首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
暗色微粒包体广泛分布于湘中紫云山岩体中的似斑状角闪石黑云母花岗闪长岩中,但其研究程度较低.对具有火成结构的暗色微粒包体及其寄主岩进行了岩相学、全岩及长石、辉石、黑云母的矿物地球化学研究,探讨其岩石成因及构造意义.寄主岩的全岩主量、微粒元素较为均一,而暗色微粒包体变化较大,且后者相对贫SiO2而富Na2O,但总体上二者均具有准铝质、钙碱性、镁质的特征,均富集轻稀土和大离子亲石元素,而亏损重稀土和高场强元素.寄主岩和暗色微粒包体的斜长石、辉石和黑云母均分别属于中长石、次透辉石-低铁次透辉石和铁质黑云母的范畴,显示相似的矿物地球化学特征.详尽的岩相学和地球化学特征表明,寄主岩属于I型和ACG型花岗岩,具有明显壳幔混合的特点;而暗色微粒包体形成时处于液态并具有流动性,与寄主岩间存在明显的机械和化学混合作用,并具有早期为骤冷快速结晶、晚期缓慢结晶这两期过程.因此,紫云山岩体中出现大量暗色微粒包体,是印支晚期湘中地区在强烈挤压之后的松弛阶段,由于软流圈物质上涌,并与其诱发的壳源酸性岩浆混合作用的产物.   相似文献   

2.
塔里木西南缘铁克里克地区广泛发育早古生代中酸性侵入岩,本文对其中布雅岩体及其暗色包体进行系统的岩石学、年代学及岩石地球化学研究,确定了岩石成因及其构造属性。LA-MC-ICP-MS锆石U-Pb年代学研究表明,寄主石英二长闪长岩结晶年龄为432.6±2.5 Ma(MSWD=1.5),暗色包体结晶年龄为432.4±6.4 Ma(MSWD=0.031),二者形成时代相同,均为志留纪早期岩浆活动的产物。地球化学特征表明,布雅暗色包体应来源于地幔的部分熔融,而寄主岩石岩浆具有壳源岩浆的性质并经历了幔源岩浆不均匀的混合。野外及岩相学特征均显示暗色包体为铁镁质岩浆注入长英质岩浆快速冷凝形成的,是幔源岩浆底侵下地壳形成的岩浆混合作用的产物。它们是塔里木南缘早古生代碰撞造山作用晚期的岩浆记录。  相似文献   

3.
《International Geology Review》2012,54(10):1150-1162
Late Cretaceous calc-alkaline granites in the Gyeongsang Basin evolved through the mixing of mafic and felsic magmas. The host granites contain numerous mafic magmatic/microgranular enclaves of various shapes and sizes. New SHRIMP-RG zircon U–Pb ages of both granite and mafic magmatic/microgranular enclaves are 75.0?±?0.5 Ma and 74.9?±?0.6 Ma, respectively, suggesting that they crystallized contemporaneously after magma mixing. The time of injection of mafic melt into the felsic magma chamber can be recognized as approximately 75 Ma by field relations, petrographic features, geochemical evolution, and SHRIMP-RG zircon dating. This Late Cretaceous magma mixing event in the Korean Peninsula was probably related to the onset of subduction of the Izanagi (Kula)–Pacific ridge.  相似文献   

