首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 386 毫秒
1.
丹巴地区铜镍硫化物铂族矿床品位低、铂族矿物颗粒细、铂族元素间的类质同象普遍,此类铂族资源的赋存状态研究及矿石的选冶长期以来都是较为棘手的问题。本文采用扫描电镜-X射线能谱仪器组合,对丹巴铜镍硫化物铂族矿床中含量达到1‰的元素进行快速的定性/定量分析,研究了铂族矿物原位的赋存状态和形貌特征。通过扫描电镜观察到该矿床的铂族矿物主要为砷铂矿、锑钯矿、碲锑钯矿,其次以自然铂、硫砷铑矿、硫砷铱矿,呈椭圆状、纺锤状等形式赋存于黄铁矿、磁黄铁矿及蛇纹石中,部分以类质同象的形式存在,极少量的铂与钯元素呈固溶体形式存在。X射线能谱分析表明该矿床中主要的铂族元素为Pt、Pd,其次为Ru、Rh、Ir、Os; 点分析表明砷铂矿中Pt的含量为52.84%,锑钯矿中Pd的含量为45.15%; 线扫描和面扫描分析表明铂族元素主要分布在含铁的硫化物中,Pt、Pd等铂族元素的含量与铁、镍的含量成正相关关系,反映了丹巴地区铂族元素亲铁、亲镍、亲硫的地球化学特征。  相似文献   

2.
黑色岩型铂族矿物中铂钯金相态ICP-MS分析方法研究   总被引:4,自引:4,他引:0  
黑色岩是近年发现的铂族元素重要载体,由于其金属来源的多样性及成矿作用的复杂性,对于铂族元素在该类矿物中的分布及富集形式目前并不十分清楚,这也是造成黑色岩中铂族元素测定不稳定的主要原因。本文根据黑色岩的矿物性质及组成,将黑色岩中Pt、Pd、Au的赋存状态划分为:可交换相、有机结合相、硫化物结合相、残渣相。通过应用硫氰酸钾+氰化钠作为解吸剂,有效抑制了黑色岩中有机碳对各相态中Pt、Pd、Au的吸附,采用分离富集ICP-MS法测定了Pt、Pd、Au在各相态中的分布。结果表明:(1)各元素各相态的提取总量与该元素在样品中的总量之比分别为Pt 94.4%~101.0%,Pd 95.8%~101.0%,Au 96.7%~102.0%,说明本方法具有较好的准确性和重现性;(2)黑色岩矿物中Pt、Pd、Au的富集不仅具备亲硫性,而且与有机碳形成的地质条件、地质背景有明显的相关性,此结果为研究黑色岩中铂族元素所处的地球化学环境及其成矿规律提供了重要信息。  相似文献   

3.
采用镍锍火试金法结合ICP—MS分析了碱锅玄武岩和乌拉哈达高镁安山岩样品中的Ir.Ru、Rh、Pt和Pd的含量。原始地幔标准化后的PGE分布模式呈正斜率型,Pd/Ir值高于相应的地幔比值,表明铂族元素发生了分异,这是由于在部分熔融过程中,Ir存在于地幔矿物相尖晶石和合金中,而Pd赋存于硫化物中造成的,乌拉哈达高镁安山岩中的铂族元素还可能在结晶分异过程中受到先期结晶的矿物相和合金的影响。阜新火山岩Pt的负异常可能是包含Pt的金属合金残留在地幔中造成。  相似文献   

4.
本文通过与世界著名硫化铜镍矿床百分之百硫化物中铂族元素和金的配分模式的对比,认为金川矿床以Pt、Pd、Au含量高和Ru、Rh亏损以及铂族元素配分曲线斜率陡倾为特征。同时用因子分析方法探讨了金川矿床铂族元素和金的赋存规律,并将其中赋存的铂族元素矿体按成因分为两类:一类是受岩浆期硫化物熔体控制的矿体,另一类是受气液交代作用控制的矿体。它们在元素组合、铂族元素配分模式图上均有明显的差异。此外还讨论了铂族元素和金的地球化学行为,在上地幔硫化物熔融期间,Pt、Pd、Au趋向于液体,Os、Jr、Ru、Rh趋向于固溶体,这是它们富集或亏损的内在原因。  相似文献   

