首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 140 毫秒
1.
宁夏自治区南部固原寺口子剖面位于青藏高原东北缘,记录了青藏高原隆升、扩展与区域气候变化之间的相互作用过程,重建该地区气候演化历史对于揭示高原隆升与全球气候变冷对亚洲大陆腹地干旱化的影响具有重要意义。通过对寺口子剖面晚渐新世—第四纪地层沉积物色度(a~*、b~*、L~*)的系统测量,建立了29~0.5 Ma颜色指标变化序列,结合研究区内已发表的磁化率、孢粉和总无机碳数据,揭示出该区域气候经历了四个阶段:29~24.8 Ma为最湿热阶段、23.8~18 Ma为较湿热阶段、18~5 Ma为逐渐变冷阶段、5~0.5 Ma为快速变冷阶段。剖面记录了25~24 Ma、18 Ma、5 Ma两次显著的气候变冷事件和3 Ma气候变暖事件。结合青藏高原东北缘新生代盆地气候代用指标,发现这些气候变冷事件和3 Ma气候变暖事件具有区域性。通过对比深海氧同位素记录、北太平洋粉尘通量记录、青藏高原构造隆升事件和研究区气候演化特征,我们认为青藏高原隆升和全球气候变化共同控制了区域气候演化,但在不同时期所起作用有所差异。  相似文献   

2.
综合分析青藏高原新近纪古气候研究的不同替代性指标,建立了高原新近纪重大气候事件的演变序列,探讨青藏高原隆升和全球重大气候事件的关系。青藏高原新近纪不同构造-地层区重大气候事件发生的时间与高原隆升事件基本吻合,说明高原隆升是青藏高原气候变化的主要因素,与全球气候变化事件既存在一致性,又存在差异性。早—中中新世青藏高原气候变化频繁,气候变冷期开始的年代早于全球约15Ma以来的降温期,说明早—中中新世高原隆升对全球变冷的贡献较大。晚中新世以来的气候事件与全球重要气候事件相吻合,说明青藏高原可能在晚中新世已经隆升到了一定高度,其对全球气候变化的影响较之前有所减弱。青藏高原气候变化除受到高原隆升影响外,亦受到全球气候变化的影响。  相似文献   

3.
黄土古气候变化趋势与青藏高原隆升关系初探   总被引:8,自引:5,他引:3       下载免费PDF全文
粒度和磁化率是两个研究黄土古气候最常用的古环境变化指示参数,它们随着黄土古土壤地层变化而出现峰和谷的对应已经被证明是反映了天文轨道要素的周期变化。文章试图忽略这些受控于轨道要素的气候周期变化,而主要侧重考察黄土地层这两个参数的平均值(或背景值)所反映的长期变化趋势。对兰州九州台黄土进行了系统采样和测量,发现兰州九州台黄土剖面粒度和磁化率曲线显示出两个明显的趋势,粒度从剖面底部向上有明显逐渐变粗趋势,指示着冬季风增强,与此同时,磁化率自下而上却逐渐增大,指示着夏季风增强的趋势。与黄土高原其他黄土剖面磁化率和粒度曲线对比发现,这是两个普遍存在的趋势。地理位置靠近青藏高原的剖面,这两个增大的趋势更明显。冬、夏季风同时逐渐增强是海陆热力差异增大所引起,反映了青藏高原第四纪时期的逐渐不断的隆升过程。因此,根据粒度和磁化率曲线变化趋势线的变化特点可以帮助分析和反推第四纪以来青藏高原隆升的过程。兰州九州台以及黄土高原各剖面粒度和磁化率曲线的线性变化趋势则可能指示着第四纪以来青藏高原是逐渐均匀缓慢的变化过程。我们对22Ma以来风积地层记录的变化趋势也做了分析。前人过去普遍认识的第四纪以来跳跃式或间歇式剧烈隆升在我们的数据中没有得到反映。黄土高原西部西宁、兰州、靖远等剖面磁化率显著的增长趋势可能与青藏高原隆升到一定高度后高原季风加强所致。  相似文献   

