首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
薛强  张茂省  李林 《地质通报》2015,34(11):2108-2115
滑坡易发性评价对滑坡灾害的防治与管理具有重要意义。为了评价延安宝塔区黄土滑坡易发性,以斜坡为基本评价单元,选取斜坡坡度、坡高、坡向、坡形、斜坡结构类型、植被和人类工程活动7个指标作为评价因子,在Arc GIS平台下,利用信息量模型对研究区的黄土滑坡进行易发性分区评价。评价结果表明,宝塔区滑坡高易发区面积1092.39km~2,占全区面积的30.81%,主要分布于宝塔区的中部及北部地区,低易发区集中于宝塔区南部汾川河流域。以斜坡作为评价单元提高了与实际地形地貌的吻合度。应用信息量模型进行滑坡易发性评价具有较高的预测精度,已有滑坡点落在很高易发区和高易发区中的比例为95.7%,较真实地反映了客观实际。  相似文献   

2.
斜坡稳定性分析是滑坡预测的重要工作.开展甘肃东部地区斜坡稳定性评价,将该区域划分为10km×10km网格单元,对每个单元内斜坡的坡高、坡角、岩土组构、降水、构造(地震、活动断裂)及坡体破坏程度进行量化并进行动态聚类计算,对每一单元斜坡稳定性进行统计分类,将甘肃东部地区划分为稳定区、较稳定区、不稳定区、极不稳定区四大类型区.最终评价结果与斜坡发育特征实地调查及航片解译分析吻合较好,历史上滑坡发育的天水、陇南等地区仍是当前斜坡不稳定的滑坡易发区.研究结果为防灾减灾提供翔实了的资料,也有助于地质灾害的防治.  相似文献   

3.
黄土高原区地形与植被分布规律对滑坡发生概率的影响   总被引:1,自引:0,他引:1  
殷昊  刘飞  杜立新  隋松宇 《现代地质》2010,24(5):1016-1021
黄土高原区自然斜坡的地形与植被条件对滑坡的发生有一定的促进和抑制作用。通过将研究区划分为31 418个自然斜坡单元,利用ArcGIS区域统计功能提取斜坡单元的地形和植被参数,分析研究区斜坡的坡体形态和植被空间分布规律。依据区内292处滑坡调查点的资料,统计分析不同坡体形态下的滑坡发生概率。分析结果表明,研究区正向类的凸型和直线型斜坡发生滑坡的概率明显高于负向类的凹型和阶梯型边坡;随着斜坡坡度和坡高增大,发生滑坡的概率增大;阳坡发生滑坡的概率明显高于其他坡向的边坡;随着NDVI增大,滑坡发生概率显著降低。  相似文献   

4.
薛强  张茂省  高波 《中国地质》2020,47(6):1904-1914
滑坡危险性评价是减灾防灾的重要措施之一。通过野外调查,陕西省清涧县城区周边斜坡地带共发育滑坡138处,严重威胁县城安全。为了准确评价清涧县城区滑坡危险性,按照河流沟谷的发育情况和地形地貌的完整性,将清涧县城区及周边区域的斜坡地带共划分为925个斜坡单元,将斜坡单元按照不同的坡度、坡高和坡型分别进行不同土体含水率工况下的斜坡稳定性计算。计算结果表明,随着斜坡土体含水率的逐渐增加,城区内稳定斜坡的面积逐渐减少,不稳定斜坡的面积逐渐增大。依据陕北地区黄土斜坡土体含水率监测数据,分析计算土体含水率(w)的出现概率,w≤0.15出现的概率为0.622(概率很高),0.15<w≤0.2出现的概率为0.2963(概率高),0.2<w≤0.25出现的概率为0.0816(概率中),w>0.25出现的概率为0(概率低)。结合斜坡稳定性计算结果和含水率出现概率,评价斜坡单元危险性。评价结果表明,清涧县城区危险性很高区面积3.27 km2,包含斜坡单元112个,已发生滑坡点92个;危险性高区面积4.19 km2,包含斜坡单元128个,已发生滑坡点36个;危险性中区面积8.75 km2,包含斜坡单元251个,已发生滑坡点6个;危险性低区面积15.20 km2,包含斜坡单元434个,已发生滑坡点4个。  相似文献   

