首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
榴辉岩相峰期流体活动:来自东昆仑榴辉岩石英脉的证据   总被引:4,自引:3,他引:1  
贾丽辉  孟繁聪  冯惠彬 《岩石学报》2014,30(8):2339-2350
本文通过对东昆仑温泉地区榴辉岩中石英脉的锆石U-Pb定年和Lu-Hf同位素的综合研究,为榴辉岩相峰期变质阶段的流体活动提供了一定的证据。石英脉中的锆石晶型较好,具有振荡环带或弱分带,排除了从寄主榴辉岩中捕获锆石的可能性。石英脉和寄主榴辉岩中锆石U-Pb年龄的加权平均值分别为450±2Ma和451±2Ma,说明石英脉中锆石的形成年龄与榴辉岩相的峰期变质阶段一致。两种锆石Hf同位素组成的相似性说明形成石英脉的流体/熔体为内部来源,推测可能为榴辉岩中石英发生溶解以及绿辉石和石榴石分子结构中羟基的出溶作用形成。锆石较低的U、Th含量以及Th/U比值说明石英脉更可能是流体活动形成而非熔体。  相似文献   

2.
本文对丹凤地区秦岭岩群含柯石英超高压变质地体长英质片麻岩中的混合岩化长英质浅色体和含石榴子石暗色包体的花岗质脉体进行了详细的矿物学、地球化学和锆石U-Pb年代学以及Lu-Hf同位素研究。其中,长英质浅色体显示了近原位熔融的高硅、富钾的过铝质花岗岩地球化学特征;锆石的CL图像呈灰黑色,均匀无结构或云雾状内部结构,Th/U比值0. 008,并含有钾长石、斜长石、石英和磷灰石等包裹体,显示深熔锆石的特征;花岗质脉体暗色包体中的石榴子石显示核-边成分环带,其中核部成分与秦岭岩群长英质片麻岩中石榴子石成分一致,边部Sps含量升高,显示熔体改造或退变质扩散特征,寄主花岗质脉体显示重稀土强烈亏损的与石榴子石平衡的熔体特征,指示它们是秦岭岩群含石榴子石长英质片麻岩部分熔融的产物。锆石LA-ICP-MS定年得到长英质浅色体和花岗质脉体的结晶年龄分别为445±4Ma和420±1Ma,明显晚于本区的超高压变质时代,而与折返过程中麻粒岩相和角闪岩相退变质叠加的时代基本一致。结合区域地质和前人的研究成果,提出秦岭岩群在深俯冲板块的折返过程中,分别在445Ma和420Ma发生了两期部分熔融作用。  相似文献   

3.
康定杂岩位于扬子地块西缘,通过对四川康定—冕宁—攀枝花—云南元谋地区出露的康定杂岩中基性、中性、酸性岩岩石学、锆石Lu-Hf同位素等多方面系统研究,确定这套岩石形成于岛弧环境。分析表明:康定杂岩中镁铁质侵入体锆石εHf(t)变化范围-4.2~+11.0,Hf模式年龄742~2386 Ma;长英质侵入体锆石εHf(t)变化范围-4.9~+9.4,Hf模式年龄为967~2707 Ma;暗示康定杂岩体复杂的构造成因。锆石Hf同位素分析表明其岩浆锆石具有与扬子地块西缘同时代镁铁质/长英质侵入体相似的Hf同位素组成,暗示其相似的岩浆起源。研究表明,康定杂岩为大洋俯冲背景下的产物,镁铁质侵入体来源于较为亏损地幔源区,长英质侵入体为新生陆壳与古老地壳物质相互作用形成的产物。锆石Hf同位素数据表明,康定侵入体杂岩中锆石Hf-全岩Nd解耦,为"锆石效应"与少量地壳物质加入共同作用结果。结合岩石学、地层学、构造及地球化学证据综合表明,新元古代时期,扬子地块可能位于Gondwana超大陆的边缘,而不是澳大利亚与北美Laurentia古陆之间的连接部分。  相似文献   

