首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 35 毫秒
1.
Till lithology and glacial transport in Kuhmo, eastern Finland   总被引:1,自引:0,他引:1  
Till lithology and transport distance were studied along five transects running in the direction of ice flow and intersecting the N-S-oriented Kuhmo Greenstone Belt, which is some 5 km in width. A total of 531 stone counts were performed on three fractions (> 20 cm, 6–20 cm and 2–6 cm) in 162 pits dug with a mechanical excavator. An experimental model is developed for predicting the transport distances of clasts in basal tills. It shows the traditional method of expressing transport in terms of half-distance (i.e. the distance at which the proportion of a given rock type in the till has been halved from what it was at the distal contact of a given rock type in the bedrock) to be dependent upon the width of the source unit in the bedrock, varying in the present case from 0 km to 16 km as the width of the source belt increases from 0 km to infinity. The Kuhmo Greenstone Belt being 5 km broad, the mean half-distance for the transport of stones and boulders in the till is 2 km, the boulders having been moved somewhat shorter distances and the pebbles longer distances. It is recommended that transport distances for till material should be expressed in terms of the renewal distance (i.e. the distance over which the proportion of a new rock type increases from 0% to 50%). In the Kuhmo area this distance is 16 km.  相似文献   

2.
The Blackspring Ridge (BSR), located in south-central Alberta, Canada, is dominated by a prominent flute field. Flutes (elongated streamlined depressions) and ridges (elongate streamlined hills) are up to 15 km long and are composed of two material types: in situ bedrock, and in situ pre-Laurentide glaciation fluvial sand and gravel beds. The preglacial beds are Tertiary or early Quaternary in age. The beds are undisturbed, maintain primary bedding structures, and even maintain clast imbrication. No till overlies the gravel beds, although in places large granite boulder erratics lie on the surface, indicating that ice was present in the region in the past. Because the ridges are composed of preglacial materials, they are remnant erosional landforms rather than constructional landforms. Geomorphic and sedimentary evidence favor subglacial meltwater as the erosional agent, rather than ice. We suggest that the elevation of the BSR relative to basal ice would have resulted in confined subglacial meltwater flow, with associated flow acceleration and increased scouring resulting in flute formation. This meltwater stripped away any till cover, leaving behind only a few boulders. Observations at the BSR flute field preclude the possibility that flutes and remnant ridges are the result of deformation of soft clayey beds.  相似文献   

3.
<正>Considerable controversy exists over whether or not extensive glaciation occurred during the global Last Glacial Maximum(LGM) in the Larsemann Hills.In this study we use the in situ produced cosmogenic nuclide ~(10)Be(half life 1.51 Ma) to provide minimum exposure ages for six bedrock samples and one erratic boulder in order to determine the last period of deglaciation in the Larsemann Hills and on the neighboring Bolingen Islands.Three bedrock samples taken from Friendship Mountain(the highest peak on the Mirror Peninsula,Larsemann Hills;~2 km from the ice sheet) have minimum exposure ages ranging from 40.0 to 44.7 ka.The erratic boulder from Peak 106(just at the edge of the ice sheet) has a younger minimum exposure age of only 8.8 ka.The minimum exposure ages for two bedrock samples from Blundell Peak(the highest peak on Stornes Peninsula,Larsemann Hills;~2 km from the ice sheet) are about 17 and 18 ka.On the Bolingen Islands(southwest to the Larsemann Hills;~10 km from the ice sheet),the minimum exposure age for one bedrock sample is similar to that at Friendship Mountain(i.e.,44 ka).Our results indicate that the bedrock exposure in the Larsemann Hills and on the neighboring Bolingen Islands commenced obviously before the global LGM(i.e.,20-22 ka),and the bedrock erosion rates at the Antarctic coast areas may be obviously higher than in the interior land.  相似文献   

