首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Spectroscopic and photometric data for the two rapidly rotating members of the α Persei cluster He 373 and AP 225 are analyzed. Improved estimates have been obtained for the projected equatorial rotation velocities: v sin i = 164 km/s for He 323 and v sin i = 129 km/s for AP 225. Multi-band photometric mapping is used to map the spot distributions on the surfaces of the two stars. The fractional spotted areas S and mean temperature difference ΔT between the unspotted photosphere and the spots are estimated (S = 7% and ΔT = 1000 K for He 373; S = 9% and ΔT = 800 K for AP 225). The H α line profiles of both stars have variable emission components whose widths are used to deduce the presence of extended regions of emission reaching the corotation radius.  相似文献   

2.
We analyze three-phase flow of immiscible fluids taking place within an elementary capillary tube with circular cross-section under water- and oil-wet conditions. We account explicitly for momentum transfer between the moving phases, which leads to the phenomenon of viscous coupling, by imposing continuity of velocity and shear stress at fluid-fluid interfaces. The macroscopic flow model which describes the system at the Darcy scale includes three-phase effective relative permeabilities, K i j,r , accounting for the flux of the ith phase due to the presence of the jth phase. These effective parameters strongly depend on phase saturations, fluid viscosities, and wettability of the solid matrix. In the considered flow setting, K i j,r reduce to a set of nine scalar quantities, K i j,r . Our results show that K i j,r of the wetting phase is a function only of the fluid phase own saturation. Otherwise, K i j,r of the non-wetting phase depends on the saturation of all fluids in the system and on oil and water viscosities. Viscous coupling effects (encapsulated in K i j,r with ij) can be significantly relevant in both water- and oil-wet systems. Wettability conditions influence oil flow at a rate that increases linearly with viscosity ratio between oil and water phases.  相似文献   

3.
4.
5.
The undrained shear strength (s u) of cohesive soils is a crucial parameter for many geotechnical engineering applications. Due to the complexities and uncertainties associated with laboratory and in situ tests, it is a challenging task to obtain the undrained shear strength in a reliable and economical manner. In this study, a probabilistic model for the s u of moderately overconsolidated clays is developed using the Bayesian model class selection approach. The model is based on a comprehensive geotechnical database compiled for this study with field measurements of field vane strength (s u), plastic limit (PL), natural water content (W n), liquid limit (LL), vertical effective overburden stress (\(\sigma_{\nu }^{\prime }\)), preconsolidation pressure (\(\sigma_{\text{p}}^{\prime }\)) and overconsolidated ratio (OCR). Comparison study shows that the proposed model is superior to some well-known empirical relationships for OC clays. The proposed probabilistic model not only provides reliable and economical estimation of s u but also facilitates reliability-based analysis and design for performance-based engineering applications.  相似文献   

6.
We have collected high resolution neutron powder diffraction patterns from Na2SO4·10D2O over the temperature range 4.2–300 K following rapid quenching in liquid nitrogen, and over a series of slow warming and cooling cycles. The crystal is monoclinic, space-group P21/c (Z = 4) with a = 11.44214(4) Å, b = 10.34276(4) Å, c = 12.75486(6) Å, β = 107.847(1)°, and V = 1436.794(8) Å3 at 4.2 K (slowly cooled), and a = 11.51472(6) Å, b = 10.36495(6) Å, c = 12.84651(7) Å, β = 107.7543(1)°, V = 1460.20(1) Å3 at 300 K. Structures were refined to R P (Rietveld powder residual, \( R_{P} = {{\sum {\left| {I_{\text{obs}} - I_{\text{calc}} } \right|} } \mathord{\left/ {\vphantom {{\sum {\left| {I_{\text{obs}} - I_{\text{calc}} } \right|} } {\sum {I_{\text{obs}} } }}} \right. \kern-\nulldelimiterspace} {\sum {I_{\text{obs}} } }} \)) better than 2.5% at 4.2 K (quenched and slow cooled), 150 and 300 K. The sulfate disorder observed previously by Levy and Lisensky (Acta Cryst B34:3502–3510, 1978) was not present in our specimen, but we did observe changes with temperature in deuteron occupancies of the orientationally disordered water molecules coordinated to Na. The temperature dependence of the unit-cell volume from 4.2 to 300 K is well represented by a simple polynomial of the form V = ? 4.143(1) × 10?7 T 3 + 0.00047(2) T2 ? 0.027(2) T + 1437.0(1) Å3 (R 2 = 99.98%). The coefficient of volume thermal expansion, α V , is positive above 40 K, and displays a similar magnitude and temperature dependence to α V in deuterated epsomite and meridianiite. The relationship between the magnitude and orientation of the principal axes of the thermal expansion tensor and the main structural elements are discussed; freezing in of deuteron disorder in the quenched specimen affects the thermal expansion, manifested most obviously as a change in the behaviour of the unit-cell parameter β.  相似文献   