4.
胶东昆嵛山杂岩文登长山南花岗闪长岩体中广泛分布具有火成结构的闪长质包体,这些包体主要为椭圆形或纺锤形,定向排列,大小不等(几cm至几m),颜色较寄主岩深,粒度较细。包体具有与寄主岩石相似的矿物组合,但铁镁质矿物及斜长石含量明显比寄主岩石高,而石英和钾长石含量低于寄主岩石;镜下包体具有明显的不平衡反应结构,广泛发育针状磷灰石。在地球化学特征上,包体和寄主岩石部富集大离子亲石元素和轻稀土元素,亏损高场强元素,并具有相近的Sr、Nd同位素组成,ISr为0.70784-0.70818,εNd为-15.0--15.5。然而,包体和寄主岩石的主量元素在相关图上呈明显的线性关系, 并且岩石学和锆石Hf同位素特征也明显表明文登长山南岩体在成岩过程中发生了镁铁质岩浆和长英质岩浆的混合作用。在岩浆混合作用过程中,全岩Sr、Nd同位素和晚期生成的矿物组成比较快速地达到了均一化,而主量元素和高温矿物锆石Hf同位素组成则残留了原始岩浆的部分特征。研究表明,锆石Hf同位素在岩浆混合作用过程中不容易达到同位素平衡,其同位素组成比全岩Sr、Nd同位素更能有效地示踪混合岩浆的源区特征和岩浆混合过程。  相似文献   

5.
凌文黎  张宏飞 《地球科学》2000,25(6):573-578
报道了大别超高压变质带西部麻城四道河榴辉岩-围岩剖面系统的元素和同位素地球化学研究成果, 对超高压变质榴辉岩在俯冲和折返过程中的部分熔融作用进行了探讨. 研究表明, 榴辉岩原岩性质类似于N-MORB, 其长英质围岩可分为TTG片麻岩和含石榴石花岗岩; 两类长英质围岩Sm -Nd同位素特征与其寄主的榴辉岩相似; REE特征、w (Nb)/w (Ta) 比值、Nd同位素组成及锆石U -Pb定年等地球化学证据支持了TTG片麻岩为大别地区陆壳俯冲过程中发生部分熔融作用而形成, 其与超高压榴辉岩的关系属特殊的异地关系; 含榴花岗岩为超高压榴辉岩折返过程中的部分熔融作用形成, 但因其形成环境为石榴石稳定场的深度, 故含榴花岗岩与超高压榴辉岩被视为近似原地的构造关系.   相似文献   

6.
新疆西南天山低压高温变质带深熔时代及其地质意义   总被引:1,自引:0,他引:1  
施建荣  刘福来  刘平华  孟恩  刘超辉  杨红  王舫  蔡佳 《岩石学报》2014,30(10):2843-2856
西南天山木扎尔特地区低压高温变质带主要出露片麻岩类、斜长角闪岩类和麻粒岩类三种岩石类型,由于受到深熔事件的影响在其内部形成了规模不一的长英质脉体,然而对这些深熔长英质脉体的时代还缺乏准确的限定。本文通过详细的岩相学、锆石阴极发光图像研究,采用LA-ICP-MS技术对3件长英质脉体不同锆石微区进行了U-Pb定年,进而探讨西南天山低压高温变质带的形成时间。长英质脉体中的新生锆石具有弱的振荡环带,低的Th/U比值,锆石形态学和内部结构也表明锆石结晶于与深熔作用有关的熔体中,长英质脉体获得的深熔时代为276.5±2.0Ma、272.0±1.7Ma、265.5±1.5Ma,其年龄范围代表了木扎尔特地区低压高温变质带的形成时间可能为早中二叠世,该年龄与区域上西南天山造山带广泛出现的碰撞后岩浆事件的时代相一致,表明早二叠世西南天山造山带已进入造山后伸展减薄的后碰撞造山演化阶段。同时获得一组集中分布的深熔长英质脉体421.8±3.2Ma的继承锆石年龄,该年龄与寄主岩石夕线石榴黑云斜长片麻岩一组主要的年龄峰值一致,表明长英质脉体可能来源于夕线石榴黑云斜长片麻岩的部分熔融作用,对应于南天山志留纪晚期的岩浆事件。  相似文献   