4.
在干旱气候背景下常常有风尘物质的释放和传输,风尘沉积被认为是干旱环境变化良好的地质记录。在亚洲中部和中国北方,大面积的干旱区被沙漠戈壁覆盖,这些地区是粉尘物质的重要源地,释放的风尘物质影响局地和区域环境,并通过参与生物地球化学循环等影响更大空间尺度的气候变化。因此,亚洲中部干旱气候的形成和演化以及发展趋势一直受到重视。长期以来,关于晚新生代亚洲中部干旱气候发展的驱动机制至少有两种解释:一是青藏高原的隆升控制着亚洲中部的干旱化过程,随着高原的阶段性隆升亚洲干旱气候逐步增强;二是晚新生代全球变冷直接驱动着亚洲变干,全球变冷是主导因素。中国黄土高原及其周边地区堆积的黄土-红粘土序列是指示亚洲干旱化过程良好的地质记录,通过对新获得的风尘堆积记录的分析,发现在晚新生代中国风尘堆积的时空演化与全球变冷有较好的对应,全球变冷可以促使亚洲中部干旱气候发展并加强粉尘活动,而青藏高原隆升的幅度和时间还不清楚,进而认为是全球变冷而不是青藏高原隆升直接驱动亚洲内陆的阶段性变干。基于这些结果,我们认为以前关于青藏高原隆升影响全球气候的结论可能高估了青藏高原在地球环境演化中的作用,关于高原隆升直接驱动亚洲干旱化的结论还需要检验。  相似文献   

5.
黄土/古土壤的物源研究对于揭示第四纪气候变化和青藏高原隆升历史具有重要意义。本研究以位于黄土高原西部1.4 Ma以来的兰州黄土/古土壤沉积序列为研究对象,基于X射线衍射技术分析了黄土/古土壤中的主要矿物组成,侧重于碳酸盐矿物含量,追溯了兰州黄土/古土壤的直接物源。结果显示: (1)1.4 Ma以来兰州地区黄土/古土壤沉积物的主要直接源区为柴达木盆地沙漠区和阿拉善干旱区。(2)基于二元混合模型计算的潜在原始源区对兰州黄土白云石和总碳酸盐矿物的相对贡献率以及长石与石英比值结果一致支持1.4 Ma以来兰州黄土原始物源发生了多次变化。1.4~1.1 Ma和0.9~0.3 Ma青藏高原东北缘造山带(昆仑山、祁连山)和中亚造山带对兰州黄土的贡献相当,而1.1~0.9 Ma和0.3 Ma以来,中亚造山带对兰州黄土的物源贡献增加,这可能分别是对中更新世气候转型和0.3 Ma以来青藏高原及邻近地区干冷气候增强的响应。1.15 Ma和0.8 Ma兰州黄土/古土壤中高的白云石含量、碳酸盐矿物总含量以及0.8 Ma长石与石英比值的快速升高可能是对“昆黄运动”的响应,进而造成了昆仑山、祁连山对黄土高原物源贡献的增加。  相似文献   

6.
黄土/古土壤的物源研究对于揭示第四纪气候变化和青藏高原隆升历史具有重要意义。本研究以位于黄土高原西部1.4 Ma以来的兰州黄土/古土壤沉积序列为研究对象,基于X射线衍射技术分析了黄土/古土壤中的主要矿物组成,侧重于碳酸盐矿物含量,追溯了兰州黄土/古土壤的直接物源。结果显示: (1)1.4 Ma以来兰州地区黄土/古土壤沉积物的主要直接源区为柴达木盆地沙漠区和阿拉善干旱区。(2)基于二元混合模型计算的潜在原始源区对兰州黄土白云石和总碳酸盐矿物的相对贡献率以及长石与石英比值结果一致支持1.4 Ma以来兰州黄土原始物源发生了多次变化。1.4~1.1 Ma和0.9~0.3 Ma青藏高原东北缘造山带(昆仑山、祁连山)和中亚造山带对兰州黄土的贡献相当,而1.1~0.9 Ma和0.3 Ma以来,中亚造山带对兰州黄土的物源贡献增加,这可能分别是对中更新世气候转型和0.3 Ma以来青藏高原及邻近地区干冷气候增强的响应。1.15 Ma和0.8 Ma兰州黄土/古土壤中高的白云石含量、碳酸盐矿物总含量以及0.8 Ma长石与石英比值的快速升高可能是对“昆黄运动”的响应,进而造成了昆仑山、祁连山对黄土高原物源贡献的增加。  相似文献   