7.
8.
Previously, similarity of source spectra of Kamchatka earthquakes with respect to the common corner frequency fc1 and the expressed deviations from similarity for the second fc2 and the third fc3 corner frequencies were revealed. The value of fc3 reflects the characteristic size Lis of fault surface; correspondingly, LisvrTis, where vr is the rupture speed and Tis ≈ 1/fc3 is characteristic time. The estimates of fc3 are used for normalizing fc1 and fc2. In this way one obtains dimensionless rupture temporal parametres τ1 and τ2 and can further study the dependence τ21). The growth of a rupture is considered as a process of aggregation of elementary fault spots of the size Lis. The dimensionless width of the random front of aggregation is on the order of τ2. The relationship τ21) approximately follows power law with exponent β. The estimates of β derived from earthquake populations of Kamchatka, USA and Central Asia (β = 0.35–0.6) agree with values expected from the known Eden’s theory of random aggregation growth and from its generalizations.  相似文献   

9.
Absorption of the synchrotron emission of the quasar 3C 345 in the continuum and H(93–95)α and H(78–79)α radio recombination lines is studied. The upper limit for absorption in the H(93–95)α lines is Tal/Tac < 0.7%; absorption in the H(78–79)α lines with antenna temperature Tal = 25 mK, linewidth Δf = 5.3 ± 0.08 MHz, and Tal/Tac ≥ 0.3% has been detected. A correction to the redshift Δz = 0.00135 ± 0.00008 (z = 0.59365) has been determined.  相似文献   

10.
The stress regime in a Rotliegend reservoir of the Northeast German Basin   总被引:2,自引:0,他引:2  
In-situ stresses have significant impact, either positive or negative, on the short and long term behaviour of fractured reservoirs. The knowledge of the stress conditions are therefore important for planning and utilization of man-made geothermal reservoirs. The geothermal field Groß Schönebeck (40 km north of Berlin/Germany) belongs to the key sites in the northeastern German Basin. We present a stress state determination for this Lower Permian (Rotliegend) reservoir by an integrated approach of 3D structural modelling, 3D fault mapping, stress ratio definition based on frictional constraints, and slip-tendency analysis. The results indicate stress ratios of the minimum horizontal stress S hmin being equal or increasing 0.55 times the amount of the vertical stress S V (S hmin ≥ 0.55S V ) and of the maximum horizontal stress S Hmax ≤ 0.78–1.00S V in stress regimes from normal to strike slip faulting. Thus, acting stresses in the 4,100-m deep reservoir are S V  = 100 MPa, S hmin = 55 MPa and S Hmax = 78?100 MPa. Values from hydraulic fracturing support these results. Various fault sets of the reservoir are characterized in terms of their potential to conduct geothermal fluids based on their slip and dilatation tendency. This combined approach can be adopted to any other geothermal site investigation.  相似文献   