5.
本文通过与世界著名硫化铜镍矿床百分之百硫化物中铂族元素和金的配分模式的对比,认为金川矿床以Pt、Pd、Au含量高和Ru、Rh亏损以及铂族元素配分曲线斜率陡倾为特征。同时用因子分析方法探讨了金川矿床铂族元素和金的赋存规律,并将其中赋存的铂族元素矿体按成因分为两类:一类是受岩浆期硫化物熔体控制的矿体,另一类是受气液交代作用控制的矿体。它们在元素组合、铂族元素配分模式图上均有明显的差异。此外还讨论了铂族元素和金的地球化学行为,在上地幔硫化物熔融期间,Pt、Pd、Au趋向于液体,Os、Jr、Ru、Rh趋向于固溶体,这是它们富集或亏损的内在原因。  相似文献   

6.
陕西太白金矿含金角砾岩中铂族元素特征   总被引:1,自引:2,他引:1  
采用硫镍火法试金(NiS-FA)结合电感耦合等离子质谱(ICP-MS)分析了太白金矿硫化物和含金角砾岩中铂族元素的含量,结果显示,与秦岭地区八卦庙相比铂族元素含量较高,而低于原始地幔,其中铂(Pt)、钯(Pd)、钌(Ru)富集,并结合前人研究资料对铂族元素的来源和迁移机制进行探讨。铂族元素可能受深源的影响,IPGE(Ir、Os、Ru)可能主要以硫化物形式存在而PPGE(Rh、Pt、Pd)可能主要以单质存在。  相似文献   

7.
贵州遵义和湖南张家界黑色岩系中的矿物组合非常复杂,用X射线衍射仪分析并结合前人的研究成果,显示其中的硫化物矿物、粘土矿物和有机质含量较高;经破碎和分选流程对样品进行处理后,用ICP-MS方法测定了黑色页岩和分选后样品中的铂族元素含量,对贵州遵义和湖南张家界黑色岩系中的铂族元素赋存特征进行研究,结果表明:贵州遵义和湖南张家界的黑色页岩系中赋存高含量的铂族元素,且含量表现较高的稳定性;低温氧化条件下,铂族元素的化学活动性足以使之以相当规模活化、迁移并在还原条件下沉淀富集;经强风化淋滤作用,富含碳硫钼矿黑色页岩中铂族各元素含量都有不同程度的降低;绝大部分的铂族元素富集于黑色页岩的有机质和黄铁矿中;铂族元素的分布模式具规律性,铂族元素的明显分异说明此黑色页岩的分布模式不具有地外物质的特征。  相似文献   

8.
四川丹巴杨柳坪矿床是峨眉大火成岩省典型铜镍硫化物矿床,此类矿床中蕴藏了丰富的铂族资源。岩矿石光片的扫描电镜与电子探针分析表明,四川丹巴杨柳坪铜镍硫化物矿床中Pt、Pd以独立矿物为主,少量铱族矿物具有成因指示意义,极少量Pt、Pd元素呈类质同象形式赋存于磁黄铁矿、黄铜矿中。Pt主要以独立矿物砷铂矿的形式存在,矿物粒径1~60μm,呈半自形-自形,主要被磁黄铁矿包裹,部分穿切磁黄铁矿、黄铜矿,少量被橄榄石与菱镁矿包裹。Pd以碲锑钯矿的形式存在,矿物自形程度较差,大量赋存于黄铜矿、磁黄铁矿等金属硫化物的裂隙,部分被黄铜矿包裹,少量形成于热液阶段的碲锑钯矿与辉砷钴矿紧密共生充填于裂隙中。铱族矿物呈半自形-自形与高温热液矿物辉砷钴矿紧密共生。  相似文献   