7.
青藏高原东北缘共和盆地第四纪磁性地层学研究   总被引:4,自引:2,他引:2  
共和盆地第四纪剖面磁性地层学研究表明,该剖面包含了四个正极性段,三个负极性段,剖面底部地层年龄约为2.11Ma B.P.。结合剖面的沉积特征和已有的孢粉组合特征分析,可以确定该剖面记录了共和盆地2.11Ma B.P.以来的气候变化,且气候发生转型的主要时期依次为1.92 Ma B.P、1.75Ma B.P.、1.40Ma B.P.、1.02 Ma B.P.和0.87Ma B.P.。其主要原因可能是青藏高原强烈隆升远程效应的结果。共和盆地气候变化时间序列的建立为研究青藏高原隆升及环境效应提供有力证据。   相似文献   

8.
青藏高原东北缘古气候可能受控于全球变冷、青藏高原隆升及局地地形变化的影响。为解析气候演化过程及驱动因素,本文以青藏高原东北缘循化盆地西沟剖面作为研究对象,在已有古地磁年龄约束基础上,分析了中中新世—早上新世沉积物中黏土矿物的组成和微观形貌特征。结果表明,西沟剖面沉积物中黏土矿物主要由伊利石、蒙脱石、绿泥石和高岭石组成,其中伊利石含量最高,平均为59. 3%;蒙脱石次之,平均为18. 2%,绿泥石平均含量为12. 3%,高岭石平均含量为10. 2%。根据剖面中黏土矿物含量和比值的变化特征,结合循化盆地西沟剖面的沉积速率、孢粉记录、有机质碳同位素和沉积岩地球化学比值,并与深海氧同位素值(δ18O)变化曲线对比,将循化盆地14. 6~5. 0 Ma气候环境演化划分为3个阶段:14. 6~12. 7 Ma,气候干冷期,与北半球冰盖扩展引发的全球性降温事件有关;12. 7~8. 0 Ma,气候相对温暖湿润期,可能与循化盆地周围山体隆升有关,即积石山在~12. 7 Ma隆升至临界高度,成为西风带输送水汽的地形屏障,使得循化盆地内的降水增强;8. 0~5. 0 Ma,气候再次转向干冷期,该阶段气候的干旱化对应于青藏高原在8 Ma左右的快速隆升,高原进一步的隆升阻碍东亚季风西风带的暖湿气流向内陆的输送,从而引起区域干旱化。  相似文献   

9.
李力  安芷生 《第四纪研究》2001,21(2):134-146
运用小波分析与传统谱分析技术相结合的手段,对甘肃省西峰的一套黄土-古土壤-红粘土记录过去6Ma夏季风气候代用指标的时间序列进行了周期谱演化分析,初步探讨了晚新生代以来黄土高原风尘记录所反映的周期演化特征.结果表明,轨道尺度的周期随时间演化,在北半球大冰期来临前后具有不同的响应特征.在3.1MaB.P.之前,主导周期以41000a和21000a为主,可视为对轨道要素变化的响应;3.1MaB.P.之后,0.1Ma的周期分阶段地趋于主导地位.其中,3.1MaB.P.,1.2MaB.P.和0.6MaB.P.准0.1Ma周期的出现可以同现有资料所反映的青藏高原加速隆升相对应,可能指示了气候演变中的构造影响.过去6Ma东亚夏季风记录中的准0.1Ma周期除与轨道要素变化的非线性响应有关外,很可能与青藏高原的阶段性隆升效应有关.  相似文献   

10.
新生代全球变冷与青藏高原隆升的关系   总被引:8,自引:0,他引:8  
文中综合分析可以影响新生代全球变冷的四种原因,提出青藏隆升对新生代大气CO2浓度降低起主导作用,对新生代全球气温的降低起关键控制作用。这种作用是通过青藏高原隆升加剧全球硅酸盐岩和碳酸盐岩的化学风化、有机碳埋藏、植物的光合作用来实现的。而且,青藏高原隆升有可能同洋流改变和行星轨道参数变化于第三纪末至第四纪共同对新生代全球变冷起控制作用。因此,目前首先解决的科学目标应该是:精确刻划青藏高原隆升时代和幅度,并确定青藏高原隆升对新生代全球变冷的贡献,确定一种以青藏高原隆升为主导作用的控制新生代全球变冷的综合模式。  相似文献   

