首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 573 毫秒
1.
利用XRD和SEM测试方法表征了热活化胶状黄铁矿结构和微观形貌,考察了溶液pH、溶解氧和热活化温度对热活 化胶状黄铁矿去除水中Cd(Ⅱ)的影响,并探讨了除Cd(Ⅱ)反应动力学和作用机理。胶状黄铁矿在N2氛围下650℃热活化 5 min可完全分解生成多孔结构化单斜磁黄铁矿(PMPyr)。在pH 2~6的无氧水溶液中PMPyr除Cd(Ⅱ)效率均达到88%以 上,除Cd(Ⅱ)效率受pH影响较小;PMPyr表面氧化会抑制其与Cd(Ⅱ)的反应。PMPyr除Cd(Ⅱ)动力学可用准二级动力学模型拟合(R2> 0.9992),结合溶液pH变化趋势、Fe(Ⅱ)和SO42-浓度变化推测,PMPyr除Cd(Ⅱ)机理主要是Fe1-xS和CdS溶度积差异推动了PMPyr与Cd(Ⅱ)交换反应,表面络合属于次要作用。  相似文献   

2.
天然黄铁矿对阳离子有机染料RhB吸附特性研究   总被引:1,自引:0,他引:1  
以黄铁矿作为吸附剂研究罗丹明B(Rhodamine B,RhB)的吸附特性,用X射线衍射仪(XRD)、扫描电子显微镜(SEM)对黄铁矿进行了表征。考察了接触时间、溶液pH值、离子强度、温度等对黄铁矿吸附RhB的影响。结果表明,在吸附平衡时间120 min、pH值4.0时,吸附量达到最大值21.3 mg/g。升高温度,黄铁矿对RhB的吸附量逐渐增大。而离子强度对吸附几乎没有影响。实验数据与Langmuir吸附模型拟合良好,整个吸附动力学模型符合准二级吸附动力学模型。热力学研究证实了该吸附过程是自发进行的。通过对吸附反应结束后的黄铁矿进行煅烧处理,去除表面吸附的RhB,结果表明煅烧一次的黄铁矿仍然可以吸附废水中约50%的RhB,具有重复利用的价值。  相似文献   

3.
黄铁矿处理含Cr(V)废水的进一步实验研究   总被引:1,自引:0,他引:1  
利用加热与超细粉碎方法对天然黄铁矿进行改性,探讨其去除Cr(Ⅵ)的效果.将黄铁矿加热到450℃时,试样除Cr(Ⅵ)的效率大幅度增高,适宜的pH范围从小于2.5增加到3.06~11.20,且加热改性的试样用量不到天然试样用量的10%.200目至400目的天然黄铁矿去除Cr(Ⅵ)的效率远较200目以上的天然黄铁矿去除Cr(Ⅵ)的效率高.试样久置不影响对Cr(Ⅵ)的去除效果,去除率可达99.2%以上,反应后的pH值都接近4.0,与磁黄铁矿处理Cr(Ⅵ)废水过程中pH值的变化规律一致.不同产地的黄铁矿样品除Cr(Ⅵ)的效果稍有差异.  相似文献   

4.
微量As(Ⅲ)是水中较难去除的毒性物质,天然黄铁矿对水中As(Ⅲ)的去除能力低于磁黄铁矿.将黄铁矿在氮气下高温煅烧使其转变为由磁黄铁矿构成的多孔结构化材料,具有较高的比表面积和表面化学反应活性,在地下水As(Ⅲ)去除方面具有潜在的应用前景.考察了煅烧温度、煅烧时间、pH值以及溶解氧对去除水中As(Ⅲ)的影响.结果表明黄铁矿煅烧生成的单斜磁黄铁矿对As(Ⅲ)具有最佳去除效果,最佳煅烧条件为600℃煅烧1 h;在水溶液有溶解氧条件下煅烧黄铁矿去除As(Ⅲ)的适宜p H值范围较宽(4~10),而在水溶液缺少溶解氧条件下适宜pH值则变为7~10;煅烧黄铁矿在有氧水溶液中对As(Ⅲ)的吸附比缺氧水溶液中的吸附效果好.  相似文献   