9.
吉林省油页岩中铂族元素的化学特征及分配规律研究   总被引:2,自引:0,他引:2  
采用电感耦合等离子体发射质谱仪(ICP MS)测定了吉林省油页岩中铂族元素的含量,并对油页岩中铂族元素的化学特征、与无机组分的相关性及其分布模式等进行了分析和阐述。通过油页岩中铂族元素的含量与地壳和中国东部出露地壳中铂族元素丰度的比较表明,Rh、RuI、r等元素相对富集,其中松原油页岩中RhI、r的含量约为地壳平均值的10倍。研究区油页岩中铂族元素以Pt Pd分配模式为典型特征,一般Pt的丰度大于Pd。油页岩中铂族元素与无机组成相关分析的结果表明,油页岩中铂族元素可能呈吸附态存在于高岭石、伊利石等粘土矿物中。  相似文献   

10.
总结南非布什维尔德杂岩体中Merensky Reef(简称MR矿层)和Platreef(简称PR接触带)两类铂族元素矿床的矿床地质、矿化特征以及铂族元素的赋存状态。MR矿床是典型的层状铂族元素(PGE)矿床,在杂岩体东部和西部发育,PGE总含量稳定,赋存在堆晶间隙硫化物中,常以PGE硫化物的形式产出。PR接触带型矿化集中在杂岩体北段,整体上不连续,各个矿床的具体特征由于底盘岩性的多变而不同,PGE主要赋存在碲化物和砷化物等半金属化合物中,可以脱离硫化物产在硅酸盐矿物中。相关的实验研究显示,PGE在岩浆结晶过程中发生分异,Pd/Ir比值体现了硫化物的分异程度;Pd比Pt更容易被氧化以及在热液中迁移,Pt/Pd比值体现了混染和热液的作用,这些因素造成了PR接触带与MR矿层中PGE赋存状态的差异。岩浆可能在侵入之前已经达到了硫饱和,岩浆房的压力变化和岩浆通道对于PGE的富集有重要意义,热液流体可以对已经形成的PGE矿化进行改造。  相似文献   

11.
The concentration levels and distribution features of the platinum group elements (PGE) in quartz-sulfide and base-metal ores in deposits of the Sayan-Baikal Fold Region (SBFR) are discussed. Microfire assay neutron activation analysis (MF-NAA), which enables one to work on a nondestructive basis and allows one to avoid inaccuracies related to chemical sample preparation, was used as the main analytical technique. Three types of hydrothermal mineralization with elevated grades of PGE (especially Pt, Pd, and Ru) have been identified: (1) pyrite-pyrrhotite (massive sulfide) mineralization hosted in black shales of the Il’chir Sequence; (2) gold-sulfide ores of the Zun-Kholba, Tainsky, Kamenny, and some other gold deposits; and (3) silver-basemetal ores of the Dzhida-Vitim Zone. The PGE contents significantly vary, from global average values to tens of grams per ton. An absence of PGE minerals implies that these elements are finely dispersed in sulfide minerals and native gold. Taking into account difficulties in conversion of PGE into analytical forms, their nonuniform distribution in sulfide minerals, their high affinity to coordination compounds, and experimental results, cluster species of Pt and Pd in major minerals are suggested for the gold-sulfide and silver-base-metal ores in deposits, which are related to suprasubduction ophiolites and island-arc and intraplate settings in the SBFR.  相似文献   

12.
新疆天山黑色岩系型矿床的地质特征及找矿方向   总被引:9,自引:1,他引:9  
概要介绍了中国天山黑色岩系分布和黑色岩系型矿床的地质特征。中国天山黑色岩系发育,主要集中在古生代,其次为中生代,目前发现与黑色岩系有关的矿种有金、钒、铀、磷、锑。中亚天山黑色岩系中发现了穆龙套和库姆托尔世界级金矿床,中国天山是其东延部分,发现了萨瓦亚尔顿、大山口、萨恨托亥等金矿床,呈现出良好的找矿前景。穆龙套金矿和萨瓦亚尔顿金矿是黑色岩系型金矿的典型代表,中国黑色岩系型金矿与中亚黑色岩系型金矿有许多相似之处。分析认为,吉根-塔尔特库里、乌兰赛尔-大山口、乌什北山、阿克牙孜河等地是最具前景的找金矿靶区,今后应加大萨瓦亚尔顿金矿的勘查和研究力度,同时注意寻找黑色岩系中的铂、钯、铜等矿种。  相似文献   