7.
在一些俯冲/碰撞造山带中,高压麻粒岩相变质作用通常伴随着广泛的深熔作用。本文以柴北缘超高压变质带都兰地区的基性高压麻粒岩和浅色体为研究对象,在详细的野外观察的基础上,结合岩相学和年代学等研究方法,探讨高压麻粒岩相变质作用与深熔作用的关系及形成机制。从野外关系来看,浅色体主要呈层状、似脉状、补丁状或网络状分布在暗色的基性高压麻粒岩(残留体,residuumormelanosome)中,或与基性高压麻粒岩在露头上互层产出,并显示出混合岩的特征。基性高压麻粒岩主要由石榴子石、单斜辉石、斜长石和石英等矿物组成,在不同样品中还可含有少量蓝晶石、角闪石、金红石、黝帘石/斜黝帘石、黑云母、方柱石、绿泥石;浅色体主要由斜长石、钾长石和石英等矿物组成,一些样品中也含有少量的石榴子石和蓝晶石,与典型的长英质高压麻粒岩的矿物组合特征较为相似。锆石成因年代学结果显示浅色体中既发育深熔锆石,也有变质锆石生长,但两种锆石给出的年龄结果基本一致,其加权平均年龄为434±2Ma(MSWD=1.1),与前人获得的高压麻粒岩相变质作用和深熔作用时代基本一致。因此,综合野外关系、岩相学、地球化学特征及年代学结果,我们推测高压麻粒岩相变质作用及深熔作用可能形成于同一动力学过程,即在俯冲带的上盘环境,(变)基性岩石中的含水矿物(如角闪石、帘石或云母类矿物等)脱水熔融形成高Sr/Y熔体,而基性高压麻粒岩为残留体。  相似文献   

8.
董杰  魏春景  张建新 《地球科学》2019,44(12):4004-4008
南阿尔金造山带是目前报道的具有最深俯冲记录的大陆超高压变质带,其内出露有高压-超高温麻粒岩,它们对深入理解大陆地壳岩石超深俯冲与折返过程具有重要意义.介绍了对南阿尔金巴什瓦克地区长英质麻粒岩和基性麻粒岩的岩相学、矿物化学、相平衡模拟及锆石U-Pb年代学研究成果.其中基性麻粒岩主要记录了深俯冲大陆地壳折返过程的变质演化:包括高压榴辉岩相、高压-超高温麻粒岩相、低压-超高温麻粒岩相及随后的近等压降温演化阶段;长英质麻粒岩除了记录与基性麻粒岩相似的折返过程外,还记录了从角闪岩相到超高压榴辉岩相的进变质演化过程.结合已有研究资料,确定超高压榴辉岩阶段峰期条件> 7~9 GPa和>1 000℃,可达到斯石英稳定域.锆石年代学显示两种岩石类型的原岩和变质年龄均分别在900 Ma和500 Ma左右.变质作用与年代学研究表明,南阿尔金大陆地壳岩石在早古生代发生超深俯冲至200~300 km后,折返至加厚地壳底部发生高压-超高温变质作用,随后被快速抬升至地壳浅部发生低压-超高温变质作用并经历迅速冷却.   相似文献   