11.
The crystallization of plagioclase-bearing assemblages in mantle rocks is witness of mantle exhumation at shallow depth. Previous experimental works on peridotites have found systematic compositional variations in coexisting minerals at decreasing pressure within the plagioclase stability field. In this experimental study we present new constraints on the stability of plagioclase as a function of different Na2O/CaO bulk ratios, and we present a new geobarometer for mantle rocks. Experiments have been performed in a single-stage piston cylinder at 5–10 kbar, 1050–1150?°C at nominally anhydrous conditions using seeded gels of peridotite compositions (Na2O/CaO?=?0.08–0.13; X Cr = Cr/(Cr?+?Al)?=?0.07–0.10) as starting materials. As expected, the increase of the bulk Na2O/CaO ratio extends the plagioclase stability to higher pressure; in the studied high-Na fertile lherzolite (HNa-FLZ), the plagioclase-spinel transition occurs at 1100?°C between 9 and 10 kbar; in a fertile lherzolite (FLZ) with Na2O/CaO?=?0.08, it occurs between 8 and 9 kbar at 1100?°C. This study provides, together with previous experimental results, a consistent database, covering a wide range of PT conditions (3–9 kbar, 1000–1150?°C) and variable bulk compositions to be used to define and calibrate a geobarometer for plagioclase-bearing mantle rocks. The pressure sensitive equilibrium:
$$\mathop {{\text{M}}{{\text{g}}_{\text{2}}}{\text{Si}}{{\text{O}}_{\text{4}}}^{{\text{Ol}}}}\limits_{{\text{Forsterite}}} +\mathop {{\text{CaA}}{{\text{l}}_{\text{2}}}{\text{S}}{{\text{i}}_{\text{2}}}{{\text{O}}_{\text{8}}}^{{\text{Pl}}}}\limits_{{\text{Anorthite}}~} =\mathop {{\text{CaA}}{{\text{l}}_{\text{2}}}{\text{Si}}{{\text{O}}_{\text{6}}}^{{\text{Cpx}}}}\limits_{{\text{Ca-Tschermak}}} +{\text{ }}\mathop {{\text{M}}{{\text{g}}_{\text{2}}}{\text{S}}{{\text{i}}_{\text{2}}}{{\text{O}}_{\text{6}}}^{{\text{Opx}}}}\limits_{{\text{Enstatite}}} ,$$
has been empirically calibrated by least squares regression analysis of experimental data combined with Monte Carlo simulation. The result of the fit gives the following equation:
$$P=7.2( \pm 2.9)+0.0078( \pm 0.0021)T{\text{ }}+0.0022( \pm 0.0001)T{\text{ }}\ln K,$$
$${R^2}=0.93,$$
where P is expressed in kbar and T in kelvin. K is the equilibrium constant K?=?a CaTs × a en/a an × a fo, where a CaTs, a en, a an and a fo are the activities of Ca-Tschermak in clinopyroxene, enstatite in orthopyroxene, anorthite in plagioclase and forsterite in olivine. The proposed geobarometer for plagioclase peridotites, coupled to detailed microstructural and mineral chemistry investigations, represents a valuable tool to track the exhumation of the lithospheric mantle at extensional environments.
  相似文献   

12.
Flow-like landslides in clayey soils represent serious threats for populations and infrastructures and have been the subject of numerous studies in the past decade. However, despite the rising need for landslide mitigation with growing urbanization, the transient mechanisms involved in the solid-fluid transition are still poorly understood. One way of characterizing the solid-fluid transition is to carry out rheometrical tests on clayey soil samples to assess the evolution of viscosity with the shear stress. In this study, we carried out geotechnical and rheometrical tests on clayey samples collected from six flow-like landslides in order to assess if these clayey soils exhibit similar characteristics when they fluidize (solid-fluid transition). The results show that (1) all tested soils except one exhibit a yield-stress fluid behavior that can be associated with a bifurcation in viscosity (described by the critical shear rate \( \dot{\gamma_c} \)) and in shear modulus G; (2) the larger the amplitude of the viscosity bifurcation, the larger the associated drop in G; and (3) the water content (w) deviation from the Atterberg liquid limit (LL) seem a key parameter controlling a common mechanical behavior of these soils at the solid-fluid transition. We propose exponential laws describing the evolution of the critical shear stress τc, the critical shear rate \( \dot{\gamma_c} \), and the shear modulus G as a function of the deviation w-LL.  相似文献   

13.
This paper examines the influence of porous media deformation on water-table wave dispersion in an unconfined aquifer using a numerical model which couples Richards’ equation to the poro-elastic model. The study was motivated by the findings of Shoushtari et al. (J Hydrol 533:412–440, 2016) who were unable to reproduce the observed wave dispersion in their sand flume data with either numerical Richards’ equation models (assuming rigid porous media) or existing analytic solutions. The water-table wave dispersion is quantified via the complex wave number extracted from the predicted amplitude and phase profiles. A sensitivity analysis was performed to establish the influence of the main parameters in the poro-elastic model, namely Young’s modulus (E) and Poisson’s ratio (ν). For a short oscillation period (T?=?16.4 s), the phase lag increase rate (k i) is sensitive to the chosen values of E and ν, demonstrating an inverse relationship with both parameters. Changes in the amplitude decay rate (k r), however, were negligible. For a longer oscillation period (T?=?908.6 s), variations in the values of E and ν resulted in only small changes in both k r and k i. In both the short and long period cases, the poro-elastic model is unable to reproduce the observed wave dispersion in the existing laboratory data. Hence porous media deformation cannot explain the additional energy dissipation in the laboratory data. Shoushtari SMH, Cartwright N, Perrochet P, Nielsen P (2016) The effects of oscillation period on groundwater wave dispersion in a sandy unconfined aquifer: sand flume experiments and modelling. J Hydrol 533:412–440.  相似文献   