4.
Summary ¶Mafic microgranular enclaves occur in most calc-alkaline granitoids, and it is widely accepted that they represent the remnants of basic magmas that interacted with more acid magmas. In this work we present new data on mafic microgranular enclaves occurring in the granodiorites of the Sithonia Plutonic Complex (Northern Greece). Enclave properties have been studied using different methods. Quantitative textural analysis has been carried out in order to decipher the crystallization history of enclaves once they have been entrained in the more acid and cooler host magma. In particular, the nucleation density (C), the mode (M) and the crystal index (n) of enclaves has been measured. Along with textural analysis, the size of enclaves has also been estimated using a method that, based on two-dimensional sections of enclaves, allows the estimation of volume of enclaves. Geochemical analyses have been performed to investigate the degree of chemical interaction that enclaves suffered from the host acid magma. The different data sets have been utilized to furnish a general evolutionary model of the magmatic interaction process between the basic and the acid magmas that led to the formation of the granodioritic host rock and related mafic microgranular enclaves. It is concluded that, as the magmatic interaction process proceeded, the crystallization of enclaves involved the nucleation of apatite and epidote (first stage of crystallization) followed by biotite, ± hornblende, plagioclase, and titanite (second stage of crystallization); the last minerals that nucleate were quartz and K-feldspar. During crystallization enclaves underwent contamination by the host acid magma through flow channels opened during the transfer of mineral phases from the host magma to the enclaves. When the two magmas attained similar rheological behaviour a two-end member mixing process was favoured inducing progressively more vigorous mixing dynamics. Volumetric analysis of enclaves indicates that the smaller ones suffered a more intense geochemical interaction compared to the larger ones. We interpret this evidence as being strictly related to the kinematics of the mixing process, the latter governed by chaotic dynamics. Enclaves are viewed as portions of the basic magma that did not mix completely with the acid host magma and survived the mixing process. Host rocks are considered as volumes of the magmatic system where the more efficient mixing dynamics produced different, generally higher, degrees of hybridisation.Received May 22, 2002; revised version accepted November 5, 2002 Published online February 24, 2003  相似文献   

5.
周口店岩体由三次侵入的中酸性岩石组成, 本次测得石英闪长岩锆石U-Pb年龄为131.6±2.1 Ma, 闪长玢岩锆石U-Pb年龄为128.1±1.4 Ma.周口店岩体各种类型岩石属高钾钙碱性系列、偏铝质, Mg#较高, 重稀土元素和Ta、Nb、P以及Ti明显亏损, 轻稀土元素和Ba、K以及Sr相对富集, Eu没有异常, Yb元素含量小于2×10-6, (La/Yb)N和Sr/Y比值较高.斜长石复杂环带能谱线扫描表明, 花岗闪长岩中的斜长石核部牌号高, 完整的幔部由内向外由反环带和正环带组成, 微粒包体中的斜长石核部牌号低, 幔部以尘状环带开始, 然后演变为正环带, 这揭示存在多期基性岩浆的注入作用, 结合暗色微粒包体的形态、大小、数量、反向脉、矿物含量统计、矿物成分、地球化学和各类环带包体、岩墙状包体群等特征, 说明暗色微粒包体是在花岗闪长岩浆冷凝过程的不同阶段, 多期幔源基性岩浆注入并与酸性岩浆在围绕包体周缘的局部范围内发生不均一机械混合作用的结果.周口店中酸性岩石体现埃达克质岩的地球化学特征, 岩浆成分主要受源区控制, 形成于加厚下地壳环境.由石英闪长岩-花岗闪长岩至中酸性岩脉, 岩石(Er/Lu)N和Nb/Ta比值升高, 说明源区残留相矿物组合由角闪石+石榴石向石榴石+金红石变化, 岩浆源区不断变深.   相似文献   