9.
柴达木北缘德令哈地区基性麻粒岩的发现及其形成时代   总被引:18,自引:6,他引:18  
德令哈地区的基性麻粒岩呈透镜状或脉状分布于长英质片麻岩和泥质片麻岩中.基性麻粒岩的主要矿物组成为紫苏辉石、单斜辉石、斜长石、角闪石,含有少量的铁铁矿、锆石等副矿物.单斜辉石中具有针状的斜方辉石和铁铁矿的出熔片晶,代表了高温条件下的出熔结构.采用不同方法的二辉石温度计,估算出其麻粒岩相的温度为720~925℃.基性麻粒岩的微量及稀土元素分析显示其原岩的形成环境可能为大陆边缘环境.全岩及矿物的Sm-Nd等时线年龄为1791士37Ma,代表了麻粒岩相的变质时代.基性麻粒岩及其围岩的Nd模式年龄显示出这一地区可能有太古宙的地壳物质存在.  相似文献   

10.
王景丽  张宏福 《岩石学报》2016,32(3):682-696
华北克拉通中部造山带上广泛发育新太古代-古元古代的基性岩墙。本文选取出露于华北南缘太古代太华群花岗片麻岩中的基性麻粒岩脉体进行研究,进而探讨了克拉通南缘太古代地体所经历的构造-岩浆-变质事件以及其后期演化过程。通过对基性麻粒岩脉体的野外地质、岩石学、锆石的U-Pb年代学、锆石O及Hf同位素地球化学的研究,显示该脉体记录有3期明显的构造-岩浆-变质事件:(1)新太古代晚期岩浆侵位事件(2523±8Ma)。岩浆锆石正的εHf(t)值(2.88~7.16)显示该基性岩脉是由亏损幔源玄武质岩浆侵位于太古代基底而形成的,结合锆石略高于正常地幔的δ18O值(6.12‰~7.47‰)说明岩浆侵位后受地壳混染并不显著。该岩浆事件与华北克拉通新太古代(~2.5Ga)广泛存在的地壳再造和少量的地壳增生事件吻合;(2)古元古代变质作用(1922±6Ma)。麻粒岩中变质锆石纪录的古元古代变质作用事件与华北克拉通中部造山带普遍遭受变质作用的时期(1.85~1.97Ga)相一致。锆石正的εHf(t)值(1.61~5.52)说明变质作用过程中Hf同位素体系保持封闭,因此其Hf同位素组成继承了原岩幔源岩浆的组成。而略低于岩浆锆石的δ18O值(4.85‰~5.76‰)可能是由变质作用过程中发生的高温热液蚀变导致的;(3)渐新世岩浆活动(31.38±0.15Ma),该期岩浆作用在华北克拉通属首次发现。麻粒岩中部分岩浆锆石给出了非常好的谐和年龄,这些锆石的εHf(t)值(-3.03~1.69)集中分布于原始地幔岩浆库(CHUR)演化线之上,且具有非常接近于原始地幔的δ18O值(5.78‰~6.62‰),表明该基性岩脉所记录的渐新世岩浆活动也来源于地幔。结合已有研究成果,我们认为华北南缘太华群基性脉体形成于新太古代晚期,侵位于早先的太古代地体之中,并随同古老基底一起俯冲至下地壳深度发生了麻粒岩相的变质作用,不久又一同被抬升至发生角闪岩相退变质,后又经历了渐新世的幔源岩浆活动的扰动,抬升至地表的地质演化过程。  相似文献   