5.
以地震滑坡作为研究对象,选取"4·20"芦山地震中芦山县为研究区,结合多源数据,在相关分析后选取10个评价因子,分别是地面高程、坡度、坡向、斜坡形态、地层、斜坡结构、断层平均距离、水系平均距离、植被指数和地震峰值加速度,在数字高程模型基础上采用集水区重叠法划分斜坡单元,再对各评价因子重采样,进而利用基于遗传算法的神经网络算法构建地震滑坡危险性评价模型,完成地震滑坡危险性区划。将基于斜坡单元的危险性区划结果和基于格网单元的区划结果进行比较,结果显示滑坡正确率分别为96.6%和92.6%,斜坡单元的正确率较高;同时通过多组数据的受试者工作特征曲线分析本评价模型的不确定性,每组曲线位置及曲线下面积大小相当。  相似文献   

6.
秦巴山区堆积层滑坡数量多、分布广、密度大、频次高,所造成的危害十分严重,且具有孕灾条件复杂多样和部分灾害评价数据获取难度大等特征。笔者选取秦巴山区小岭镇作为研究区,在地质灾害野外调查基础上,结合堆积层滑坡区域特点,采取栅格、斜坡两种单元类型,因地制宜的提取了滑坡孕灾因子,分析其相关性,提选出坡度、坡高、坡面形态、斜坡结构类型、堆积层厚度、距道路、矿区、断裂的距离等8个因子作为堆积层滑坡特征因子,运用随机森林模型方法对该镇域进行了滑坡易发性评价;并通过评价结果频率比、ROC曲线、易发性概率均值与标准差,对栅格单元、斜坡单元两种单元类型的精度与准确性进行了验证,结果表明:两种评价单元的预测结果都有良好的表现,但斜坡单元作为评价单元总体预测性能高于栅格单元,栅格单元在灾害防治具体空间部署上有着更精细的参考。研究成果对秦巴山区镇域地质灾害风险评价工作有一定的理论和实践意义。  相似文献   

7.
在数字高程模型(DEM)的基础上,运用滑坡降雨阈值模型,以楚雄丁家坟一斜坡作为试验研究工点,结合现场勘察、监测数据以及斜坡岩土体主要特性、地形地貌、降雨强度与降雨持续时间、地下水位等因素,模拟斜坡单元产生潜在滑动时的临界降雨量,研究降雨对滑坡发生、分布的影响。研究结果表明:各斜坡单元产生潜在滑动时的临界降雨量各不相同,在不同的降雨量及地下水位条件下滑坡降雨阈值模型模拟的潜在滑坡位置主要位于楚勐公路下边坡处,与实际发生滑坡的位置吻合率达80%以上,滑坡降雨阈值模型可实现对斜坡稳定性进行可视化分析与预测,为降雨型滑坡提供一种有效的预测与分析方法。  相似文献   

8.
湖南省石门县皂市水库地区滑坡地质灾害频发,采用证据权法进行滑坡易发性评价可以为滑坡防治提供科学依据.本文首先以斜坡单元为基本制图单元,利用ArcGIS空间分析功能,结合历史滑坡灾害点实地复核数据、遥感影像、地形图、数字高程模型、地质图等数据,提取了坡度、坡形、斜坡高差、植被覆盖度、地层岩性、斜坡结构类型、断层缓冲距离、道路缓冲距离、河流缓冲距离等9个证据因子并划分证据层;然后基于证据权法分别计算各证据层权重值,生成了研究区滑坡易发性分区图,并进行了预测精度分析.结果表明:(1)研究区滑坡易发性可划分为高易发区、中易发区、低易发区、极低易发区4类,4类分区面积占比分别为7.5%、20.6%、54.9%、17.0%;(2)基于成功率曲线法得出分区准确率为84.7%,评价结果与灾害点分布较为吻合.  相似文献   

9.
为深入探讨评价单元和非滑坡样本选取对滑坡易发性预测的影响,构建了一种基于自组织特征映射网络-随机森林模型的滑坡易发性评价模型。该模型针对栅格单元和斜坡单元在滑坡易发性评价中的不足,结合栅格单元和斜坡单元的相互关系,提出了滑坡易发性指数的优化计算方法。在此基础上,基于随机森林Tree Bagger分类器构建滑坡易发性评价模型,通过对比分析自组织特征映射网络和随机方法选取非滑坡样本对评价结果的影响,探讨自组织特征映射网络、随机森林和自组织特征映射网络-随机森林三种评价模型的有效性;将评价模型应用于大余县滑坡易发性评价。结果显示,随机森林模型和自组织特征映射网络-随机森林模型的预测精度较高,分别达到91.19%和94.94%,成功率曲线的AUC值分别为0.822和0.849,表明自组织特征映射网络-随机森林模型具有更高的预测率和成功率, 自组织特征映射网络聚类的预测精度虽然有限,但作为非滑坡样本的选择方法,能够有效提高随机森林模型的评价精度。  相似文献   

