mantle. Shear-wave splitting parameters (Φ and δt) derived from the analysis of core-refracted SKS phases provide first hand information about seismic anisotropy and deformation in the upper mantle beneath the region. The analysis shows considerable strength of anisotropy (delay time ~0.85–1.9 s) with average ENE–WSW-oriented fast polarization direction (FPD) at most of the stations. The FPD observed at stations close to the Tidding Suture aligns parallel to the strike of local geological faults and orthogonal to absolute plate motion direction of the Indian plate. The average trend of FPD at each station indicates that the anisotropy is primarily originated by lithospheric deformation due to India–Asia collision. The splitting data analyzed at closely spaced stations suggest a shallow source of anisotropy originated in the crust and upper mantle. The observed delay times indicate that the primary source of anisotropy is located in the upper mantle. The shear-wave splitting analysis in the Eastern Himalayan syntaxis (EHS) and surrounding regions suggests complex strain partitioning in the mantle which is accountable for evolution of the EHS and complicated syntaxial tectonics.  相似文献   

14.
中国大陆现今构造应变率场及其动力学成因研究   总被引:47,自引:1,他引:47  
通过分析中国大陆地壳运动GPS速度场得到现今构造应变率场。结果显示在印度板块北向推挤作用下 ,青藏高原内部及其邻域形变场并不局限于少数大型走滑断裂 ,而是在大范围内广泛分布 ,各地区构造运动驱动机制也可能各有不同。藏南地区主应变率场呈均衡的约 2× 10 -8a-1南北向挤压和东西向拉张 ,显示印度板块下插造成的地壳增厚和岩石圈拆离可能形成上地壳与上地幔间形变解耦 ,地壳内部在南北向挤压及重力场作用下产生东向塑性流驱使上地壳产生东西向拉张。西藏中部羌塘地区主应变率场显示均衡的约 2× 10 -8a-1北北东向挤压和北西西向拉张 ,反映本地区一系列走向北东和北西的共轭剪切断裂的活动 ,可能源于南北向挤压和软流层内东向塑性流的驱动。柴达木盆地及周边地区主应变率场呈约 2× 10 -8a-1北东向压缩和约 (0 1)× 10 -8a-1北西向拉张 ,表明地壳增厚造成的地壳温度上升可能还不足以造成上下地壳的充分解耦 ,南北向的消减还未能有效地转换成东西向的拉张 ,形变以褶皱和逆冲断裂运动为主。当今青藏高原形变场的形成应是构造运动从南到北阶段性发展过程中地壳与上地幔介质性质差异造成驱动机制不同的结果。  相似文献   

15.
We use three‐dimensional mechanical modelling with fault as Coulomb‐type frictional surface to explore the active deformation of the Xianshuihe–Xiaojiang fault system in south‐eastern Tibet. Crustal rheology is simplified as an elastoplastic upper crust and a viscoelastic lower crust. Far‐field GPS velocities and Quaternary fault slip rates are used to constrain the model results. Numerical experiments show that effective fault friction lower than ∼0.1–0.08 leads to a high slip rate that fits well with geological estimates of the slip rate on the fault system. Associating with the modelled fault slip rate, strain in the surrounding crust distributes broadly, and is partitioned into strike–slip and thrust senses. This means that in the Indian‐Eurasia convergence, accommodation of the large fraction of sinistral motion on the fault system is achieved mainly due to its lower fault friction. This in turn affects crustal deformation around the south‐eastern Tibetan margin, resulting in negligible compression across the Longmen Shan.  相似文献   

16.
青藏高原东部及其邻区力学耦合的岩石圈变形模式   总被引:1,自引:0,他引:1  
根据青藏高原东部及其邻区布设的143个宽频带固定和流动地震台站的远震记录的SKS波分裂分析获得了各台站的快波偏振方向和快慢波之间的时间延迟。SKS分裂分析结果总体上反映了高原东部的上地幔物质流动方向,即高原内部表现为环绕喜马拉雅东构造结的顺时针旋转。在造山运动过程中有关岩石圈地壳和地幔力学耦合的造山变形方式,用从GPS和第四纪断裂滑动速率数据确定的地面变形场和由地震波各向异性数据推断的地幔变形场联合分析来定量求得。在青藏高原东部和云南、四川等地区新近快速增加的GPS和SKS波分裂观测数据,提供了对青藏高原岩石圈地幔实际变形方式的检验。这些新的数据不仅加强了高原内部力学耦合岩石圈的证据,而且也解释了高原外部相同的耦合特征。文中引入简单剪切变形和纯剪切变形的概念,用于解释高原内外不同的耦合变形特征。青藏高原和周围区域力学耦合岩石圈的垂直连贯变形有两个方面的大陆动力学含义:第一,岩石圈垂直强度剖面被一个重要的条件所约束,即要求与重力势能变化相关的应力能够从地壳传递到地幔;第二,青藏高原各向异性的空间变化反映了一个岩石圈变形的大尺度模式,以及从高原内部的简单剪切变形向高原外部的纯剪切变形的过渡带。文中提出的力学耦合岩石圈变形模型与当前已有的多种造山运动变形模型具有不同的变形含义,因此,地幔变形在青藏高原隆升过程中起主要作用。  相似文献   