4.
Regional carbonate dispersal trains cross Melville Peninsula in the northeastern Canadian Arctic. These trains are 50-125 km across and 100-300 km long. The northern dispersal train crosses upland and lowland areas, while the Rae Isthmus train follows the lowlands. The distribution of carbonate in boulder, pebble and matrix till fractions indicates long-distance glacial transport of limestone, a low rate of dilution, and comminution from pebble to silt sizes. Dispersal patterns and geotechnical properties of the till suggest deforming bed and basal gliding mechanisms of ice flow associated with ice-streaming. Regional ice streams may have been 'normative' in carbonate terrain during the main Foxe (Wisconsin) Glaciation. Till plumes within regional dispersal trains, showing little dilution of carbonate down-ice from bedrock sources, are oriented towards lowlands. These features, sharp-edged and 300 mwide, mark zones of augmented flow. They are late-glacial features that formed after calving bays developed in Committee Bay. The dimensions of the dispersal trains, and ice-flow styles and mechanisms, are similar to those of modern Antarctic ice streams. The sharp edges of till plumes may delineate flow boundaries marked by lateral crevasse zones in the late-glacial ice sheet. Secondary streams-within-ice streams have not been reported previously in the literature.  相似文献   

5.
Evidence is presented for cold-based glacial erosion, deposition and deformation from the Allan Hills, South Victoria Land, Antarctica. Different erosional features such as scrapes, striae and grooves, depositional features including till, isolated boulders and ice-cored debris cones and three scales of glaciotectonism resulting from cold-based glacial advance are described, and conceptual models are presented based on these observations and those of advancing cold-based glaciers elsewhere. The models entail: (i) ice block apron overriding and entrainment, and (ii) ice-bed separation leading to the formation of a cavity on the down-glacier side of escarpments. The models are most applicable to a horizontally stratified, lithified sedimentary bedrock substrate, but our criteria may assist in correctly interpreting features such as boulder trains, modified bedrock tors and complex cosmogenic exposure histories which have been noted in several regions that may have experienced cold-based glaciation during Pleistocene glacial maxima.  相似文献   

6.
Single-layer and massive boulder beds, which include boulder pavements, are sporadically distributed in the glaciogenic Permo-Carboniferous Dwyka Formation. These matrix-supported beds consist of moderately to poorly sorted, rounded boulders, cobbles and pebbles with a clast composition similar to those in the underlying or overlying diamictite. Alternatively, the clasts are composed of monolithic basement rock-types. The clasts show a long-axis orientation which, in the case of the boulder pavements, is parallel to the striae on the pavements. The various types of boulder beds have a similar mode of deposition and their subglacial origin is evidenced by the clast orientation, clasts with stoss and lee sides, stacking of clasts, and the development of a cleavage in the matrix due to horizontal stresses exerted by the boulders in the subglacial sediment. Subglacial streams, kame mounds, subaqeously winnowed till, or boulder beaches supplied the coarse debris which was entrained in the basal ice by plastic flow and regelation. Selective lodgement of the transported boulders occurred down-glacier when the basal thermal conditions changed from cold-freezing to warm-melting. The formation of the different types of boulder beds is thought to depend primarily on the concentration of coarse debris in the basal ice.  相似文献   

7.
Huayanpeng boulder beach is located at the Cape of Putuo Island, southeast coast of China. From 6000 years ago, sea level changed little and turned steady, which was prone to forming the boulder beach. Since then, numerous storm surges propagated from the West Pacific Ocean have imposed on the bedrock of the eastern coast of Putuo Island, resulting in a large amount of rocks fallen from the hill-slope onto the beach. The similarity of rock lithology between the bedrock and the boulders of the study area supports the hypothesis of Holocene steady sea-level controls on the formation of the beach. Long-term littoral currents, including storm weather and normal weather conditions, have greatly sorted the boulder beach vertically and transversely. From east to west, the beach turns wider and gradient becomes gentler, and the boulders reduce its size, from, on average, 1.0 m to 0.5 m, with a decrease in flattening and an increase in sphericity and psephicity. The sizes of the boulders and flattening turn bigger from supra-littoral to inter-littoral zone, while sphericity and psephicity turn smaller and lower. These basal characteristics of boulders highlight the linkage of beach formation to the high-storm energy propagated from the open seas during the typhoon season.  相似文献   