11.
上新世-更新世转型是上新世温暖气候向更新世冰期-间冰期旋回过渡的重要时段,与此同时,青藏高原的强烈隆升也深刻改变了高原及周边地区的地貌格局和生态环境面貌。因此,开展青藏高原东北缘地区上新世-更新世转型期的古气候变化研究是理解地球各圈层相互作用的重要切入点。而兰州盆地地处中国三大自然区的衔接位置,对气候变化和构造活动响应较为敏感,是探讨构造-气候-生态相互作用的理想区域。以兰州皋兰山红黏土-黄土岩芯为研究对象,在已有黄土高精度磁性地层年代学基础上,综合开展了有机碳同位素和长链正构烷烃碳同位素分析,重建了西部黄土高原上新世-更新世转型期(3.0~2.2 Ma)的C3/C4植被相对丰度演化历史。结果表明:皋兰山上新世-更新世转型期风成沉积中正构烷烃多以C31为主峰的单峰模式,可能指示了草本植被的主要贡献。而典型黄土层位(L32和L33)的正构烷烃多呈现微生物降解的双鼓包模式,表明饱和烃受外源输入影响。综合对比常规指标、总有机碳和长链正构烷烃碳同位素后认为,皋兰山底部黄土的总有机碳同位素不能直接用于重建区域C3/C4植被演化。长链正构烷烃碳同位素研究表明:在3.0~2.2 Ma时期,皋兰山古生态整体以C3植被为主;C4植被扩张发生在3.0 Ma之前,3.0~2.9 Ma发生C4植被快速减少事件,初步推测这可能与降温有关。  相似文献   

12.
早更新世以来青藏高原隆升作用在塔里木盆地腹地的响应   总被引:2,自引:2,他引:0  
自约55Ma印度-欧亚板块碰撞,青藏高原经历持续挤压,发生多次阶段性隆升作用.晚新生代以来强烈隆升作用不仅造就了青藏高原北部强烈的构造变形效应,还引起了大规模的干旱化.位于塔里木盆地腹地(N38° 40.911′,E80°18.484′)的玛扎塔格褶断带东西向延伸约300km,南缘发育出露连续、完全的早更新世地层,岩性主要以灰黄色泥岩、粉砂质泥岩、粉砂岩为主,含有薄层粗砂岩及砾岩.本文延展了原来研究剖面,共采集古地磁样品90块共9个采点.系统热退磁结果揭示出了正反极性,高分辨率的磁性地层学及野外磁化率研究确定研究剖面时代约为2.2~0.1Ma,对玛扎塔格整个剖面地层的年龄控制提供了限定.利用MS2磁化率仪对野外剖面现场测量,采集209米695点数据.通过与深海氧同位素比对分析,说明磁化率结果不仅较好揭示了全球气候变化,还精确记录了约1.8Ma、1.2Ma、0.9Ma、0.65Ma等多期构造活动,并且直接证明年龄约0.05Ma的地层发生了较强构造变形.青藏高原早更新世以来隆升过程具有脉冲特征,约0.9Ma的强烈隆升使主体达到冰冻圈,起到的屏障效应使塔里木盆地开始较快速干旱化,同时为黄土高原提供了更多风尘物质和增强了对粉尘的搬运能力,导致巨厚的粗粒上砂岩层L9形成.  相似文献   

13.
The northeastern Tibetan Plateau is located at the convergence of the Asian winter and summer monsoons and westerlies; thus, this area has witnessed historic climate changes.The Xunhua basin is an intermontane basin on the northeastern margin of the Tibetan Plateau.The basin contains more than 2000 m of Cenozoic fluvial–lacustrine sediments, recording a long history of climate and environmental changes.We collected the mid-Miocene sediments from the Xunhua basin and used palynological methods to discuss the relationship between aridification in the interior of Asia, global cooling, and uplift of the Tibetan Plateau.Based on the palynological analysis of the Xigou section, Xunhua basin, the palynological diagram is subdivided into three pollen zones and past vegetation and climate are reconstructed.Zone I, Ephedripites–Nitraridites–Chenopodipollis–Quercoidites(14.0–12.5 Ma), represents mixed shrub–steppe vegetation with a dry and cold climate.In zone II, Pinaceae–Betulaepollenites–Ephedripites–Chenopodipollis–Graminidites(12.5–8.0 Ma), the vegetation and climate conditions improved, even though the vegetation was still dominated by shrub–steppe taxa.Zone III, Ephedripites–Nitrariadites–Chenopodipollis(8.0–5.0 Ma), represents desert steppe vegetation with drier and colder climate.The palynological records suggest that shrub–steppe dominated the whole Xigou section and the content gradually increased, implying a protracted aridification process, although there was an obvious climate improvement during 12.5–8.0 Ma.The aridification in the Xunhua basin and surrounding mountains during 14.0–12.5 Ma was probably related to global cooling induced by the rapid expansion of the East Antarctic ice-sheets and the relatively higher evaporation rate.During the 12.5–8.0 Ma period, although topographic changes(uplift of Jishi Shan) decreased precipitation and strengthened aridification in the Xunhua basin on leeward slopes, the improved vegetation and climate conditions were probably controlled by the decrease in evaporation rates as a result of continuous cooling.From 8.0 to 5.0 Ma, the rapid development of the desert steppe can be attributed to global cooling and uplift of the Tibetan Plateau.  相似文献   