13.
Abstract: The black shales of the Lower Cambrian Niutitang Formation in Weng’an, on the Yangtze platform of south China, contain voluminous polymetallic sulfide deposits. A comprehensive geochemical investigation of trace, rare earth, and platinum group elements (PGE) has been undertaken in order to discuss its ore genesis and correlation with the tectono-depositional setting. The ore-bearing layers enrich molybdenum (Mo), nickel (Ni), vanadium (V), lead (Pb), strontium (Sr), barium (Ba) , uranium (U) , arsenic (As), and rare earth elements (REE) in abundance. High uranium/thorium (U/Th) ratios (U/Th>1) indicated that mineralization was mainly influenced by the hydrothermal process. The dU value was above 1.9, showing a reducing sedimentary condition. The REE patterns showed high enrichment in light rare earth elements (LREE) (heavy rare earth elements (HREE) (LREE/HREE=5–17), slightly negative europium (Eu) and cerium (Ce) anomalies (dEu=0.81–0.93), and positive Ce anomalies (dCe=0.76–1.12). PGE abundance was characterized by the PGE-type distribution patterns, enriching platinum (Pt), palladium (Pd), ruthenium (Ru) and osmium (Os). The Pt/Pd ratio was 0.8, which is close to the ratios of seawater and ultramafic rocks. All of these geochemical features suggest that the mineralization was triggered by hydrothermal activity in an extensional setting in the context of break-up of the Rodinian supercontinent.  相似文献   

14.
Total organic carbon content (TOC), trace element and platinum-group element (PGE) concentrations were determined in the black shales of the Lower Cambrian Niutitang Formation in the Nayong area, Guizhou Province, South China, in order to study the polymetallic Ni–Mo–PGE mineralization. The results demonstrate that numerous elements are enriched in the polymetallic ores compared to those of the nearby black shale, particularly Ni, Mo, Zn, TOC and total PGE, which can reach up to 7.03 wt.%, 8.49 wt.%, 11.7 wt.%, 11.5 wt.% and 943 ppb, respectively. The elemental enrichment distribution patterns are similar to those in the Zunyi and Zhangjiajie areas except that the Nayong location is exceptionally enriched in Zn. Whereas positive correlations are observed between the ore elements of the polymetallic ores, no such correlations are observed in the black shale. These positively correlated metallic elements are classified into three groups: Co–Ni–Cu–PGE, Zn–Cd–Pb and Mo–Tl–TOC. The geological and geochemical features of these elements suggest that Proterozoic and Early Palaeozoic mafic and ultramafic rocks, dolomites and/or Pb–Zn deposits of the Neoproterozoic Dengying Formation and seawater could be the principal sources for Co–Ni–Cu–PGE, Zn–Cd–Pb, and Mo–Tl–TOC, respectively. Furthermore, the chondrite-normalized patterns of PGEs with Pd/Pt, Pd/Ir and Pt/Ir indicate that PGE enrichment of the polymetallic ores is most likely related to hydrothermal processes associated with the mafic rocks. In contrast, PGE enrichment in the black shale resembles that of the marine oil shale with terrigenous and seawater contributions. Our investigations of TOC, trace elements and PGE geochemistry suggest that multiple sources along with submarine hydrothermal and biological contributions might be responsible for the formation of the polymetallic Ni–Mo–PGE mineralization in the black shales of the Lower Cambrian Niutitang Formation across southern China.  相似文献   