11.
High‐pressure kyanite‐bearing felsic granulites in the Bashiwake area of the south Altyn Tagh (SAT) subduction–collision complex enclose mafic granulites and garnet peridotite‐hosted sapphirine‐bearing metabasites. The predominant felsic granulites are garnet + quartz + ternary feldspar (now perthite) rocks containing kyanite, plagioclase, biotite, rutile, spinel, corundum, and minor zircon and apatite. The quartz‐bearing mafic granulites contain a peak pressure assemblage of garnet + clinopyroxene + ternary feldspar (now mesoperthite) + quartz + rutile. The sapphirine‐bearing metabasites occur as mafic layers in garnet peridotite. Petrographical data suggest a peak assemblage of garnet + clinopyroxene + kyanite + rutile. Early kyanite is inferred from a symplectite of sapphirine + corundum + plagioclase ± spinel, interpreted to have formed during decompression. Garnet peridotite contains an assemblage of garnet + olivine + orthopyroxene + clinopyroxene. Thermobarometry indicates that all rock types experienced peak P–T conditions of 18.5–27.3 kbar and 870–1050 °C. A medium–high pressure granulite facies overprint (780–820 °C, 9.5–12 kbar) is defined by the formation of secondary clinopyroxene ± orthopyroxene + plagioclase at the expense of garnet and early clinopyroxene in the mafic granulites, as well as by growth of spinel and plagioclase at the expense of garnet and kyanite in the felsic granulite. SHRIMP II zircon U‐Pb geochronology yields ages of 493 ± 7 Ma (mean of 11) from the felsic granulite, 497 ± 11 Ma (mean of 11) from sapphirine‐bearing metabasite and 501 ± 16 Ma (mean of 10) from garnet peridotite. Rounded zircon morphology, cathodoluminescence (CL) sector zoning, and inclusions of peak metamorphic minerals indicate these ages reflect HP/HT metamorphism. Similar ages determined for eclogites from the western segment of the SAT suggest that the same continental subduction/collision event may be responsible for HP metamorphism in both areas.  相似文献   

12.
北秦岭高压-超高压岩石的多期变质时代及其地质意义   总被引:14,自引:12,他引:2  
在岩相学观察和锆石CL图像研究的基础上,利用LA-ICP-MS原位微区定年分析方法,本文确定北秦岭清油河退变榴辉岩的峰期变质时代为490±6Ma,退变质时代为453±9Ma,原岩形成时代为655±9Ma;松树沟超高压长英质片麻岩的峰期变质时代为497±8Ma,两期退变质时代分别为448±4Ma和421±2Ma,原岩形成时代上限832±25Ma;寨根石榴石辉石岩的峰期变质时代为498±2Ma,中压麻粒岩相退变质时代为450±3Ma,角闪岩相退变质时代为426±1Ma,原岩形成时代为573±40Ma;西峡北榴闪岩的角闪岩相变质时代为423±3Ma,原岩形成时代为843±7Ma。新确定的这些岩石的峰期变质时代与前人已报导的区内高压-超高压岩石的峰期变质时代在误差范围内基本一致,结合区内高压-超高压岩石不仅分布在秦岭岩群北缘的官坡-双槐树一带,而且断续出露在秦岭岩群中部或偏南侧的清油河北-松树沟-寨根北甚至西峡北东西一线,进一步表明它们应是同一期构造地质事件的产物。北秦岭已发现的全部正变质的高压-超高压岩石均呈透镜体状分布在围岩片麻岩中,松树沟超高压长英质片麻岩的原岩为典型的陆壳沉积物,因此,这些高压-超高压岩石的形成可能都是陆壳俯冲-深俯冲作用的产物。结合岩相学观察、锆石CL图像和锆石U-Pb定年表明,这些高压-超高压岩石在~500Ma经历了峰期变质作用后,又分别在~450Ma和~420Ma遭受了中压麻粒岩相和或角闪岩相退变质作用的叠加,充分说明这些高压-超高压岩石经历了一个完整的由陆壳俯冲-深俯冲、之后连续两次抬升的构造演化过程。另外,本次研究新获得的这些岩石的原岩形成时代介于843±7Ma~573±40Ma之间,结合官坡榴辉岩的原岩形成时代为791~814Ma以及松树沟榴闪岩原岩时代为787±16Ma的研究,共同表明北秦岭高压-超高压岩石的原岩形成时代均为新元古代,因此,限定俯冲-深俯冲的陆壳物质应来自形成时代为新元古代的大陆地壳或地质体。结合区域地质背景和前人研究成果综合分析,本文初步认为,北秦岭高压-超高压变质岩带的形成是商丹洋向北俯冲拖曳南秦岭新元古代陆壳物质在~500Ma发生陆壳俯冲-深俯冲作用的产物,之后在~450Ma与~420Ma经历了两期抬升。  相似文献   