10.
确定性模型在黄土沟壑区斜坡稳定性预测中的应用   总被引:2,自引:0,他引:2  
SHALSTAB耦合了稳态水文假定模型和无限斜坡稳定性模型,主要用于评价浅层滑坡稳定性的时空分布和发展趋势。选择黄土高原甘肃陇东地区华池县作为研究区,评价SHALSTAB模型在黄土沟壑区浅层滑动稳定性分析中的适用性和可靠性,利用1:5 000地形图获得了数字高程模型和地形坡度,以及室内和现场试验的物理力学参数,结合现场钻探和探槽得到的土层厚度分布和地表稳定性指数等级分布图。现场测量绘制的滑坡分布图与模拟结果对比和统计分析表明,SHALSTAB模拟的总体正确率为70.23%,滑坡预测正确率为72.33%,稳定状态预测正确率为67.51%,模拟效果良好。  相似文献   

11.
This paper presents a methodology for developing a landslide hazard zonation map by integration of global positioning system (GPS), geographic information system (GIS), and remote sensing (RS) for Western Himalayan Kaghan Valley of Pakistan. The landslides in the study area have been located and mapped by using GPS. Eleven causative factors such as landuse, elevation, geology, rainfall intensity, slope inclination, soil, slope aspect, distances from main road, distances from secondary roads, and distances from main river and those from trunk streams were analyzed for occurrence of landslides. These factors were used with a modified form of pixel-based information value model to obtain landslide hazard zones. The matrix analysis was performed in remote sensing to produce a landslide hazard zonation map. The causative factors with the highest effect of landslide occurrence were landuse, rainfall intensity, distances from main road, distances from secondary roads, and distances from main river and those from trunk streams. In conclusion, we found that landslide occurrence was only in moderate, high, or very high hazard zones, and no landslides were in low or very low hazard zones showing 100% accuracy of our results. The landslide hazard zonation map showed that the current main road of the valley was in the zones of high or very high hazard. Two new safe road routes were suggested by using the GIS technology.  相似文献   

12.
Dramatic effects resulting from landslides on human life and economy of many nations are observed sometimes throughout the world. Landslide inventory and susceptibility mapping studies are accepted as the first stage of landslide hazard mitigation efforts. Generally, these landslide inventory studies include identification and location of landslides. The main benefit is to provide a basis for statistical susceptibility zoning studies. In the present study, a landslide susceptibility zoning near Yenice (NW Turkey) is carried out using the factor analysis approach. The study area is approximately 64 km2 and 57 landslides were identified in this area. The area is covered completely by Ulus Formation that has a flysh-like character. Slope angle, elevation, slope aspect, land-use, weathering depth and water conditions were considered as the main conditioning factors while the heavy precipitation is the main trigger for landsliding. According to the results of factor analysis, the importance weights for slope angle, land-use, elevation, dip direction, water conditions and weathering depth were determined as 45.2%, 22.4%, 12.5%, 8.8%, 8.1% and 3.0% respectively. Also, using these weights and the membership values of each conditioning factor, the membership value for landslide susceptibility was introduced. In the study area, the lowest membership value for landslide susceptibility was calculated as 0.20. Consequently, combining all results, a landslide susceptibility map was obtained. Compared with the obtained map, a great majority of the landslides (86 %) identified in the field were found to be located in susceptible and highly susceptible zones.  相似文献   

13.
Landslides are one of the most frequent and common natural hazards in many parts of Himalaya. To reduce the potential risk, the landslide susceptibility maps are one of the first and most important steps in the landslide hazard mitigation. Earth observation satellite and geographical information system-based techniques have been used to derive and analyse various geo-environmental parameters significant to landslide hazards. In this study, a bivariate statistics method was used for spatial modelling of landslide susceptibility zones. For this purpose, thematic layers including landslide inventory, geology, slope angle, slope aspect, geomorphology, slope morphology, drainage density, lineament and land use/land cover were used. A large number of landslide occurrences have been observed in the upper Tons river valley area of Western Himalaya. The result has been used to spatially classify the study area into zones of very high, high, moderate, low and very low landslide susceptibility zones. About 72% of active landslides have been observed to occur in very high and high hazard zones. The result of the analysis was verified using the landslide location data. The validation result shows significant agreement between the susceptibility map and landslide location. The result can be used to reduce landslide hazards by proper planning.  相似文献   