8.
Paleomagnetic sampling and measurement of a boulder accumulation on Little Beecroft Head on the Illawarra coastline of New South Wales was undertaken to evaluate potential emplacement mechanisms. This deposit is of central importance in the Australian Megatsunami Hypothesis (AMH) debate, but to date, there has been no unequivocal determination of its provenance. The most likely emplacement mechanisms are by slow collapse during denudation of overlying strata, storm wave overwash or a combination of these. Characteristic Remanent Magnetisation (ChRM) directions were obtained from 15 individual boulders and the in situ bedrock platform on which they currently rest. The in situ Permian bedrock has a normal polarity mean ChRM direction of D/I = 1.6°/–66.7° (α95 = 5.2°; k = 33.9) that is statistically indistinguishable from the Present Earth Field direction at the site. The magnetisation is most likely due to Cenozoic/recent weathering, which is common in surficial rocks throughout the Sydney Basin. ChRM directions for the boulders are stable but scattered, although not random, and the mean boulder direction is indistinguishable in geographic (i.e. current in situ) coordinates, at the 5% significance level, from the mean direction of the in situ bedrock. Further statistical tests confirm that the scatter in the mean directions of the boulders and the in situ bedrock is different, at the 5% significance level, with the boulder mean being more scattered. At an individual boulder level, some blocks have mean ChRM directions that are statistically indistinguishable from the mean in situ rock ChRM direction, whereas others are distinguishable at the 5% significance level.

These results indicate that the boulders were magnetised prior to emplacement but were not moved far from their original positions during emplacement. The emplacement age is constrained to the last ca 780 000 years. These observations strongly support the hypothesis that the Little Beecroft Head boulder deposit was emplaced by a non-catastrophic mechanism, namely slow collapse during denudation of pre-existing cliff material or overtopping from severe storms, which occur regularly on the east coast of New South Wales. Even if a catastrophic wave were responsible, the results constrain the age of that event to be older than 780 000 years. Therefore, the results presented here are not supportive of the AMH as it currently stands. Further paleomagnetic work, on similar deposits along the Illawarra coastline and from elsewhere in Australia, is needed to evaluate the interpretations presented here.  相似文献   


9.
Understanding the processes that deposit till below modern glaciers provides fundamental information for interpreting ancient subglacial deposits. A process‐deposit‐landform model is developed for the till bed of Saskatchewan Glacier in the Canadian Rocky Mountains. The glacier is predominantly hard bedded in its upper reaches and flows through a deep valley carved into resistant Palaeozoic carbonates but the ice margin rests on a thick (<6 m) soft bed of silt‐rich deformation till that has been exposed as the glacier retreats from its Little Ice Age limit reached in 1854. In situ tree stumps rooted in a palaeosol under the till are dated between ca 2900 and 2700 yr bp and record initial glacier expansion during the Neoglacial. Sedimentological and stratigraphic observations underscore the importance of subglacial deformation of glaciofluvial outwash deposited in front of the advancing glacier and mixing with glaciolacustrine carbonate‐rich silt to form a soft bed. The exposed till plain has a rolling drumlinoid topography inherited from overridden end moraines and is corrugated by more than 400 longitudinal flute ridges which record deformation of the soft bed and fall into three genetically related types: those developed in propagating incipient cavities in the lee of large subglacial boulders embedded in deformation till, and those lacking any originating boulder and formed by pressing of wet till up into radial crevasses under stagnant ice. A third type consists of U‐shaped flutes akin to barchan dunes; these wrap around large boulders at the downglacier ends of longitudinal scours formed by the bulldozing of boulders by the ice front during brief winter readvances across soft till. Pervasive subglacial deformation during glacier expansion was probably facilitated by large boulders rotating within the soft bed (‘glacioturbation’).  相似文献   