6.
ABSTRACT

The Early Cretaceous igneous complexes in the north flank of the North China Craton (NCC) provide a window to investigate the Mesozoic magmatism in the NCC. Here we report the precise timing of Early Cretaceous magmatism and magma petrogenesis of the different rock types in the north flank of the NCC based on petrology, mineral chemistry, geochemistry, zircon geochronology and Sr-Nd isotopes. Zircon U-Pb dating reveals that the Shouwangfen complex was crystallized at 130–128 Ma. The rocks display enrichment in large ion lithophile elements (LILE) and LREE, and depletion in high field strength elements (HFSE) and HREE, with relatively high Sr/Y and La/Yb values, typical of subduction-related magmatic rocks. The mafic microgranular enclaves show typical igneous textures, acicular apatites, sieve-texture of plagioclase phenocrysts and overgrowth of amphibole around the pyroxene, corresponding to magma mixing and mingling and thermal exchange. The quartz monzonites display normal zoning of the plagioclase, low and homogeneous εNd(t) values and linear co-variations in two-component diagrams. The quartz monzodiorites are characterized by high and homogeneous εNd(t) values. Petrologic feature and geochemical data suggest that the quartz monzonites represent lower crustal magma with minor contribution of enriched melt of the sub-continental lithospheric mantle (SCLM), followed by fractional crystallization. The mafic microgranular enclaves were sourced from enriched SCLM, followed by mixing and mingling with the host quartz monzonitic magma. The quartz monzodiorites are mainly SCLM-derived and subsequently mixed with lower crust melts. The high water contents (≥3%) of these Early Cretaceous igneous complexes suggests a hydrous SCLM beneath the NCC. The Early Cretaceous igneous complexes formed within an extensional tectonic setting which were related to the retreat and dehydration of the paleo-Pacific slab. The hydration of the lithosphere induced extensive crust-mantle interaction and large-scale water-rich magmatism, leading to lithospheric thinning in the NCC during the Mesozoic.  相似文献   

7.
The Nimchak granite pluton (NGP) of Chotanagpur Granite Gneiss Complex (CGGC), Eastern India, provides ample evidence of magma interaction in a plutonic regime for the first time in this part of the Indian shield. A number of outcrop level magmatic structures reported from many mafic-felsic mixing and mingling zones worldwide, such as synplutonic dykes, mafic magmatic enclaves and hybrid rocks extensively occur in our study domain. From field observations it appears that the Nimchak pluton was a vertically zoned magma chamber that was intruded by a number of mafic dykes during the whole crystallization history of the magma chamber leading to magma mixing and mingling scenario. The lower part of the pluton is occupied by coarse-grained granodiorite (64.84–66.61?wt.% SiO2), while the upper part is occupied by fine-grained granite (69.80–70.57?wt.% SiO2). Field relationships along with textural and geochemical signatures of the pluton suggest that it is a well-exposed felsic magma chamber that was zoned due to fractional crystallization. The intruding mafic magma interacted differently with the upper and lower granitoids. The lower granodiorite is characterized by mafic feeder dykes and larger mafic magmatic enclaves, whereas the enclaves occurring in the upper granite are comparatively smaller and the feeder dykes could not be traced here, except two late-stage mafic dykes. The mafic enclaves occurring in the upper granite show higher degrees of hybridization with respect to those occurring in the lower granite. Furthermore, enclaves are widely distributed in the upper granite, whereas enclaves in the lower granite occur adjacent to the main feeder dykes.Geochemical signatures confirm that the intermediate rocks occurring in the Nimchak pluton are mixing products formed due to the mixing of mafic and felsic magmas. A number of important physical properties of magmas like temperature, viscosity, glass transition temperature and fragility have been used in magma mixing models to evaluate the process of magma mixing. A geodynamic model of pluton construction and evolution is presented that shows episodic replenishments of mafic magma into the crystallizing felsic magma chamber from below. Data are consistent with a model whereby mafic magma ponded at the crust-mantle boundary and melted the overlying crust to form felsic (granitic) magma. The mafic magma episodically rose, injected and interacted with an overlying felsic magma chamber that was undergoing fractional crystallization forming hybrid intermediate rocks. The intrusion of mafic magma continued after complete solidification of the magma chamber as indicated by the presence of two late-stage mafic dykes.  相似文献   