17.
青藏高原东部壳幔速度结构和地幔变形场的研究   总被引:16,自引:0,他引:16  
在青藏高原东部地球动力学问题中,笔者在文中主要考虑与地壳上地幔速度结构和地幔变形场有关的问题,它涉及当前流行的下地壳流动模型和壳-幔的耦合-解耦模型。在2000年完成的穿过川西高原和四川盆地的深地震测深剖面,揭示了川西高原的地壳结构具有地壳增厚(主要是下地壳增厚)、地壳平均速度低等特点,显示地壳的缩短与增厚的碰撞变形特征。根据川西高原上设置各爆炸点的记录截面图共同呈现PmP(莫霍界面反射波)弱能量的特点,推断在川西高原的下地壳介质具有强衰减(Qp=100~300)的性质,支持存在下地壳流动的模型。青藏高原东部和川滇西部地区的上地幔各向异性(SKS波快波偏振方向和快慢波延迟时间)的初步结果表明,这两个地区的壳-幔变形特征是不同的,尽管它们在地理位置上属于同一个板块碰撞带。在青藏高原内部的壳幔变形属于垂直连贯变形,它以缩短为主,而高原外部的地壳(或岩石圈)则相对于其下方地幔运动。在高原内部和外部之间存在一个重要的地幔变形过渡带。然而,高原内部的垂直连贯变形与高原内部存在大范围下地壳流动的模型不一致。笔者在该地区开展了近两年的宽频带流动地震观测,试图从地震记录中确定过渡带的位置和探讨它的流变性质。文中扼要回顾已经取得的结果,并介绍正在进行的研究。  相似文献   

18.
由震源机制和地震波各向异性探讨青藏高原岩石圈变形   总被引:9,自引:1,他引:9  
吕庆田  许志琴 《地质论评》1997,43(4):337-346
本文据青藏高原天然地震震源参数和地震波各向异性资料,讨论了高原岩圈不同圈层的变形特性。  相似文献   

19.
华南及邻区有序变形及其动力学初探   总被引:12,自引:1,他引:12       下载免费PDF全文
龙门山断裂带以东、江南雪峰隆起带以西的华南地区,在断裂、褶皱变形等构造形迹上存在非常规律的有序性。其构造形迹(断裂、褶皱等)大都沿NE-NNE排列,并且变形强度从SE向NW逐渐减弱。这种有序变形规模巨大,仅川东的隔挡式褶皱-冲断带规模就超过了著名的侏罗山式褶皱。这种变形的有序性是与基底存在多层次的倾向SE的拆离滑脱面密切相关的,它们起始于印支-早燕山期,定型于晚燕山-喜马拉雅期,其形成动力来自于华南板块向NW方向的运动。  相似文献   

20.
Northward indentation of the Indian Plate has brought about significant tectonic deformation into East Asia. A record of long-term tectonic deformation in this area for the past 50 M yr, particularly the vertical axis rotation, is available through paleomagnetic data. In order to depict rotational deformation in this area with respect to Eurasia, we compiled reliable paleomagnetic data sets from 79 localities distributed around eastern Himalayan syntaxis in East Asia. This record delineates that a zone affected by clockwise rotational deformation extends from the southern tip of the Chuan Dian Fragment to as far as the northwestern part of the Indochina Peninsula. A limited zone that experienced a significant amount of clockwise rotation after an initial India–Asia collision is now located at 23.5°N, 101°E, far away from an area (27.5°N, 95.5°E) where an intense rotational motion has been viewed by a snapshot of GPS measurements. This discrepancy in clockwise rotated positions is attributed to southeastward extrusion of the tectonic blocks within East Asia as a result of ongoing indentation of the Indian Plate. A quantitative comparison between the GPS and paleomagnetically determined clockwise rotation further suggests that following an initial India–Asia collision the crust at 30°N, 94°E paleoposition was subjected to southeastward displacement together with clockwise rotation, which eventually reached to present-day position of 23.5°N, 101°E, implying a crustal displacement of about 1000 km during the past 50 M yr.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号