10.
11.
Pleistocene fluvial landforms and riparian ecosystems in central California responded to climate changes in the Sierra Nevada, yet the glacial history of the western Sierra remains largely unknown. Three glacial stages in the northwestern Sierra Nevada are documented by field mapping and cosmogenic radionuclide surface-exposure (CRSE) ages. Two CRSE ages of erratic boulders on an isolated till above Bear Valley provide a limiting minimum age of 76,400±3800 10Be yr. Another boulder age provides a limiting minimum age of 48,800±3200 10Be yr for a broad-crested moraine ridge within Bear Valley. Three CRSE ages producing an average age of 18,600±1180 yr were drawn from two boulders near a sharp-crested bouldery lateral moraine that represents an extensive Tioga glaciation in Bear Valley. Nine CRSE ages from striated bedrock along a steep valley transect average 14,100±1500 yr and suggest rapid late-glacial ice retreat from lower Fordyce Canyon with no subsequent extensive glaciations. These ages are generally consistent with glacial and pluvial records in east-central California and Nevada.  相似文献   

12.
Nine seismic stratigraphic units were distinguished, and their distribution mapped, in an 80 × 130 km submeridionally oriented area in the north-central Baltic Sea, east of Gotska Sandön and Farö. Analysis of these units revealed a great influence of the bedrock topography on the structure and distribution of the glacial deposits. Major glacially eroded valleys in the Baltic Clint, connecting the Faro Deep and the North Central Baltic Basin (Harff & Winterhalter 1996) across a narrow sill, form an extensive submeridional bedrock depression. The concentration of ice flow into this depression is reflected in the drumlinized surface of the till near the Baltic Clint. Large eskers in the elongated bedrock depressions and on the Ordovician Plateau mark the locations of former subglacial meltwater conduits. Termination of the eskers with extensive glacio fluvial outwash fans at the northern limit of the Farö Deep, the presence of subaquatic melt-out till in the bottom of it, and wedge-shaped ice-marginal grounding-line deposit on the Silurian Plateau suggest floating ice margin conditions in the low-lying areas and a local ice shelf confined to the Frö Deep during the deglaciation.  相似文献   

13.
Herein we report on the results of an anisotropy of magnetic susceptibility (AMS) fabric case‐study of two Late Weichselian tills exposed in a bedrock quarry in Dalby, Skåne, southern Sweden. The region possesses a complex glacial history, reflecting alternating and interacting advances of the main body of the Scandinavian Ice Sheet (SIS) and its ice lobes from the Baltic basin, perhaps driven by streaming ice. AMS till fabrics are robust indicators of ice‐flow history and till kinematics, and provide a unique tool to investigate till kinematics within and amongst till units. The till section investigated here contains ~8 m of the Dalby Till – a dark grey silt‐clay rich till deposited during one or more Baltic advance – overlain by ~1.5 m of the regional surface diamicton. AMS fabrics within the lower part of the Dalby Till conform to the regional surface fluting, and reflect sustained flow from the ENE with progressive increases in basal strain. A boulder‐rich horizon approximately 3 m from the base of the till marks a restricted excursion in till fabric direction, fabric strength and style of strain. Ice flow is from the SW and W in the upper section. We interpret these fabrics to record shifting ice flow and bed conditions at the margins of the Young Baltic Advance ice lobe in southern Sweden, prior to a short‐lived re‐advance of the main body of the SIS over mainland Sweden recorded by the surface diamicton.  相似文献   

14.
Trimlines separating glacially abraded lower slopes from blockfield‐covered summits on Irish mountains have traditionally been interpreted as representing the upper limit of the last ice sheet during the Last Glacial Maximum (LGM). Cosmogenic 10Be exposure ages obtained for samples from glacially deposited perched boulders resting on blockfield debris on the summit area of Slievenamon (721 m a.s.l.) in southern Ireland demonstrate emplacement by the last Irish Ice Sheet (IIS), implying preservation of the blockfield under cold‐based ice during the LGM, and supporting the view that trimlines throughout the British Isles represent former englacial thermal regime boundaries between a lower zone of warm‐based sliding ice and an upper zone of cold‐based ice. The youngest exposure age (22.6±1.1 or 21.0±0.9 ka, depending on the 10Be production rate employed) is statistically indistinguishable from the mean age (23.4±1.2 or 21.8±0.9 ka) obtained for two samples from ice‐abraded bedrock at high ground on Blackstairs Mountain, 51 km to the east, and with published cosmogenic 36Cl ages. Collectively, these ages imply (i) early (24–21 ka) thinning of the last IIS and emergence of high ground in SE Ireland; (ii) relatively brief (1–3 ka) glacial occupation of southernmost Ireland during the LGM; (iii) decoupling of the Irish Sea Ice Stream and ice from the Irish midlands within a similar time frame; and (iv) that the southern fringe of Ireland was deglaciated before western and northern Ireland.  相似文献   