15.
The Kaalamo massif is located in the Northern Ladoga region, Karelia, on the extension of the Kotalahti Belt of Ni-bearing ultramafic intrusions in Finland. The massif, 1.89 Ga in age, is differentiated from pyroxenite to diorite. Nickel–copper sulfide mineralization with platinoids is related to the pyroxenite phase. The ore consists of two mineral types: (i) pentlandite–chalcopyrite–pyrrhotite and (ii) chalcopyrite, both enriched in PGE. Pd and Pt bismuthotellurides, as well as Pd and Pt tellurobismuthides, are represented by the following mineral species: kotulskite, sobolevskite, merenskyite, michenerite, moncheite, keithconnite, telluropalladinite; Pt and Pd sulfides comprise vysotskite, cooperite, braggite, palladium pentlandite, and some other rare phases. High-palladium minerals are contained in pentlandite–chalcopyrite–pyrrhotite ore. Native gold intergrown with kotulskite commonly contains microinclusions (1–3 μm) of Pd stannides: paolovite and atokite. Ore with 20–60% copper sulfides (0.2–6.0% Cu) contains 5.1–6.6 gpt PGE and up to 0.13–2.3 gpt Au. Pd minerals, arsenides and sulfoarsenides of Pt, Rh, Ir, Os, and Ru are identified as well. These are sperrylite, ruthenium platarsite, hollingworthite, and irarsite; silvery gold and paolovite have also been noted. All these minerals have been revealed in the massif for the first time. The paper also presents data on the compositions of 25 PGE minerals (PGM) from Kaalamo ores.  相似文献   

16.
The black shales of the Lower Cambrian Niutitang Formation in Weng'an.on the Yangtze platform of south China,contain voluminous polymetallic sulfide deposits.A comprehensive geochemical investigation of trace,rare earth,and platinum group elements(PGE)has been undertaken in order to discuss its ore genesis and correlation with the tectono.depositional setting.The ore-bearing layers enrich molybdenum(Mo),nickeI(Ni),vanadium(V),lead(Pb),strontium(Sr), bariam(Ba),uranium(U),arsenic(As),and rare earth elements(REE)in abundance.High uranium/thorium(U/Th)ratios(U/Th>1)indicated that mineralization was mainly influenced by the hydrothermal process.The δU value Was above 1.9.showing a reducing sedimentary condition.The REE patterns showed high enrichment in Iight rare earth elements (LREE)(heavy rare earth elements (HREE)(LREE/HREE=5-17),slightly negative europium(EU)and cerium(Ce)anomalies(δEu=0.81-0.93).and positive Ce anomalies(δCe=0.76-1.12).PGE abundance was characterized by the PGE-type distribution patterns,enriching platinum(Pt),palladium(Pd),ruthenium(RuJ and osmium(Os).The Pt,Pd ratio was 0.8.which is close to the ratios of seawater and ultramafic rocks.AII of these geochemical features suggest that the mineralization was triggered by hydrothermal activity in an extensionai setting in the context of break-up of the Rodinian supercontinent.  相似文献   

17.
New data on the composition, assemblages, and formation conditions of platinum-group minerals (PGM) identified in platinum-group element (PGE) occurrences of the Monchetundra intrusion (2495 +- 13 to 2435 ± 11 Ma) are described. This intrusion is a part of the Paleoproterozoic pluton of the Monche-Chuna-Volch’i and Losevy tundras located in the Pechenga-Imandra-Varzuga Rift System. The rhythmically layered host rocks comprise multiple megarhythms juxtaposed to mylonite zones and magmatic breccia and injected by younger intrusive rocks in the process of intense and long magmatic and fluid activity in the Monchetundra Fault Zone. The primary PGM and later assemblages that formed as a result of replacement of the former have been identified in low-sulfide PGE occurrences. More than 50 minerals and unnamed PGE phases including alloys, Pt and Pd sulfides and bismuthotellurides, PGE sulfarsenides, and minerals of the Pd-As-Sb, Pd-Ni-As, and Pd-Ag-Te systems have been established. The unnamed PGE phases—Ni6Pd2As3, Pd6AgTe4, Cu3Pt, Pd2NiTe2, and (Pd, Cu)9Pb(Te, S)4—are described. The primary PGM were altered due to the effect of several mineral-forming processes that resulted in the formation of micro- and nanograins of Pt and Pd alloys, sulfides, and oxides, as well as in the complex distribution of PGE, Au, and Ag mineral assemblages. New types of complex Pt and Pd oxides with variable Cu and Fe contents were identified in the altered ores. Pt and Pd oxides as products of replacement of secondary Pt-Pd-Cu-Fe alloys occur as zonal and fibrous nanoscale Pt-Pd-Cu-Fe-(±S)-O aggregates.  相似文献   