14.
Through a comprehensive study of magnetostratigraphy and sedimentology of several basins in the northeastern Tibetan Plateau, we reveal that the study area mainly experienced six tectonic uplift stages at approximately 52 Ma, 34–30 Ma, 24–20 Ma, 16–12 Ma, 8–6 Ma, and 3.6–2.6 Ma. Comprehensive analyses of pollen assemblages from the Qaidam, Linxia, Xining, and West Jiuquan Basins show that the northeastern Tibetan Plateau has undergone six major changes in vegetation types and climate: 50–40 Ma for the warm-humid forest vegetation, 40–23 Ma for the warm-arid and temperate-arid forest steppe vegetation, 23–18.6 Ma for the warm-humid and temperatehumid forest vegetation, 18.6–8.5 Ma for the warm-humid and cool-humid forest steppe vegetation, 8.6–5 Ma for the temperate sub-humid savanna steppe vegetation, and 5–1.8 Ma for the cold-arid steppe vegetation. Comprehensive comparisons of tectonic uplift events inferred from sedimentary records, climatic changes inferred from pollen, and global climate changes show that in the northeastern Tibetan Plateau the climate in the Paleogene at low altitude was mainly controlled by the global climate change, while that in the Neogene interval with high altitude landscapes of mountains and basins is more controlled by altitude and morphology.  相似文献   

15.
阿尔金-祁连山位于青藏高原北缘, 其新生代的隆升-剥露过程记录了高原变形和向北扩展的历史, 对探讨高原隆升动力学具有重要意义。本文采用岩屑磷灰石裂变径迹测年分析, 利用岩屑的统计特征限定阿尔金-祁连山新生代的隆升-剥露过程。磷灰石裂变径迹测试结果表明, 阿尔金-祁连山地区存在4个阶段的抬升冷却: 21.1~19.4 Ma、13.5~10.5 Ma、9.0~7.3 Ma、4.3~3.8 Ma。其中, 4.3~3.8 Ma抬升冷却事件仅体现在祁连山地区, 9.0~7.3 Ma抬升冷却事件在区内普遍存在, 且9.0~7.3 Ma隆升-剥露造就了现代阿尔金-祁连山的地貌。区域资料分析表明, 9~7 Ma(或者8~6 Ma)期间, 青藏高原北缘、东缘, 甚至整个中国西部地区发生了大规模、区域性的抬升, 中国现今"西高"的构造地貌形态可能于当时开始形成。阿尔金-祁连山地区4期抬升冷却事件与青藏高原的隆升阶段有很好的对应关系, 应该是对印度-欧亚板块碰撞的响应。  相似文献   

16.
柴达木盆地大浪滩梁 ZK02孔的磁性地层及其古环境研究   总被引:4,自引:0,他引:4  
对柴达木盆地西部大浪滩盐湖梁-ZK02孔岩芯进行详细的磁性地层研究,确定钻孔岩芯的B—M界线位于315m,Jaramillo位于405~430m,Olduvai位于772~816m。在磁性年代学框架基础上,以蒸发岩沉积序列作为主要依据,结合碎屑岩变化以及孢粉分析,认为该地区在第四纪发生过三次较大的沉积环境变化,分别发生在2.5~2.2Ma,1.2~0.7Ma与0.4Ma。青藏高原第四纪的隆升是造成上述三次变化的主要原因,其中早更新世末—中更新世早期的隆升对柴达木盆地的气候影响较大,导致柴达木盆地的气候由温凉湿润转换为寒冷干旱。高原隆升引起的气候干旱并非简单的逐渐加剧,而是早更新世末期以来,气候湿润期表现得更为湿润,这种现象可能由高原隆升增加了夏季风的强度导致,冰川和积雪面积的增大也起到了叠加效应。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号