8.
Abstract  Abundant mafic microgranular enclaves (MMEs) extensively distribute in granitoids in the Gangdisê giant magmatic belt, within which the Qüxü batholith is the most typical MME‐bearing pluton. Systematic sampling for granodioritic host rock, mafic microgranular enclaves and gabbro nearby at two locations in the Qüxü batholith, and subsequent zircon SHRIMP II U‐Pb dating have been conducted. Two sets of isotopic ages for granodioritic host rock, mafic microgranular enclaves and gabbro are 50.4±1.3 Ma, 51.2±1.1 Ma, 47.0±1 Ma and 49.3±1.7 Ma, 48.9±1.1 Ma, 49.9±1.7 Ma, respectively. It thus rules out the possibilities of mafic microgranular enclaves being refractory residues after partial melting of magma source region, or being xenoliths of country rocks or later intrusions. Therefore, it is believed that the three types of rocks mentioned above likely formed in the same magmatic event, i.e., they formed by magma mixing in the Eocene (c. 50 Ma). Compositionally, granitoid host rocks incline towards acidic end member involved in magma mixing, gabbros are akin to basic end member and mafic microgranular enclaves are the incompletely mixed basic magma clots trapped in acidic magma. The isotopic dating also suggested that huge‐scale magma mixing in the Gangdisê belt took place 15–20 million years after the initiation of the India‐Asia continental collision, genetically related to the underplating of subduction‐collision‐induced basic magma at the base of the continental crust. Underplating and magma mixing were likely the main process of mass‐energy exchange between the mantle and the crust during the continental collision, and greatly contributed to the accretion of the continental crust, the evolution of the lithosphere and related mineralization beneath the portion of the Tibetan Plateau to the north of the collision zone.  相似文献   

9.
Two types of mafic enclaves occur in the Dinkey Creek pluton:ubiquitous microgranular enclaves, and rare gabbroic enclaves.Common petrographic features of the microgranular enclaves are:(1) fine grain-size, (2) abundant acicular apatite, and (3)plagioclase zoned from bytownitic cores to andesine-labradoriterims, with sharp boundaries between these main zones. Subordinateoscillatory variations are commonly superimposed on both coresand rims. It has been found by secondary ion mass spectrometrythat the rims are identical in major and trace element compositionto plagioclase in the tonalite, which suggests crystallizationfrom the same or similar magmas. The gabbroic enclaves are composedpredominantly of hornblende (50–85%) and appear to bemagmatic segregations. The microgranular enclaves and host rocks display two convergingtrends on silica variation diagrams for Fe2O3, TiO2, Al2O3,Zn, and Zr. The dominant trend is defined by small microgranularenclaves, by samples from a large (20 m?30 m) microgranularenclave, and by the Dinkey Creek tonalites and granodiorites.The subordinate trend covers tholeiltic dikes and tonalitich and converges with the Dinkey Creek host rocks at 61 wt.%SiO2 Alkali and alkaline earth elements exhibit greater variabilitythan the above constituents and appear to be either enrichedor depleted as required for equilibrium with the host rocks.Low CaO and Sr concentrations in small enclaves (<30 cm)apparently reflect a lower modal abundance of calcic plagioclaseand more sericitization of this feldspar as compared with theplagioclase of the large microgranular enclave. The large enclaveis also richer in MgO than the small enclaves. With the exceptionof the alkali elements, the major element compositions of themicrogranular enclaves approach high-Al basaltic to andesiticcom positions. In one analyzed microgranular enclave, low La/Cerelative to chondrites and more abundant HREE than in othermicrogranular samples suggest that it may also contain minorcumulus hornblende. The petrographic and whole-rock geochemical relations, and theplagioclase compositions in the microgranular enclaves and theirhost rocks, indicate that the microgranular enclaves representmixtures of quenched basalts and Dinkey Creek tonalites. Itappears that dikes of high-alumina basalt were intruded intothe lower, tonalitic portions of the Dinkey Creek pluton, wherethey were partially quenched along an interface with overlyingtonalitic magma. Large portions of residual liquid in the partiallyquenched basalts permitted mixing with the overlying magma toform a hybrid zone. This zone was then disaggregated, yieldingthe enclaves, and they were dispersed throughout the upper partof the Dinkey Creek magma chamber. Subsequent crystallizationof tonalitic melt within the enclaves produced the zoned plagioclaseand re-equilibrated hornblende and biotite in the enclaves tothe Dinkey Creek magmatic conditions. Scouring disrupted hornblende-richmagmatic segregations and produced the gabbroic enclaves.  相似文献   