14.
Since cross-anisotropic sand behaves differently when the loading direction or the stress state changes, the influences of the loading direction and the intermediate principal stress ratio (b = (σ 2 ? σ 3)/(σ 1 ? σ 3)) on the initiation of strain localization need study. According to the loading angle (angle between the major principal stress direction and the normal of bedding plane), a 3D non-coaxial non-associated elasto-plasticity hardening model was proposed by modifying Lode angle formulation of the Mohr–Coulomb yield function and the stress–dilatancy function. By using bifurcation analysis, the model was used to predict the initiation of strain localization under plane strain and true triaxial conditions. The predictions of the plane strain tests show that the major principal strain at the bifurcation points increases with the loading angle, while the stress ratio decreases with the loading angle. According to the loading angle and the intermediate principal stress ratio, the true triaxial tests were analyzed in three sectors. The stress–strain behavior and the volumetric strain in each sector can be well captured by the proposed model. Strain localization occurs in most b value conditions in all three sectors except for those which are close to triaxial compression condition (b = 0). The difference between the peak shear strength corresponding to the strain localization and the ultimate shear strength corresponding to plastic limit becomes obvious when the b value is near 0.4. The influence of bifurcation on the shear strength becomes weak when the loading direction changes from perpendicular to the bedding plane to parallel. The bifurcation analysis based on the proposed model gives out major principal strain and peak shear strength at the initiation of strain localization; the given results are consistent with experiments.  相似文献   

15.
The specific heat capacity (C p) of six variably hydrated (~3.5 wt% H2O) iron-bearing Etna trachybasaltic glasses and liquids has been measured using differential scanning calorimetry from room temperature across the glass transition region. These data are compared to heat capacity measurements on thirteen melt compositions in the iron-free anorthite (An)–diopside (Di) system over a similar range of H2O contents. These data extend considerably the published C p measurements for hydrous melts and glasses. The results for the Etna trachybasalts show nonlinear variations in, both, the heat capacity of the glass at the onset of the glass transition (i.e., C p g ) and the fully relaxed liquid (i.e., C p l ) with increasing H2O content. Similarly, the “configurational heat capacity” (i.e., C p c  = C p l  ? C p g ) varies nonlinearly with H2O content. The An–Di hydrous compositions investigated show similar trends, with C p values varying as a function of melt composition and H2O content. The results show that values in hydrous C p g , C p l and C p c in the depolymerized glasses and liquids are substantially different from those observed for more polymerized hydrous albitic, leucogranitic, trachytic and phonolitic multicomponent compositions previously investigated. Polymerized melts have lower C p l and C p c and higher C p g with respect to more depolymerized compositions. The covariation between C p values and the degree of polymerization in glasses and melts is well described in terms of SMhydrous and NBO/T hydrous. Values of C p c increase sharply with increasing depolymerization up to SMhydrous ~ 30–35 mol% (NBO/T hydrous ~ 0.5) and then stabilize to an almost constant value. The partial molar heat capacity of H2O for both glasses (\( C_{{{\text{p}}\;{\text{H}}_{2} {\text{O}}}}^{\text{g}} \)) and liquids (\( C_{{{\text{p}}\;{\text{H}}_{2} {\text{O}}}}^{\text{l}} \)) appears to be independent of composition and, assuming ideal mixing, we obtain a value for \( C_{{{\text{p}}\;{\text{H}}_{2} {\text{O}}}}^{\text{l}} \) of 79 J mol?1 K?1. However, we note that a range of values for \( C_{{{\text{p}}\;{\text{H}}_{2} {\text{O}}}}^{\text{l}} \) (i.e., ~78–87 J mol?1 K?1) proposed by previous workers will reproduce the extended data to within experimental uncertainty. Our analysis suggests that more data are required in order to ascribe a compositional dependence (i.e., nonideal mixing) to \( C_{{{\text{p}}\;{\text{H}}_{2} {\text{O}}}}^{\text{l}} \).  相似文献   