13.
Information about the protolith of the Huangtuling granulite in North Dabieshan has been unavailable. The complex evolution history of the rock and its host basement must be further discussed. LA-ICP-MS U-Pb dating was conducted on three textural domains in zircon from a high-temperature, high-pressure felsic granulite in the Huangtuling area, North Dabieshan, Central China. The metamorphic growth-derived detrital zircon domain yields a 207Pb/206Pb age in the range of (2 493±54) -(2 500±180) Ma. The magmatic genesis-derived detrital zircon domain gives a 207Pb/206Pb age ranging from 2 628 Ma to 2 690 Ma, with an oldest 206Pb/238U age of (2 790±150) Ma. The metamorphic overgrowth or metamorphic recrystallization zircon domain yields a dicsordia with an upper intercept age of (2 044.7±29.3) Ma. Compositions of the mineral assemblage, major element geochemistry, and especially the complex interior texture of the zircon suggest that the prololith of the felsic granulite is of sedimentary origin. Results show that the protolith material of the granulite came from a provenance with a complex thermal history, i.e. ~2.8 Ga magmatism and ~2.5 Ga metamorphism, and was deposited in a basin not earlier than 2.5 Ga. The high-temperature and high-pressure granulite-facies metamorphic age was precisely constrained at (2.04±0.03) Ga, which indicates the granulite in Huangtuling area should be a relict of a Paleoproterozoic UHT (ultrahigh temperature) metamorphosed slab.  相似文献   

14.
Although ultrahigh‐pressure (UHP) metamorphic rocks are present in many collisional orogenic belts, almost all exposed UHP metamorphic rocks are subducted upper or felsic lower continental crust with minor mafic boudins. Eclogites formed by subduction of mafic lower continental crust have not been identified yet. Here an eclogite occurrence that formed during subduction of the mafic lower continental crust in the Dabie orogen, east‐central China is reported. At least four generations of metamorphic mineral assemblages can be discerned: (i) hypersthene + plagioclase ± garnet; (ii) omphacite + garnet + rutile + quartz; (iii) symplectite stage of garnet + diopside + hypersthene + ilmenite + plagioclase; (iv) amphibole + plagioclase + magnetite, which correspond to four metamorphic stages: (a) an early granulite facies, (b) eclogite facies, (c) retrograde metamorphism of high‐pressure granulite facies and (d) retrograde metamorphism of amphibolite facies. Mineral inclusion assemblages and cathodoluminescence images show that zircon is characterized by distinctive domains of core and a thin overgrowth rim. The zircon core domains are classified into two types: the first is igneous with clear oscillatory zonation ± apatite and quartz inclusions; and the second is metamorphic containing a granulite facies mineral assemblage of garnet, hypersthene and plagioclase (andesine). The zircon rims contain garnet, omphacite and rutile inclusions, indicating a metamorphic overgrowth at eclogite facies. The almost identical ages of the two types of core domains (magmatic = 791 ± 9 Ma and granulite facies metamorphic zircon = 794 ± 10 Ma), and the Triassic age (212 ± 10 Ma) of eclogitic facies metamorphic overgrowth zircon rim are interpreted as indicating that the protolith of the eclogite is mafic granulite that originated from underplating of mantle‐derived magma onto the base of continental crust during the Neoproterozoic (c. 800 Ma) and then subducted during the Triassic, experiencing UHP eclogite facies metamorphism at mantle depths. The new finding has two‐fold significance: (i) voluminous mafic lower continental crust can increase the average density of subducted continental lithosphere, thus promoting its deep subduction; (ii) because of the current absence of mafic lower continental crust in the Dabie orogen, delamination or recycling of subducted mafic lower continental crust can be inferred as the geochemical cause for the mantle heterogeneity and the unusually evolved crustal composition.  相似文献   