14.
本文选择东南沿海地区具有典型降雨型滑坡的淳安县作为研究区,在完成全县地质灾害详细调查的基础上,选取高程、坡度、坡向、曲率、工程地质岩组、距断层距离、距道路距离、土地利用和植被等9个滑坡影响因子,利用GIS技术与确定性系数分析方法,对这9个影响因子开展敏感性分析。研究结果表明:(1) 寒武、震旦、石炭和白垩系是滑坡易发地层,侵入岩组、紫红色砂岩、碳酸盐岩夹碎屑岩、碳酸盐岩为主的岩组是滑坡高敏感性岩组;滑坡受断层影响总体上随着距离断层由近及远逐渐降低;(2) 坡度范围10°~35°是滑坡的易发坡度,30°~35°滑坡数量达到峰值;SE和S等朝南坡向是滑坡最易发坡向;高程范围为100~200m是滑坡最易发区间;凹坡最易发生滑坡,而凸坡则滑坡敏感性最差;非林地、茶叶、竹林和经济林等是滑坡高敏感植被类型;(3) 住宅用地、耕地、园地等与人类活动密切相关的用地类型是滑坡易发地类;距道路距离因子对滑坡敏感性低,相关性不明显。上述各滑坡影响因子最利于滑坡发生的数值区间确定,将为研究区进一步开展降雨型滑坡区域易发性评价及预测奠定基础。  相似文献   

15.
High incidences of slope movement are observed throughout Cuyahoga River watershed in northeast Ohio, USA. The major type of slope failure involves rotational movement in steep stream walls where erosion of the banks creates over-steepened slopes. The occurrence of landslides in the area depends on a complex interaction of natural as well as human induced factors, including: rock and soil strength, slope geometry, permeability, precipitation, presence of old landslides, proximity to streams and flood-prone areas, land use patterns, excavation of lower slopes and/or increasing the load on upper slopes, alteration of surface and subsurface drainage. These factors were used to evaluate the landslide-induced hazard in Cuyahoga River watershed using logistic regression analysis, and a landslide susceptibility map was produced in ArcGIS. The map classified land into four categories of landslide susceptibility: low, moderate, high, and very high. The susceptibility map was validated using known landslide locations within the watershed area. The landslide susceptibility map produced by the logistic regression model can be efficiently used to monitor potential landslide-related problems, and, in turn, can help to reduce hazards associated with landslides.  相似文献   

16.
In the Three Gorges of China, there are frequent landslides, and the potential risk of landslides is tremendous. An efficient and accurate method of generating landslide susceptibility maps is very important to mitigate the loss of lives and properties caused by these landslides. This paper presents landslide susceptibility mapping on the Zigui-Badong of the Three Gorges, using rough sets and back-propagation neural networks (BPNNs). Landslide locations were obtained from a landslide inventory map, supported by field surveys. Twenty-two landslide-related factors were extracted from the 1:10,000-scale topographic maps, 1:50,000-scale geological maps, Landsat ETM + satellite images with a spatial resolution of 28.5 m, and HJ-A satellite images with a spatial resolution of 30 m. Twelve key environmental factors were selected as independent variables using the rough set and correlation coefficient analysis, including elevation, slope, profile curvature, catchment aspect, catchment height, distance from drainage, engineering rock group, distance from faults, slope structure, land cover, topographic wetness index, and normalized difference vegetation index. The initial, three-layered, and four-layered BPNN were trained and then used to map landslide susceptibility, respectively. To evaluate the models, the susceptibility maps were validated by comparing with the existing landslide locations according to the area under the curve. The four-layered BPNN outperforms the other two models with the best accuracy of 91.53 %. Approximately 91.37 % of landslides were classified as high and very high landslide-prone areas. The validation results show sufficient agreement between the obtained susceptibility maps and the existing landslide locations.  相似文献   