15.
Known changes in ice-flow direction during a 100-year interval have been used to evaluate how well ice-flow indicators record complex deglaciation events. At Burroughs Glacier, nunataks emerging from a thinning Neoglacial ice mass and differential ice-surface lowering caused by calving ice margins have produced major changes in ice-flow direction sincc 1892. Cross-cutting striae with angles of divergence of up to 105' reflect the past range of flow directions in the area. Striae from the oldest flow events are deepest, and striae from some late-stage flow events are missing. This may be caused by overprinting during late-stage reversals in the direction of ice movement. The orientation of flutes and surficial bullet boulders reflects the final ice-flow direction, but boulder orientations are less clustered than flute orientations. Surficial till pebble fabrics are weakly to moderately developed, but till fabrics vary with depth and record ice-flow direction changes with time.  相似文献   

16.
Ice streams are major dynamic elements of modern ice sheets, and are believed to have significantly influenced the behaviour of past ice sheets. Funen Island exhibits a number of geomorphological and geological features indicative of a Late Weichselian ice stream, a land-based, terminal branch of the major Baltic Ice Stream that drained the Scandinavian Ice Sheet along the Baltic Sea depression. The ice stream in the study area operated during the Young Baltic Advance. Its track on Funen is characterized by a prominent drumlin field with long, attenuated drumlins consisting of till. The field has an arcuate shape indicating ice-flow deflection around the island's interior. Beneath the drumlin-forming till is a major erosional surface with a boulder pavement, the stones of which have heavily faceted and striated upper surfaces. Ploughing marks are found around the boulders. Exact correspondence of striations, till fabric and drumlin orientation indicates a remarkably consistent flow direction during ice streaming. We infer that fast ice flow was facilitated by basal water pressure elevated to the vicinity of the flotation point. The ice movement was by basal sliding and bed deformation under water pressure at the flotation level or slightly below it, respectively. Subglacial channels and eskers post-dating the drumlins mark a drainage phase that terminated the ice-stream activity close to the deglaciation. Identification of other ice streams in the Peribaltic area is essential for better understanding the dynamics of the land-based part of the Scandinavian Ice Sheet during the last glaciation.  相似文献   

17.
 Abundant cinnabar (HgS) mineralization is associated with the Pinchi Fault in central British Columbia. Two formerly producing mercury mines have been developed on this fault: Pinchi and Bralorne Takla. The mercury content of till (a sediment type directly deposited by glaciers) in the area of this fault is primarily controlled by the occurrence of cinnabar mineralization in bedrock and the direction of ice flow. Cinnabar-bearing bedrock was eroded by glaciers, transported in the direction of ice flow, and deposited "down-ice" from its source. An example of such a dispersal train is documented for the Pinchi Mine area where mercury ore was transported over a distance of 12 km, as measured in the clay-sized fraction (< 0.002 mm) of till, and could have been transported over 24 km according to heavy mineral concentrates (specific gravity >3.3) of this same sediment. Antimony, chromium, and nickel dispersal trains were also detected in the region. These data indicate that natural glacial processes can result in the "mobilization" of metals in the surficial environment, a factor which has to be considered at mine sites in glaciated terrain, where mine reclamation and remediation measures are now required. Received: 31 October 1996 · Accepted: 27 May 1997  相似文献   