15.
本研究应用激光剥蚀技术测定了北大别黄土岭高温-高压长英质麻粒岩锆石3个结构域的U-Pb年龄.变质锆石成因的碎屑锆石域的207Pb/206Pb年龄范围为(2493±54) Ma~(2500±180) Ma, 岩浆成因的碎屑锆石域的207Pb/206Pb年龄范围为2628~2690Ma, 其最大的206Pb/238U年龄为(2790±150) Ma, 变质增生或变质重结晶锆石域的不一致线上交点年龄为(2044.7±29.3) Ma.长英质麻粒岩的矿物组合成分、主量元素地球化学, 尤其是锆石副矿物内部结构特征显示其原岩为沉积岩.这表明, 麻粒岩原岩物质来自具有复杂热历史的蚀源区, 该蚀源区曾发生过~2.8Ga的岩浆作用和~2.5Ga变质作用, 因此其原岩的沉积年龄不应早于2.5Ga.高温-高压麻粒岩相变质作用的精确年龄为(2.04±0.03) Ga, 表明黄土岭麻粒岩是一个晚古元古代超高温变质岩之残块.   相似文献   

16.
An eclogitemafic granulite occurs as a rare boudin within a felsic kyaniteK‐feldspar granulite in a low‐strain zone. Its boundary is marked by significant metasomatism–diffusional gain of potassium at the centimetre‐scale, and probable infiltration of felsic melt on a larger scale. This converted the eclogitemafic granulite into an intermediate‐composition, ternary‐feldspar‐bearing granulite. Based on inclusions in garnet, the peak P–T conditions of the original eclogite are 18 kbar at 850950 °C, with later matrix re‐equilibration at 12 kbar and 950 °C. Four samples from the transition of the eclogitemafic granulite through to the intermediate granulite were studied. In the eclogite, REE patterns in the garnet core show no Eu anomaly, compatible with crystallization in the absence of plagioclase and consistent with eclogite facies conditions. Towards the rim of garnet, LREE decrease, and a weak negative Eu anomaly appears, reflecting passage into HP granulite facies conditions with plagioclase present. The rims of garnet next to ternary feldspar in the intermediate granulite show the lowest LREE and deepest Eu anomalies. Zircon from the four samples was analysed by LASS (laser ablation–split‐stream inductively coupled plasma–mass spectrometry). It shows U–Pb ages from 404 ± 4.0 to 331 ± 3.3 Ma, with a peak at 340 ± 4.0 Ma corresponding to the likely exhumation of the rocks to 12 kbar. Older ages from zircon with steep HREE patterns indicate the minimum age of the protolith, and ages <360 ± 4.0 Ma are interpreted to correspond to the eclogite facies metamorphism. Only some zircon grains ≤350 ± 4.0 Ma have flat HREE patterns, suggesting that these are primarily modified protolith grains, rather than new zircon crystallized in the eclogite‐ or granulite facies. The metasomatic processes that converted the eclogitemafic granulite to an intermediate granulite may have facilitated zircon modification as zircon in the intermediate granulite has flat HREE and ages of 340 ± 4.0 Ma. The difference between the oldest and youngest ages with flat REE patterns indicates a 16 ± 5.6 Ma period of zircon modification in the presence of garnet.  相似文献   

17.
U–Pb and Pb–Pb zircon ages for metamorphic zircons from granulites in the Saxonian granulite complex are reported, using the SHRIMP ion microprobe, conventional multigrain and single-gain techniques and the evaporation method. This is complemented by a Pb–Pb evaporation age for a post-granulite granite emplaced into the schist mantle around the granulites during uplift of the complex. We also demonstrate that zircon ages are not reset during high-grade metamorphism, as commonly argued, but have a very high closure temperature and usually preserve the isotopic composition reflecting the time of their formation. Multifaceted zircons from four granulite samples that probably grew close to the peak of high-grade metamorphism yielded identical U–Pb and Pb–Pb ages of ~340?Ma which support previously published data and unambiguously show that the granulites formed during a lower Carboniferous event and not in the early Palaeozoic or Precambrian as previously suggested. Older cores in some of the metamorphic zircons reveal early Palaeozoic components at 470–485?Ma that we interpret as ages reflecting magmatic crystallization of the granulite precursors. One sample suggests an inherited component as old as ~1700?Ma. The post-granulite granite has a Pb–Pb evaporation age of 333.1±1.0?Ma, and the short time interval between granulite metamorphism and granite intrusion implies that uplift, crustal extension and cooling of the granulite complex occurred rapidly after peak metamorphic conditions.  相似文献   