5.
地表水体富营养化现象与磷的积累有密切关系,去除水体中溶解态磷是降低富营养化风险的技术关键。近十余年来,稀土元素被用于污水除磷剂的开发,并获得了良好的应用成效。本文实验比较了8种结晶态稀土氧化物(Y_2O_3、La_2O_3、CeO_2、Pr6O11、Nd_2O_3、Sm_2O_3、Eu_2O_3和Dy_2O_3)的除磷性能,结果表明La_2O_3的除磷性能最好,Pr6O11、Y_2O_3、Eu_2O_3、Nd_2O_3次之,Sm_2O_3和Dy_2O_3效果微弱,CeO_2完全没有除磷能力;研究表明稀土氧化物表面磷吸附的动力学行为更符合准一级反应模型,吸附等温线符合Langmuir模型。实验表征了除磷后的稀土氧化物和除磷过程中溶液p H值的变化,认为稀土氧化物除磷是一个表面吸附占主导,氧化物溶解出来的离子辅助沉淀的吸附过程。为了避免稀土氧化物颗粒在水体中发生团聚并降低表面吸附能力,将稀土氧化物La_2O_3微纳米颗粒负载在不同黏土矿物上,发现负载于黏土矿物表面的稀土氧化物除磷能力有较好提升,磷吸附量均提高25%左右。负载等量La_2O_3的3种黏土矿物的除磷性能差异不显著,黏土矿物提高稀土氧化物颗粒分散度可能是后者除磷能力提升的主要原因。  相似文献   

6.
利用天然磁铁矿辅助合成磁黄铁矿去除水体中的Cr(Ⅵ).实验结果表明,磁铁矿对合成的磁黄铁矿去除水体中Cr(Ⅵ)过程存在协同增强作用.同时利用X射线衍射分析(XRD)、X射线光电子能谱(XPS)、扫描电子显微镜(SEM)及能谱仪(EDS)对反应前后样品进行分析,发现水体中的Cr(Ⅵ)被有效的还原为Cr(Ⅲ),并以Cr(OH)3及Cr2O3的形式沉淀.设计正交试验探究了磁铁矿粒度、投加量以及废水pH值对除铬过程中2种矿物间协同作用的影响,发现3种因素的影响作用大小顺序为pH值>磁铁矿粒度>磁铁矿用量.磁铁矿协同磁黄铁矿去除Cr(Ⅵ)的最优条件为pH值= 3,磁铁矿粒度75~150 μm,用量占比40%.讨论得出2种矿物间的协同作用应包括1)磁铁矿对磁黄铁矿在水溶液中团聚现象的抑制作用;2)酸性条件下磁铁矿表面Fe(Ⅲ)对溶液中磁黄铁矿释放H2S的固定作用.  相似文献   

7.
进行了U(VI)在粘土上吸附的批实验,其中,粘土样采自我国南方某大型铀尾矿库库底。实验结果表明U(VI)在粘土上的吸附与浸泡液的pH值呈强烈的非线性关系,在pH值近中性时,U(VI)在粘土上的吸附达到了一个最大值,而在偏酸性或偏碱性条件下,U(VI)在粘土上的吸附迅速减少;运用表面络合理论建立了U(VI)在粘土上吸附的表面络合模型(DLM),该模型很好地拟合了实验数据。模型检验表明,它可以精确预测U(VI)在不同热力学条件下的吸附行为;此外,模拟结果表明,U(VI)的粘土上吸附在酸性条件下受固液比(M/V)影响明显,而在碱性条件下主要受浸泡液中HCO3^-和CO3^2-的控制。  相似文献   