10.
颜丽丽  贺振宇  刘磊  赵志丹 《地质通报》2015,34(203):466-473
浙江雁荡山是中国东南部燕山晚期巨型火山-侵入杂岩带的重要组成部分。对其中央侵入相石英正长斑岩的暗色微粒包体中的斑晶和基质斜长石进行了详细的内部结构和成分分析,揭示了斜长石复杂环带的成因和相关的岩浆作用过程。斑晶斜长石由熔蚀的核部和表面干净的幔部组成,边部包裹有钾长石膜。核部斜长石呈浑圆状或港湾状,内部发育筛状结构,An成分显著低于幔部斜长石,代表来自酸性岩浆房中早期结晶的斜长石捕掳晶。同时,幔部斜长石与自形、表面干净的基质斜长石具有类似的An含量,且两者均含有针状磷灰石的包裹体,应结晶自与暗色微粒包体相应的基性岩浆。长石的复杂结构记录了雁荡山火山-侵入杂岩形成过程中的岩浆混合作用和岩浆演化过程。岩浆混合之后的火山喷发活动,造成岩浆房的压力突然减小,温压条件达到钾长石结晶的区域,在石英正长斑岩的斑晶斜长石和暗色包体中的斑晶与基质斜长石外均形成钾长石膜,构成反环斑结构。  相似文献   

11.
长英质岩石中暗色微粒包体的形成机理   总被引:9,自引:0,他引:9       下载免费PDF全文
朱永峰 《地球科学》1995,20(5):521-525
通过对熔体网络结构中基性组分和酸性组分的分布特征和各自联结程度的定量描述,确定了岩浆液态分离作用发生的临界状态。长英质岩石中广泛分布的暗色微粒包体是岩浆演化过程中液态不混溶作用发生的结果,是岩浆体系自身演化到某一特阶段的产物。  相似文献   

12.
在小兴安岭东南端金山屯一带,广泛发育近南北向展布的晚三叠世似斑状二长花岗岩岩石组合,岩石中普遍见有暗色微细粒闪长质包体和中-基性脉岩群。对岩体及其包体、中-基性脉岩的宏观、微观特征和地球化学特征的研究表明,包体形态多呈浑圆的外形,显示出明显的塑性流变特点,具典型的岩浆结构包体中见针状磷灰石和含寄主岩钾长石、石英巨晶,具有明显的岩浆混合成因的包体特征;岩体的中-基性脉岩(群)形态多样,与花岗岩的界面或呈小波浪状或呈平直状,并见寄主岩长石斑晶,表现出壳幔混合作用形成的同深成岩墙群特征。该区晚三叠世二长花岗岩具显著的岩浆混合成因特征,其形成可能与碰撞后伸展动力学机制下的基性岩浆底侵作用有关。  相似文献   

13.
Rocks of the Late Cretaceous Tamdere Quartz Monzonite, constituting a part of the Eastern Pontide plutonism, include mafic microgranular enclaves (MMEs) ranging from spheroidal to ellipsoidal in shape, and from a few centimeters to decimeters in size. The MMEs are composed of diorite, monzodiorite and quartz diorite, whereas the felsic host rocks comprise mainly quartz monzonite, granodiorite and rarely monzogranite on the basis of both mineralogical and chemical compositions. The common texture of felsic host rocks is equigranular. MMEs are characterized by a microgranular texture and also reveal some special types of microscopic textures, e.g. antirapakivi, poikilitic K-feldspar, small lath-shaped plagioclase in large plagioclase, blade-shaped biotite, acicular apatite, spike zones in plagioclase and spongy-cellular plagioclase textures.