16.
The improvement in the capabilities of Landsat-8 imagery to retrieve bathymetric information in shallow coastal waters was examined. Landsat-8 images have an additional band named coastal/aerosol, Band 1: 435–451 nm in comparison with former generation of Landsat imagery. The selected Landsat-8 operational land image (OLI) was of Chabahar Bay, located in the southern part of Iran (acquired on February 22, 2014 in calm weather and relatively low turbidity). Accurate and high resolution bathymetric data from the study area, produced by field surveys using a single beam echo-sounder, were selected for calibrating the models and validating the results. Three methods, including traditional linear and ratio transform techniques, as well as a novel proposed integrated method, were used to determine depth values. All possible combinations of the three bands [coastal/aerosol (CB), blue (B), and green (G)] have been considered (11 options) using the traditional linear and ratio transform techniques, together with five model options for the integrated method. The accuracy of each model was assessed by comparing the determined bathymetric information with field measured values. The standard error of the estimates, correlation coefficients (R 2 ) for both calibration and validation points, and root mean square errors (RMSE) were calculated for all cases. When compared with the ratio transform method, the method employing linear transformation with a combination of CB, B, and G bands yielded more accurate results (standard error = 1.712 m, R 2 calibration = 0.594, R 2 validation = 0.551, and RMSE =1.80 m). Adding the CB band to the ratio transform methodology also dramatically increased the accuracy of the estimated depths, whereas this increment was not statistically significant when using the linear transform methodology. The integrated transform method in form of Depth = b 0  + b 1 X CB  + b 2 X B  + b 5 ln(R CB )/ln(R G ) + b 6 ln(R B )/ln(R G ) yielded the highest accuracy (standard error = 1.634 m, R 2 calibration = 0.634, R 2 validation = 0.595, and RMSE = 1.71 m), where R i (i = CB, B, or G) refers to atmospherically corrected reflectance values in the i th band [X i  = ln(R i -R deep water)].  相似文献   

17.
Theoretical absorption-line profiles and radial-velocity curves for tidally deformed optical stars in X-ray binary systems are calculated assuming LTE. The variations in the profile shapes and radial-velocity curve of the optical star are analyzed as a function of the orbital inclination of the X-ray binary system. The dependence of the shape of the radial-velocity curve on the orbital inclination i increases with decreasing component-mass ratio q = m x /m v . The integrated line profiles and radial-velocity curves of the optical star are calculated for the Cyg X-1 binary, which are then used to estimate the orbital inclination and mass of the relativistic object: i < 43° andm x = 8.2–12.8 M. These estimates are in good agreement with earlier results of fitting the radial-velocity curve of Cyg X-1 using a simpler model (i < 45°, m x = 9.0–13.2 M).  相似文献   

18.
The thermal evolution of 10-Å phase Mg3Si4O10(OH)2·H2O, a phyllosilicate which may have an important role in the storage/release of water in subducting slabs, was studied by X-ray single-crystal diffraction in the temperature range 116–293 K. The lattice parameters were measured at several intervals both on cooling and heating. The structural model was refined with intensity data collected at 116 K and compared to the model refined at room temperature. As expected for a layer silicate on cooling in this temperature range, the a and b lattice parameters undergo a small linear decrease, α a  = 1.7(4) 10?6 K?1 and α b  = 1.9(4) 10?6 K?1, where α is the linear thermal expansion coefficient. The greater variation is along the c axis and can be modeled with the second order polynomial c T  = c 293(1 + 6.7(4)10?5 K?1ΔT + 9.5(2.5)10?8 K?2T)2) where ΔT = T ? 293 K; the monoclinic angle β slightly increased. The cell volume thermal expansion can be modeled with the polynomial V T  V 293 (1 + 8.0 10?5 K?1 ΔT + 1.4 10?7 K?2T)2) where ΔT = T ? 293 is in K and V in Å3. These variations were similar to those expected for a pressure increase, indicating that T and P effects are approximately inverse. The least-squares refinement with intensity data measured at 116 K shows that the volume of the SiO4 tetrahedra does not change significantly, whereas the volume of the Mg octahedra slightly decreases. To adjust for the increased misfit between the tetrahedral and octahedral sheets, the tetrahedral rotation angle α changes from 0.58° to 1.38°, increasing the ditrigonalization of the silicate sheet. This deformation has implications on the H-bonds between the water molecule and the basal oxygen atoms. Furthermore, the highly anisotropic thermal ellipsoid of the H2O oxygen indicates positional disorder, similar to the disorder observed at room temperature. The low-temperature results support the hypothesis that the disorder is static. It can be modeled with a splitting of the interlayer oxygen site with a statistical distribution of the H2O molecules into two positions, 0.6 Å apart. The resulting shortest Obas–OW distances are 2.97 Å, with a significant shortening with respect to the value at room temperature. The low-temperature behavior of the H-bond system is consistent with that hypothesized at high pressure on the basis of the Raman spectra evolution with P.  相似文献   