8.
金在黄铁矿表面沉淀机理的实验研究   总被引:6,自引:0,他引:6       下载免费PDF全文
为了研究金在黄铁矿表面沉淀的机理,于室温、常压,在氯化物溶液中进行了黄铁矿粉末吸附金的实验。在不同pH的溶液中,黄铁矿均可吸附金,而且pH值明显地影响吸附速率。扫描电镜观察表明,反应后黄铁矿粒表面有金晶体形成。XPS研究得知,黄铁矿光片与含金氯化物溶液反应后表面有A0存在;硫在反应初期为S0、S2O32-,随后转变为SO42-,而铁成为Fe3+.黄铁矿中的Fe2+和S22-是溶液中金的还原剂。金在黄铁矿表面沉淀可能涉及吸附、还原和晶体生长等过程。  相似文献   

9.
炉渣处理含磷废水的实验研究   总被引:9,自引:0,他引:9       下载免费PDF全文
以炉渣作为吸附剂,用静态吸附实验方法研究了炉渣对模拟含磷废水脱磷的一般规律,结果表明,炉渣是一种有效的吸附剂,对废水中的磷有较强的吸附去除性能。影响炉渣除磷的主要因素有吸附时间、炉渣用量、pH值和原水含磷浓度。在含磷浓度2~13mg/L、炉渣用量5g/L、中性、吸附时间为2h的实验条件下,磷的去除率可高达99%以上。  相似文献   

10.
采用氧化还原共沉淀法制备铁锰氧化物/硅藻土复合物,考察原料配比、反应温度、焙烧温度及溶液pH值、离子强度对该复合物吸附磷性能的影响,同时开展吸附等温线、XRD和IR等分析。结果表明,2. 5 g硅藻土与1. 0 mmol锰、3. 0 mmol二价铁、3. 0 mmol三价铁制备的复合物在20℃、pH值为6时对磷的吸附量为10. 84 mg/g,较硅藻土提高约3. 6倍;沉淀反应温度对复合物吸附性能影响很小,焙烧温度400~500℃有利于复合物对磷的吸附;吸附量随溶液pH值的增大而减小,pH值较低时吸附作用主要是静电吸引和内层络合,pH值较高时减弱的静电吸引和内层络合与有利于吸附的内层络合共吸附综合作用,表现为吸附量减小;吸附等温线符合Langmuir方程,饱和吸附量34~37 mg/g,与D-R方程、R-P方程有较好相关性,平均吸附能9. 9~11. 3 kJ/mol,复合物具有微孔结构,有单层也有多层吸附。  相似文献   

11.
In this paper, the sorption of uranium onto nanoporous silica adsorbent in the presence of nitrate, sulfate, chloride, fluoride and phosphate was studied. The effect of contact time between the nanoporous sorbent and aqueous solution, pH and initial concentration of uranium was also investigated. Uranium sorption onto nanoporous silica adsorbent is a very fast process as sorption rate increases with pH increment. Optimum pH for uranium sorption was 4?C8. Experimental sorption isotherm is successfully described by Langmuir and Freundlich models. The results obtained by batch experiments showed that the presence of high concentration of nitrate, sulfate, chloride and phosphate anions alone had no interference with uranium recovery. However, the presence of fluoride ions (>250?mg/L) decreases uranium sorption by about 55?%. The results also showed that the presence of phosphate ions (about 300?mg/L) in solution could remove fluoride interference completely. Finally, the efficiency of the nanoporous silica adsorbent for uranium recovery from wastewater of the uranium conversion facility was investigated.  相似文献   

12.
A natural colloidal pyrite calcined in N2 atmosphere was utilized to remove Cu(II) from aqueous solutions in present work. Effect of calcination temperature, initial solution pH, reaction time, initial Cu(II) concentration, sorption temperature, foreign ions and the dissolved oxygen (DO) on Cu(II) removal was investigated. The results showed that colloidal pyrite calcined at 500-550°C (CCPy) has a most promising potential for Cu(II) removal. The increase of pH, initial Cu(II) concentration and reaction time benefited the improvement of Cu(II) removal efficiency. The isothermal adsorption data of CCPy was well described by Langmuir isotherms and the thermodynamic parameters (ΔG<0, ΔH>0), indicating the endothermic nature of Cu(II) sorption on CCPy. The presence of most common ions in acid mine drainage and DO just had little influence on the Cu(II) uptake. The observation implied that CCPy is a low-cost, abundant material for Cu removal from Cu waters.  相似文献   