18.
This research reconstructs ice-sheet processes operating during the Late Devensian in northeast England. The article assesses the lithostratigraphy of the Devensian glacial tills of Whitburn Bay, eastern County Durham, and presents the first detailed analysis of petrological, geochemical and biostratigraphical data to reconstruct lithostratigraphy, provenance and iceflow pathways. Two Devensian tractions tills (the Blackhall and Horden tills) are separated by a boulder pavement, pointing to a switch in ice-bed conditions and the production of a melt-out lag prior to deposition of the upper traction till, the Horden Till. The Blackhall Till contains Magnesian Limestone, Carboniferous Limestone, Whin Sill dolerite and Old Red Sandstone, suggesting a northwesterly source, probably from the Midland Valley and the Southern Uplands. The Horden Till contains erratics and heavy minerals derived from crystalline bedrock sources in the Cheviot Hills and northeast Scotland. Within the Horden Till are numerous sand, clay and gravel-filled canals incised downwards into the diamicton which are attributed to a low-energy, distributed, subglacial canal drainage system. Coupled with hydro-fractures and the boulder pavement, this suggests that a partially decoupled, fast-flowing ice stream deposited the Horden Till. The uphill, landward direction of ice movement indicates that the ice stream was confined in the North Sea Basin, possibly by the presence of Scandinavian Ice.  相似文献   

19.
We report evidence for a major ice stream that operated over the northwestern Canadian Shield in the Keewatin Sector of the Laurentide Ice Sheet during the last deglaciation 9000–8200 (uncalibrated) yr BP. It is reconstructed at 450 km in length, 140 km in width, and had an estimated catchment area of 190000 km2. Mapping from satellite imagery reveals a suite of bedforms ('flow-set') characterized by a highly convergent onset zone, abrupt lateral margins, and where flow was presumed to have been fastest, a remarkably coherent pattern of mega-scale glacial lineations with lengths approaching 13 km and elongation ratios in excess of 40:1. Spatial variations in bedform elongation within the flow-set match the expected velocity field of a terrestrial ice stream. The flow pattern does not appear to be steered by topography and its location on the hard bedrock of the Canadian Shield is surprising. A soft sedimentary basin may have influenced ice-stream activity by lubricating the bed over the downstream crystalline bedrock, but it is unlikely that it operated over a pervasively deforming till layer. The location of the ice stream challenges the view that they only arise in deep bedrock troughs or over thick deposits of 'soft' fine-grained sediments. We speculate that fast ice flow may have been triggered when a steep ice sheet surface gradient with high driving stresses contacted a proglacial lake. An increase in velocity through calving could have propagated fast ice flow upstream (in the vicinity of the Keewatin Ice Divide) through a series of thermomechanical feedback mechanisms. It exerted a considerable impact on the Laurentide Ice Sheet, forcing the demise of one of the last major ice centres.  相似文献   

20.
Lian, O. B. & Hicock, S. R. 2009: Insight into the character of palaeo‐ice‐flow in upland regions of mountain valleys during the last major advance (Vashon Stade) of the Cordilleran Ice Sheet, southwest British Columbia, Canada. Boreas, 10.1111/j.1502‐3885.2009.00123.x. ISSN 0300‐9483. A detailed glacial geological study was done on Vashon till, formed during the last (Fraser) glaciation, in upland areas of two relatively short and narrow mountain valleys which open onto the Fraser Lowland in southwest British Columbia. The orientation and association of glaciotectonic structures in till and bedrock, a‐axis fabrics of stones in till and abrasion features, indicate that Vashon till formed initially by lodgement and that brittle deformation processes dominated at least during the latter stages of glaciation. The presence of local glacigenic bedrock quarrying suggests that ice flow experienced localized enhanced compressive flow along valley sides. These observations indicate that ice flow was relatively slow and they contrast with a previous study of bedrock geomorphology undertaken in some larger south Coast Mountains valleys and a model of ice‐flow velocity in the Puget Lowland that suggest rapid ice flow. This indicates that either ice‐flow conditions in the larger valleys were different from those in the valleys studied here, or that the observations from our study reflect subglacial conditions following the Last Glacial Maximum (LGM), but immediately prior to deglaciation when ice had thinned and slowed. If the latter scenario is correct, and if processes inferred from this study were also common along the upland parts of other southwest Coast Mountains valleys after the LGM, then the rate at which ice was supplied to lowland piedmont glaciers would have been reduced, and this may have accelerated decay of the southwest margin of the last Cordilleran Ice Sheet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号