首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 953 毫秒
1.
简要介绍近年发展起来的各种微区测年方法及其优缺点,重点介绍不同时期电子探针化学测年法在晶质铀矿/沥青铀矿定年研究中的发展状况及前人使用的分析测试条件,并展望了该方法在晶质铀矿/沥青铀矿定年研究中的应用前景及可能存在的问题。通过系统研究,认为该方法在铀矿物定年研究中将大有作为,尤其是在微小铀矿物(〈10μm)和多期次、多阶段铀矿体的微区定年研究中更能显示其优越性。  相似文献   

2.
电子探针测年方法应用于粤北长江岩体的铀矿物年龄研究   总被引:13,自引:8,他引:5  
晶质铀矿被认为是花岗岩型铀矿成矿的主要矿源提供者,在评价岩体的含矿性和确定成岩成矿年龄方面有重要意义。长江岩体属于诸广山复式岩体的一部分,是粤北地区重要的产铀花岗岩体,本文利用电子探针对该岩体中的铀矿物进行研究。结果表明:长江岩体中的铀矿物多以充填或被黄铁矿包围的形式存在,或者分布于石英、黑云母、绿泥石等矿物中;铀矿物类型主要有晶质铀矿、沥青铀矿、铀石、铀钍石四种。晶质铀矿/沥青油矿的化学年龄值可分为三组:~155 Ma、~106 Ma和~74 Ma。第一组年龄代表岩体的形成时代,后两组年龄代表铀矿的多期次成矿作用年龄。铀矿物从成岩后到~106 Ma,成分没有发生明显变化,直到~74 Ma后才发生明显的U元素活化、迁移。因此,可以推测长江岩体地区主要的铀矿成矿期应发生在~74 Ma及之后。  相似文献   

3.
张婉莹 《地下水》2019,(1):132-134
对砂岩型铀矿的大规模研究源于自上世纪九十年代开始的铀矿战略大转移,为保证后续分析成矿机制及物质来源等的准确性,对于砂岩型铀矿成矿时代的研究则是不可缺少的内容之一。目前,用以研究铀矿物年龄的最广泛的方法主要分为全岩-单矿物U-Pb等时线测试方法以及微区原位定年方法,而微区原位方法又分为电子探针化学测年和同位素原位微区精确定年。本文将通过对铀矿年代学的研究现状来总结对比,具体阐述和介绍目前定年的主要研究方法,从而为能够更为精确的分析构造演化历程提供具体依据。  相似文献   

4.
砂岩型铀矿成矿年龄一直是地学领域的难点,通过应用电子探针化学测年技术对HJQ砂岩型铀矿中的铀矿物进行年龄测定,认为在微小铀矿物(<10μm)和多成因、多阶段铀矿体的微区定年研究中更能显示其优越性;并且HJQ铀矿床的形成经历了一个长期和多阶段的过程,成矿时代与鄂尔多斯盆地中新生代北部演化具有良好耦合关系。  相似文献   

5.
电子探针定量分析是采用元素A在待测样品中的特征X射线强度与标准样品中元素A特征X射线强度相比较而进行的,要实现未知样品的元素定量分析必须要具有相应的标准样品,目前可用于铀元素分析的电子探针分析标准样品极少,且缺乏与天然矿物成分、结构近似的标准样品。国际和国内已经制定了电子探针标准物质研制的规范(GB/T 4930—2008/ISO14595:2003),按该规范规定的方法研究了产于陕西光石沟铀矿床的晶质铀矿,结果表明:这些晶质铀矿晶形发育好,颗粒大,具备良好的纯度、均匀性和稳定性。随机选择30个颗粒进行均匀性检测,UO2和PbO在95%的置信区间的平均浓度不确定度分别为0.275%和0.060%,具备非常好的均匀性;该晶质铀矿在电子探针电子束长时间(如360s)轰击下和在自然条件下存放,均具有良好的稳定性;采用五家实验室化学分析定值方法确定了该晶质铀矿的化学成分,并计算了不确定度,主量元素UO2为(86.80±0.36)%,PbO为(4.80±0.07)%,其他元素也给出了参考值。综合以上研究结果:产于光石沟铀矿床的晶质铀矿满足GB/T 4930—2008关于电子探针定量分析标准样品的各项判据,是一个潜在的适用于铀矿物化学成分电子探针定量分析使用的天然矿物标准样品。  相似文献   