13.
Naturally occurring pyroclastic materials, quartz-rich tuffs (Qz) and stellerite tuffs, were evaluated for their capacities to remove As(V) from aqueous solutions. The mechanism of As(V) uptake was evaluated using sequential extraction of As(V)-loaded adsorbent which entailed that the plausible removal mechanism is sorption to short-range ordered hydrous oxides of iron and aluminum. In addition, buffering effects of adsorbents could form favorable charges upon them through hydrolysis of amphoteric oxides, enhancing the performance of sorption. The influence of anions co-existing with As(V) in water such as carbonate, bicarbonate, nitrate, chloride, phosphate, and sulfate was studied in a batch sorption process. The impact of most anions on As(V) removal was found to be negligible except phosphate. The sorption behavior well fitted to Langmuir and Freundlich models. Estimated maximum sorption capacities of 0.42 and 0.23 mg/L were observed using quartz-rich tuffs and stellerite tuffs, respectively. As(V) concentration of 0.8 mg/L was easily decreased to below the drinking water standard of 0.01 mg/L using Qz adsorbent, whereas 0.1 mg/L As(V) decreased to below this limit upon the use of stellerite tuffs under similar conditions. The buffering capacity of quartz-rich tuffs and stellerite tuffs induced a pH increase to 5.76 and 5.40, respectively, from initial pH of 3.50, which will incur an important asset in real applications.  相似文献   

14.
This article outlines the main mechanisms for in-situ removal of iron from groundwater. The dependence of ferrous iron kinetic oxidation by dissolved oxygen on the temperature and pH in bicarbonate near neutral groundwater was investigated. The dependence of oxygen consumption efficiency on the iron sorption coefficient, pH, and temperature of groundwater was obtained as a result of modeling of the one well in-situ iron removal test in the Amurskiy water intake facilities.  相似文献   

15.
The sorption of cadmium and humic acids from aqueous solutions using surface-modified nanozeolite A has been investigated under various examination conditions. The morphology of untreated and treated nanozeolite was studied under scanning electron microscope and transmission electron microscope. Isotherms of cadmium adsorption onto surface-modified nanozeolite A were studied at different pH, solid to liquid ratio, adsorbate concentration and interaction time. Kinetic and equilibrium studies were conducted and the equilibrium data have been analyzed using Langmuir and Freundlich isotherm models. The study revealed that experimental results were in agreement with the Freundlich model. The Langmuir monolayer adsorption capacity was found to be 1666.67 g cadmium and 6.75 g humic acid per gram of modified nanozeolite A, which is higher than that of reported value for other zeolites. The sorption ability was enhanced by surface modification and reduction in size and enabled the zeolite to adsorb cadmium. The adsorption of cadmium and humic acid on nanozeolite was found to be the highest at pH 6 and 3, respectively. Results showed that solid to liquid ratio and pH are the most important factors for cadmium and humic acid removal, respectively. Effect of competitive ions was studied and results showed that there is no competition between cadmium and humic acid sorption and presence of these ions.  相似文献   

16.
柱子淋洗模拟研究磷酸铁膜抑制黄铁矿氧化效果   总被引:1,自引:0,他引:1  
自然室温条件下用柱子淋洗模拟研究了接氧化亚铁硫杆菌(Thiobacillus ferrooxidans,简称T.F菌)时磷酸铁膜抑制黄铁矿氧化的效果。试验结果首次指出:用KH2PO4与H2O2淋洗黄铁矿,在其表面形成的磷酸铁膜不能抑制黄铁矿的生物氧化,反而在一定程度上加速其氧化进程。经包膜后的黄铁矿矿石柱子间歇循环淋洗一年后的收集液中SO4^2-累积量高达33756.1mg;为对照组的1.6倍,是  相似文献   