19.
The liquidus water content of a haplogranite melt at high pressure (P) and temperature (T) is important, because it is a key parameter for constraining the volume of granite that could be produced by melting of the deep crust. Previous estimates based on melting experiments at low P (≤0.5 GPa) show substantial scatter when extrapolated to deep crustal P and T (700–1000 °C, 0.6–1.5 GPa). To improve the high-P constraints on H2O concentration at the granite liquidus, we performed experiments in a piston–cylinder apparatus at 1.0 GPa using a range of haplogranite compositions in the albite (Ab: NaAlSi3O8)—orthoclase (Or: KAlSi3O8)—quartz (Qz: SiO2)—H2O system. We used equal weight fractions of the feldspar components and varied the Qz between 20 and 30 wt%. In each experiment, synthetic granitic composition glass + H2O was homogenized well above the liquidus T, and T was lowered by increments until quartz and alkali feldspar crystalized from the liquid. To establish reversed equilibrium, we crystallized the homogenized melt at the lower T and then raised T until we found that the crystalline phases were completely resorbed into the liquid. The reversed liquidus minimum temperatures at 3.0, 4.1, 5.8, 8.0, and 12.0 wt% H2O are 935–985, 875–900, 775–800, 725–775, and 650–675 °C, respectively. Quenched charges were analyzed by petrographic microscope, scanning electron microscope (SEM), X-ray diffraction (XRD), and electron microprobe analysis (EMPA). The equation for the reversed haplogranite liquidus minimum curve for Ab36.25Or36.25Qz27.5 (wt% basis) at 1.0 GPa is \(T = - 0.0995 w_{{{\text{H}}_{ 2} {\text{O}}}}^{ 3} + 5.0242w_{{{\text{H}}_{ 2} {\text{O}}}}^{ 2} - 88.183 w_{{{\text{H}}_{ 2} {\text{O}}}} + 1171.0\) for \(0 \le w_{{{\text{H}}_{ 2} {\text{O}}}} \le 17\) wt% and \(T\) is in °C. We present a revised \(P - T\) diagram of liquidus minimum H2O isopleths which integrates data from previous determinations of vapor-saturated melting and the lower pressure vapor-undersaturated melting studies conducted by other workers on the haplogranite system. For lower H2O (<5.8 wt%) and higher temperature, our results plot on the high end of the extrapolated water contents at liquidus minima when compared to the previous estimates. As a consequence, amounts of metaluminous granites that can be produced from lower crustal biotite–amphibole gneisses by dehydration melting are more restricted than previously thought.  相似文献   

20.
Laboratory measurements are required to study geophysical properties of the subsurface because of lacking direct observation of Earth’s crust. In this research, compressional (P) and shear (S) wave velocity measurements have been conducted on cylindrical specimens of Quartz-micaschist cored using rock blocks taken from the zinc and lead Angouran mine, Zanjan, northwest of Iran. Cylindrical rock specimens were prepared from the blocks by coring in 0°, 30°, 45°, 60°, and 90° into the foliation direction. P- and S-wave velocities were measured along the cylindrical specimens with different foliation orientations. Percent variations of the P- and S-wave velocities (Thomsen’s anisotropic parameters ε and γ) and constant dynamic modulus of test results have been determined. Percent variations of the P-wave velocity (ε) increase with an increase of the foliation angle with respect to the propagating waves direction by a parabolic function as it shows P-wave velocity differences up to a maximum value of 50 %. Thomsen’s anisotropic parameter of γ has also the same function with the foliation angle. Meanwhile, foliation orientation has a much greater influence on ε than γ for foliation angle from 45° to 90° as \( \frac{\varepsilon }{\gamma } \) ratio increases with an increase of foliation angle. Values of dynamic elastic modulus (E), Poisson’s ratio (ν), shear modulus (μ), bulk modulus (K), and Lamé’s constant (λ) increase with the increase of foliation angle with the parabolic function. The results show that dynamic elastic modulus, Poisson’s ratio, shear modulus, bulk modulus, and Lamé’s constant have anisotropic behavior in relation with the foliation orientation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号