6.
电子探针测年方法应用于晶质铀矿的成因类型探讨   总被引:7,自引:4,他引:3  
电子探针Th-U-Pb测年因其高分辨率与高精度的优势,在独居石、锆石等定年矿物中得到了推广,但在Th、U、Pb含量高的晶质铀矿、沥青铀矿等矿物中则应用较少。本文在铁矿床变质岩绿泥石、阳起石黑云母蚀变岩首次发现U含量高的晶质铀矿,基于此,结合该铁矿床地区的地质背景,利用偏光显微镜与电子探针等分析测试手段,将镜下蚀变现象、年龄计算与其他相关元素分析相结合,重点对晶质铀矿的成矿年龄及成矿规律进行探讨。研究发现:通过镜下观察判断,晶质铀矿的成因类型与澳大利亚著名的变质型铀矿相似,均为古老的变质型,且周围的脉石矿物均为绿泥石,绿泥石皆由黑云母退变质而成,铀矿的赋存位置显示其与黑云母、绿泥石之间有紧密联系,其成矿年龄与黑云母、绿泥石形成年龄息息相关。继而根据电子探针数据计算成矿年龄,判断成矿期次,得出主要成矿期在(1654±17)Ma~(1805±17)Ma,为中元古代中期,且主要成矿期与热液蚀变作用黑云母化有关,后期活化富集时期在(657±17)Ma~(807±17)Ma,为新元古代南华纪时期,此阶段是热液侵入、绿泥石化广泛发育的时期;选取较大颗粒对晶质铀矿的环带年龄进行计算,从年龄分布上证实后期有强烈的流体活动的发生,且主要与绿泥石化相关。另外,对比变质型与沉积型铀矿中Y2O3与UO2含量发现,两者之间存在负相关关系,此关系对判断铀矿成因即是否为变质型或沉积型可能有指示意义,但缺乏大量的数据佐证,需进一步研究。  相似文献   

7.
晶质铀矿和沥青铀矿是热液铀矿床的主要工业铀矿物,在研究热液铀矿床成因及成矿规律方面具有重要的意义。攀枝花大田地区是我国混合岩型热液铀矿分布区,已发现粗粒特富铀矿滚石(铀含量10%)及较富基岩矿石(铀含量为0.1%~2%),主要铀矿物为晶质铀矿,对两种晶质铀矿成分及形成时代的研究对该区混合岩型热液铀矿成矿规律研究具有重要的价值。本文通过对大田地区滚石中的晶质铀矿和基岩矿石中的晶质铀矿进行矿物学及电子探针分析,研究了晶质铀矿的成分及形成时代。结果表明:(1)大田地区滚石和基岩矿石中的晶质铀矿除铅之外化学成分较为相似,两类矿石晶质铀矿中UO_2含量为77.36%~84.04%,ThO_2含量为0.98%~5.59%,PbO含量为1.79%~8.8%,其中滚石晶质铀矿中的铅含量低于基岩晶质铀矿,钍含量高于基岩晶质铀矿;(2)电子探针化学定年结果表明,基岩矿石晶质铀矿的形成时代为774.9~785.5 Ma,滚石晶质铀矿的形成时代为783.7 Ma,与传统同位素测年结果(775~777.6 Ma)非常一致,一方面说明滚石晶质铀矿和基岩晶质铀矿为同一时代的产物,另一方面说明电子探针原位测年方法是可靠的;(3)在后期的热液蚀变中,晶质铀矿先后发生了硅化、碳酸盐化及赤铁矿化,蚀变发生的时间分别为730.6Ma、699.8 Ma和664.0 Ma。此结论对研究攀枝花大田地区热液铀矿成矿时代及成矿作用过程提供了依据。  相似文献   