18.
铂族元素(PGE)为中国急缺的矿产资源。近年来,国外(如俄罗斯)在黑色岩系内发现了非传统类型的PGE矿床,中国南方也发现了与黑色岩系有关的PGE矿化。黑色岩系将成为PGE和稀有金属的一种新来源。内蒙古中西部狼山—渣尔泰山地区属中元古代裂谷系,具有类似的区域成矿构造背景,黑色岩系极为发育,并在黑色岩系分布区发现有砂铂矿床、PGE重砂异常及一系列与黑色岩系有关的金铜多金属矿床等良好的找矿线索,具有寻找与黑色岩系有关的PGE矿床的找矿前景。  相似文献   

19.
Black shales of the Lower Cambrian Niutitang Formation in southern China (Huangjiawan mine, Zunyi region, northern part of the Guizhou Province) host regionally distributed stratiform polymetallic Ni‐Mo‐platinum group elements (PGE)‐Au phosphate‐ and sulfide‐rich ores. These are confined to a ≥0.2‐m thick ore horizon composed of mineralized bodies of algal onkolites, phosphate nodules, and sulfide and shale clasts in a mineralized phosphate‐ and organic matter‐rich matrix. Compared to footwall and hanging wall shales, the ore bed is strongly enriched in Ni (up to 100‐fold), As (up to 97‐fold), Mo (up to 95‐fold), Sb (up to 67‐fold), Rh (up to 49‐fold), Cu (up to 37‐fold), Pd (up to 33‐fold), Ru (up to 24‐fold), Zn (up to 23‐fold), Pt (up to 21‐fold), Ir (up to 15‐fold), Co (up to 14‐fold), and Pb (up to 13‐fold). Even footwall and hanging wall black shales are significantly enriched by Mo (21‐fold) and Ni (12‐fold) but depleted in Cr in comparison to average Cambrian black shale. Organic matter is represented by separate accumulations dispersed in the rock matrix or as biotic bitumen droplets and veinlets in ore clasts. Similar organic carbon (Corg) values in an ore bed and enclosing footwall and hanging wall shales of little mineralization indicate that metal accumulation was not controlled only by biogenic productivity and organic matter accumulation rate. Evaporitic conditions during sedimentation of the basal part of the Niutitang Formation were documented by an occurrence of preserved Ni‐, V‐, Cr‐, and Cu‐enriched phosphate‐rich hardground with halite and anhydrite pseudomorphs on the paleosurface of the underlying Neoproterozoic carbonates. Neoproterozoic black shales of the Doushantuo Formation are characterized by increased metal concentrations. Comparison of metal abundances in both hardground and Doushantuo black shales indicate that black shales could have become a source of metal‐rich hardground during weathering. The polymetallic Ni‐Mo‐PGE sulfide‐rich ore bed is interpreted to represent a remnant of shallow‐water hardground horizon rich in metals, which originated in a sediment‐starved, semi‐restricted, seawater environment. During the Early Cambrian transgression an influx of fresh seawater and intensive evaporation, together with the hydrothermal enrichment of seawater in a semi‐restricted basin, resulted in the formation of dense metalliferous brines; co‐precipitation of metals together with phosphates and sulfides occurred at or above the oxic–anoxic sediment interface. Metal‐enriched hardground was disintegrated by the action of waves or bottom currents and deposited in a deeper part of the anoxic basin. Contemporaneously with the formation of a polymetallic Ni‐Mo‐PGE‐Au sulfide ore bed, economic sedimentary exhalative (SEDEX)‐type barite deposits were forming in a stratigraphically and geotectonically similar setting. The results of geochemical study at the Shang Gongtang SEDEX‐type Ba deposit indicate that concentrations of Ag, As, Cr, Cu, Fe, Mn, Ni, Pb, Sb, V, Zn and other metals decrease from top of the barite body toward the hanging wall black shale. Lower Cambrian black shales of the Niutitang Formation above the barite body also display similar element abundances as Neoproterozoic black shales of the Doushantuo Formation, developed in the footwall of the barite body. But the geochemical composition of the sulfide layer is different from the Ni‐Mo ore bed, showing only elevated Pb, Cu, Ni and Mo values. It is suggested that hydrothermal brines at Shang Gongtang might have leached metals from footwall Neoproterozoic sequences and became, after mixing with normal seawater, an additional source of Ag, Cr, Cu, Pb, Sb, Zn, Ni, PGE, V and other metals.  相似文献   