18.
《International Geology Review》2012,54(10):1194-1211
A belt of khondalite-series rocks in the Western Block of the North China craton (NCC) are considered to represent products of the collision between the north Yinshan and the south Ordos terranes before final amalgamation of the NCC basement. The Jining Complex of Inner Mongolia occurs in the eastern part of the Khondalite Belt and is crosscut by the Trans-North China Orogen. Khondalite rocks of the Jining Complex mainly comprise sillimanite-garnet gneiss, garnet/sillimanite-bearing granite, massive porphyritic granite, garnet quartzite, calc-silicate, and marble with minor felsic gneiss and mafic granulite. LA-ICP-MS, U–Pb dating and cathodoluminescence (CL) image analysis of zircons from five rocks from the complex, i.e. Sil-Bt-Grt leptynite gneiss, Spl-Sil-Ksp-Grt vein in (Crd)-Sil-Grt gneiss, Sil-Grt-K-Fsp mylonite from a shear zone, Crd-bearing Sil-Grt gneiss, and granite were used to determine protolith and metamorphic ages of the khondalite-series rocks. Results of 315 detrital zircon grains indicate five age populations: 2410–2550 Ma, 2162 Ma, 2047–2099 Ma, 1950–1993 Ma, and 1866 Ma. CL investigation reveals that zircon grains of most samples are rounded, unzoned with low Th/U, indicating a metamorphic origin, whereas quite a few grains in some rocks are characterized by magmatic oscillatory zoning and comparatively high Th/U, and are typically overgrown by metamorphic, low CL rims with low Th/U. Three samples of Sil-Bt-Grt gneiss record oldest ages of ~2550–2480 Ma, suggesting an Archaean/early Palaeoproterozoic provenance for the Jining Complex. Ages of ~2162–2047 Ma are interpreted as the metamorphic modified inherited source of supercrustal protoliths of the khondalite-series rocks. The khondalite depositional age is defined as 2228–2027 Ma by concordant ages obtained in this research. The Sil-Ksp-Grt vein and the granite have single population ages of 1985?±?28 Ma and 1957?±?19 Ma, respectively, and are inferred to record the same metamorphic event, i.e. formation of the Khondalite Belt within the Western Block owing to the collision of the north Yinshan and the south Ordos terranes. The Sil-Grt-K-Fsp mylonite yields a single group age of 1866?±?22 Ma, which may date final suturing of the Eastern Block and the Western Block and stabilization of the NCC.  相似文献   

19.
《International Geology Review》2012,54(10):1150-1162
Late Cretaceous calc-alkaline granites in the Gyeongsang Basin evolved through the mixing of mafic and felsic magmas. The host granites contain numerous mafic magmatic/microgranular enclaves of various shapes and sizes. New SHRIMP-RG zircon U–Pb ages of both granite and mafic magmatic/microgranular enclaves are 75.0?±?0.5 Ma and 74.9?±?0.6 Ma, respectively, suggesting that they crystallized contemporaneously after magma mixing. The time of injection of mafic melt into the felsic magma chamber can be recognized as approximately 75 Ma by field relations, petrographic features, geochemical evolution, and SHRIMP-RG zircon dating. This Late Cretaceous magma mixing event in the Korean Peninsula was probably related to the onset of subduction of the Izanagi (Kula)–Pacific ridge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号