8.
紫云山岩体是赣中地区与钨铀成矿关系极为密切的过铝质花岗岩体,但目前该岩体的成岩时代尚不明确.通过偏光显微镜、扫描电镜、电子探针等手段,首次开展了紫云山花岗岩中赋存晶质铀矿的精细矿物学研究.结果表明:晶质铀矿主要赋存于黑云母之中,少数被黄铁矿包裹,部分晶质铀矿被不同程度溶蚀和交代,表明晶质铀矿是本区花岗岩型铀矿的主要铀源矿物之一.利用电子探针U-Th-Pb化学定年法测得蕉坑单元 (J3J)5颗晶质铀矿年龄为154.5~168.9 Ma,加权平均年龄为161.8±2.4 Ma (MSWD=0.26,n=26),庙前单元 (J3M) 三颗晶质铀矿年龄为152.8~164.7 Ma,加权平均年龄为159.7±3.2 Ma (MSWD=0.2,n=15).获得的年龄与南岭地区主要含钨花岗岩的侵入时间高度一致,对应华南中生代大规模岩浆活动的第二阶段.晶质铀矿年龄与华南含钨花岗岩锆石U-Pb年龄非常一致,验证了过铝质富铀花岗岩中晶质铀矿电子探针定年方法的可行性.   相似文献   

9.
安徽铜官山矽卡岩型铜铁矿床富含多种稀有贵金属金银铂钯和铀,本文应用偏光显微镜与电子探针技术对该地区贵金属和铀矿物的含量、矿物种类、赋存状态及其嵌布特征进行研究,并利用电子探针Th-U-Pb定年技术推测铀矿物的形成时期。研究表明:金主要以银金矿独立矿物存在,成色均值约为638,与铜的硫化物密切依存,金矿物形成于成矿中晚期的中低温环境;银的独立矿物有银金矿、碲银矿、辉银矿,还与铜铋铅等以类质同象形式结合形成不同种类的矿物组合,且含量在74.15%~0.12%不等;铂钯矿物以含铂碲钯矿为主;铀以晶质铀矿独立矿物存在且与磁铁矿密切依存,晶质铀矿的形成年龄约为124±14 Ma,晚于岩体形成年龄(约139 Ma),早于黄铜矿和含金银铂钯等矿物,而与磁铁矿同在燕山中晚期形成。结合镜下观察,认为铜官山矽卡岩型铜铁矿床主要矿物生成顺序依次是:石榴子石-磁铁矿、晶质铀矿,含金银铂钯矿物,黄铜矿。本研究为贵金属选矿提供了线索,同时利用晶质铀矿的年龄数据界定了伴生贵金属的形成年代。  相似文献   

10.
砂岩型铀矿微区原位U-Pb同位素定年技术方法研究   总被引:2,自引:2,他引:0  
铀矿物定年一直是成矿年代学中的难点,随着微区原位U-Pb同位素定年技术的发展,可以直接针对矿石矿物(铀矿物)进行同位素定年;但是其中的砂岩型铀矿由于其存在状态复杂,在原位定年中剥蚀要求高,也缺乏合适的外部校正标准物质,所以定年准确度有待提高。本文研究了两种微区原位U-Pb同位素测年的方法,对砂岩型铀矿定年进行了尝试,试图解决铀矿测年中的无基体匹配问题并提高砂岩型铀矿定年水平。一是建立了一种激光剥蚀多接收电感耦合等离子体质谱仪联合电子探针进行微区原位U-Pb同位素测年的技术(LA-MC-ICP-MS&EMPA)。通过优化实验方法,对秦岭陈家庄花岗岩型铀矿进行了测试,获得与同位素稀释热电离质谱法(ID-TIMS)一致的年龄结果,证明了微区原位U-Pb同位素测年无基体匹配标准物质分析的可行性;并利用此法获得鄂尔多斯盆地红庆河和塔然高勒砂岩型铀矿的微区原位U-Pb同位素年龄信息。二是尝试了利用飞秒激光剥蚀多接收电感耦合等离子体质谱法(fsLA-MC-ICP-MS)对红庆河和宁夏宁东砂岩型铀矿样品进行微区原位U-Pb同位素定年,并获得了微区原位U-Pb同位素年龄,表明飞秒激光剥蚀技术在砂岩型铀矿定年中有很好的应用前景。本文提出,比较单一且年龄偏老的单矿物样品可以选择LA-MC-ICP-MS&EMPA联合法进行分析,需要高空间分辨率的样品建议使用fsLA-MC-ICP-MS法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号