20.
Data are presented on chromitites from the northern and southern sheets of the Il’chir ophiolite complex (Ospa–Kitoi and Khara-Nur (Kharanur) massifs). The new and published data are used to consider similarities and differences between ore chrome-spinel from the chromitites of the northern and southern ophiolite sheets as well as the species diversity of PGE minerals and the evolution of PGE mineralization. Previously unknown PGE minerals have been found in the studied chromitites.Ore chrome-spinel in the chromitites from the northern sheet occurs in medium- and low-alumina forms, whereas the chromitites from the southern sheet contain only medium-alumina chrome-spinel. The PGE minerals in the chromitites from the southern sheet are Os–Ir–Ru solid solutions as well as sulfides and sulfoarsenides of these metals. The chromitites from the northern sheet contain the same PGE minerals and diverse Rh–Pt–Pd mineralization: Pt–Ir–Ru–Os and isoferroplatinum with Ir and Os–Ir–Ru lamellae. Areas of altered chromitites contain a wide variety of low-temperature secondary PGE minerals: Pt–Cu, Pt–Pd–Cu, PdHg, Rh2SnCu, RhNiAs, PtAs2, and PtSb2. The speciation of the PGE minerals is described along with multiphase intergrowths. The relations of Os–Ir–Ru solid solutions with laurite and irarsite are considered along with the microstructure of irarsite–osarsite–ruarsite solid solutions. Zoned Os–Ir–Ru crystals have been found. Zone Os82–99 in these crystals contains Ni3S2 inclusions, which mark off crystal growth zones. Different sources of PGE mineralization are presumed for the chromitites from the northern and southern sheets.The stages of PGE mineralization have been defined for the chromitites from the Il’chir ophiolite belt. The Pt–Ir–Ru–Os and (Os, Ru)S2 inclusions in Os–Ir–Ru solid solutions might be relics of primitive-mantle PGE minerals. During the partial melting of the upper mantle, Os–Ir–Ru and Pt–Fe solid solutions formed syngenetically with the chromitites. During the late-magmatic stage, Os–Ir–Ru solid solutions were replaced by sulfides and sulfarsenides of these metals. Mantle metasomatism under the effect of reduced mantle fluids was accompanied by PGE remobilization and redeposition with the formation of the following assemblage: garutiite (Ni,Fe,Ir), zaccariniite (RhNiAs), (Ir,Ni,Cu)S3, Pt–Cu, Pt–Cu–Fe–Ni, Cu–Pt–Pd, and Rh–Cu–Sn–Sb. The zoned Os–Ir–Ru crystals in the chromitites from the northern sheet suggest dissolution and redeposition of Os–Ir–Ru primary-mantle solid solutions by bisulfide complexes. Most likely, the PGE remobilization took place during early serpentinization at 450–600 ºC and 13–16 kbar.During the crustal metamorphic stage, tectonic movements (obduction) and a change from reducing to oxidizing conditions were accompanied by the successive transformation of chrome-spinel into ferrichromite–chrome-magnetite with the active participation of a metamorphic fluid enriched in crustal components. The orcelite–maucherite–ferrichromite–sperrylite assemblage formed in epidote-amphibolitic facies settings during this stage.The PGE mineral assemblage reflects different stages in the formation of the chromitites and dunite-harzburgite host rocks and their transformation from primitive mantle to crustal metamorphic processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号