17.
As a result of industrialization, throughout the world, cities have been growing rapidly for the last century. One typical example of these growing cities is Istanbul, the population of which is over 10 million. Due to rapid urbanization, new areas suitable for settlement and engineering structures are necessary. The Cekmece area located west of the Istanbul metropolitan area is studied, because the landslide activity is extensive in this area. The purpose of this study is to develop a model that can be used to characterize landslide susceptibility in map form using logistic regression analysis of an extensive landslide database. A database of landslide activity was constructed using both aerial-photography and field studies. About 19.2% of the selected study area is covered by deep-seated landslides. The landslides that occur in the area are primarily located in sandstones with interbedded permeable and impermeable layers such as claystone, siltstone and mudstone. About 31.95% of the total landslide area is located at this unit. To apply logistic regression analyses, a data matrix including 37 variables was constructed. The variables used in the forwards stepwise analyses are different measures of slope, aspect, elevation, stream power index (SPI), plan curvature, profile curvature, geology, geomorphology and relative permeability of lithological units. A total of 25 variables were identified as exerting strong influence on landslide occurrence, and included by the logistic regression equation. Wald statistics values indicate that lithology, SPI and slope are more important than the other parameters in the equation. Beta coefficients of the 25 variables included the logistic regression equation provide a model for landslide susceptibility in the Cekmece area. This model is used to generate a landslide susceptibility map that correctly classified 83.8% of the landslide-prone areas.  相似文献   

18.
在甘肃省白龙江流域地质灾害资料收集及现场调查的基础上, 统计分析了该区滑坡发育与地层岩性、坡度、坡向、高程、断裂、植被等因素之间的关系, 建立了白龙江流域滑坡易发性评价指标体系。采用基于GIS的层次分析法评价模型, 完成了滑坡易发性分区评价, 将研究区滑坡按易发程度划分为高易发区、中易发区、低易发区和极低易发区, 其中, 高易发区占研究区总面积的13.59%, 主要分布在断裂带、白龙江两侧以及软弱岩土体分布的区域; 中易发区占27.85%;主要分布在白龙江支流以及主要道路两侧的一定范围内; 低易发区占33.09%, 主要分布在海拔相对较高、植被覆盖度较高、基本上无断裂带通过的区域; 其余区域为极低易发区, 占25.46%。对比分析显示评价结果与实际滑坡发育情况吻合, 可以较好地反映区内滑坡灾害发育的总体特征。   相似文献   

19.
The crucial and difficult task in landslide susceptibility analysis is estimating the probability of occurrence of future landslides in a study area under a specific set of geomorphic and topographic conditions. This task is addressed with a data-driven probabilistic model using likelihood ratio or frequency ratio and is applied to assess the occurrence of landslides in the Tevankarai Ar sub-watershed, Kodaikkanal, South India. The landslides in the study area are triggered by heavy rainfall. Landslide-related factors—relief, slope, aspect, plan curvature, profile curvature, land use, soil, and topographic wetness index proximity to roads and proximity to lineaments—are considered for the study. A geospatial database of the related landslide factors is constructed using Arcmap in GIS environment. Landslide inventory of the area is produced by detailed field investigation and analysis of the topographical maps. The results are validated using temporal data of known landslide locations. The area under the curve shows that the accuracy of the model is 85.83%. In the reclassified final landslide susceptibility map, 14.48% of the area is critical in nature, falling under the very high hazard zone, and 67.86% of the total validation dataset landslides fall in this zone. This landslide susceptibility map is a vital tool for town planning, land use, and land cover planning and to reduce risks caused by landslides.  相似文献   

20.
The purpose of this study is to assess the susceptibility of landslides in parts of Western Ghats, Kerala, India, using a geographical information system (GIS). Landslide inventory of the area was made by detailed field surveys and the analysis of the topographical maps. The landslide triggering factors are considered to be slope angle, slope aspect, slope curvature, slope length, distance from drainage, distance from lineaments, lithology, land use and geomorphology. ArcGIS version 8.3 was used to manipulate and analyse all the collected data. Probabilistic-likelihood ratio was used to create a landslide susceptibility map for the study area. The result was validated using the Area under Curve (AUC) method and temporal data of landslide occurrences. The validation results showed satisfactory agreement between the susceptibility map and the existing data on landslide locations. As the result, the success rate of the model was (84.46%) and the prediction rate of the model was (82.38%) shows high prediction accuracy. In the reclassified final landslide susceptibility zone map, 5.68% of the total area is classified as critical in nature. The landslide susceptibility map thus produced can be used to reduce hazards associated with landslides and to land cover planning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号