17.
The present study explores the effectiveness of Saraca indica leaf powder, a surplus low value agricultural waste, in removing Pb ions from aqueous solution. The influence of pH, biomass dosage, contact time, particle size and metal concentration on the removal process were investigated. Batch studies indicated that maximum biosorption capacity for Pb was 95.37% at the pH 6.5. The sorption process followed the first order rate kinetics. The adsorption equilibrium data fitted best to both Langmuir and Freundlich isotherms. Morphological changes observed in scanning electron micrographs of untreated and metal treated biomass confirmed the phenomenon of biosorption. Fourier transform infrared spectroscopy of native and exhausted leaf powder confirmed lead biomass interactions responsible for sorption. Acid regeneration was tried for several cycles with a view to recover the sorbed metal ion and also to restore the sorbent to its original state. The findings showed that Saraca indica leaf powder can easily be envisaged as a new, vibrant, low cost biosorbent for metal clean up operations.  相似文献   

18.
Iron sulfide oxidation and the chemistry of acid generation   总被引:3,自引:0,他引:3  
Acid mine drainage, produced from the oxidation of iron sulfides, often contains elevated levels of dissolved aluminum (AI), iron (Fe), and sulfate (SO4) and low pH. Understanding the interactions of these elements associated with acid mine drainage is necessary for proper solid waste management planning. Two eastern oil shales were leached using humidity cell methods. This study used a New Albany Shale (4.6 percent pyrite) and a Chattanooga Shale (1.5 percent pyrite). The leachates from the humidity cells were filtered, and the filtrates were analyzed for total concentrations of cations and anions. After correcting for significant solution species and complexes, ion activities were calculated from total concentrations. The results show that the activities of Fe3+, Fe2+, Al3+, and SO4 2− increased due to the oxidation of pyrite. Furthermore, the oxidation of pyrite resulted in a decreased pH and an increased pe+pH (redox-potential). The Fe3+ and Fe2+ activities appeared to be controlled by amorphous Fe(OH)3 solid phase above a pH of 6.0 and below pe+pH 11.0. The Fe3+, Fe2+, and SO4 2− activities reached saturation with respect to FeOHSO4 solid phase between pH 3.0 and 6.0 and below pe+pH 11.0 Below a pH of 3.0 and above a pe+pH of 11.0, Fe2+, Fe3+, and SO4 2− activities are supported by FeSO4·7H2O solid phase. Above a pH of 6.0, the Al3+ activity showed an equilibrium with amorphous Al(OH)3 solid phase. Below pH 6.0, Al3+ and SO4 2− activities are regulated by the AlOHSO4 solid phase, irrespective of pe+pH. The results of this study suggest that under oxidizing conditions with low to high leaching potential, activities of Al and Fe can be predicted on the basis of secondary mineral formation over a wide range of pH and redox. As a result, the long-term chemistry associated with disposal environments can be largely predicted (including trace elements).  相似文献   

19.
The effect of a diacetylene-containing phospholipid on the oxidation of pyrite, FeS2, was investigated. Earlier work reported by our research group showed that the adsorption of l,2-bis(10,12-tricosadiynoyl)-sn-glycero-3-phosphocholine on pyrite suppressed the extent of its oxidation by about 75% over a specific time period. Results presented here show that the pre-exposure to UV radiation of this lipid after sorption onto pyrite results in a 90% suppression. Attenuated total reflection (ATR) Fourier transform infra-red spectroscopy (FTIR) suggests that the UV irradiation of the lipid does not result in degradation of the adsorbed layer. It is believed that the UV exposure results in the cross-linking and polymerization of the adsorbed phospholipid into a relatively impermeable barrier that separates the pyrite from the aqueous phase. The results of this study might have implications for the protection of pyrite from oxidation in the environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号