The distribution of major, trace and RE elements apparently reflect exchange between the MMEs and the felsic host rocks mainly due to thermal, mechanical and chemical interactions between coeval felsic host magma and mafic magma. The most evident major element transfer from felsic host magma to mafic magma blob is that of alkalis such as Na and K. LILEs such as Rb, Sr, Ba and some HFSEs such as Nb, Y, Zr and Th have been migrated from felsic host magma to MMEs. Apart from these major and trace elements, the other element transfer from felsic host magma to mafic one concerns REE contents. Such a transfer of REEs has evidently increased the LREE contents of MMEs. Enrichments in alkalis, LILEs, HFSEs and REEs could have been achieved by diffusional processes during the solidification of magma sources. The felsic and mafic magma sources behave as Newtonian and visco-plastic materials. In such an interaction, small MMEs behave as a closed system due to immediate rapid cooling, whereas the bigger MMEs suffer greater diffusion from the Newtonian felsic host magma due to slow cooling.  相似文献   


14.
小兴安岭东南端晚石炭世大岭环斑花岗岩成因   总被引:4,自引:1,他引:3       下载免费PDF全文
在小兴安岭东南端的鹤岗—伊春市交界处大岭一带的晚石炭世弱片麻状中粒似斑状二长花岗岩中发育环斑结构长石,多以呈自形宽板状或宽板柱状的碱性长石内核和斜长石外薄壳组成,少量为不发育斜长石外壳的卵球状、球状,大小为1.5 ̄3.5cm,其特征与典型的环斑结构在岩相学上是相同的。另外岩体中普遍发育暗色微细粒闪长质包体,与环斑钾长石在时空上紧密相伴;包体具典型的岩浆结构及针状磷灰石,含寄主岩的钾长石、石英巨晶;包体形态多呈浑圆的外形,显示出明显的塑性流变特点,与寄主岩常呈明显的接触关系,有时呈过渡状、雾迷状;以上充分说明了包体为岩浆混合成因(MME)。通过对岩体地质、环斑结构钾长石似斑晶、暗色微细粒闪长质包体等特征及岩体的岩石化学、地球化学研究表明大岭环斑花岗岩岩体为岩浆混合成因,产于造山环境,其形成时代、产出构造背景均不同于典型环斑花岗岩。  相似文献   

15.
东昆仑东段香加南山花岗岩基中加鲁河中基性岩体主要岩石类型包括角闪辉长岩和石英闪长岩。LA-ICP-MS锆石U-Pb同位素定年结果显示加鲁河中基性岩体的结晶年龄为220 Ma。岩体SiO_2含量较低,为47.91%~58.92%,Al_2O_3含量为15.54%~18.35%,Na2O为1.70%~3.34%,K_2O为0.58%~1.92%,Na_2O/K_2O比值为1.34~2.93,平均1.92,MgO含量为3.69%~8.24%,Mg~#为46~61,铝饱和指数A/CNK介于0.70~0.90之间,主体属于准铝质中钾钙碱性系列。岩体富集轻稀土元素,亏损重稀土元素,具明显的Eu负异常(δEu=0.40~0.59);微量元素富集Rb、Th、Ba等大离子亲石元素(LILE),亏损Nb、Ta、Ti等高场强元素(HFSE)。岩石学和地球化学研究显示岩体在地壳深部和浅部经历了两次岩浆混合作用。在深部,幔源岩浆底侵作用使下地壳部分熔融形成长英质岩浆,两种岩浆不同比例混合,经过化学扩散均一化,从而具有相似的同位素特征和岩石地球化学特征。在地壳浅部,经深部混合的岩浆注入花岗质岩浆,岩浆边部同花岗岩完全混合形成加鲁河岩体中石英闪长岩,不完全混合则形成暗色微粒包体。对加鲁河中基性岩体研究表明,东昆仑东段在晚三叠世处于古特提斯演化的后碰撞阶段,在这一时期存在岩浆底侵事件。  相似文献   

16.
马昌前  王人镜 《地质论评》1992,38(2):109-119
北京周口店岩株,主要由两次侵入的石英二长闪长岩和花岗闪长岩组成,其中包体广泛分布。在岩体南缘的关坻变质岩中,零星出露了一种块状的闪长质岩石。关坻闪长岩与主岩体同期侵入的岩浆结晶产物,角闪石质包体的形成是二长辉长岩浆结晶—再平衡的结果,富云包体系花岗闪长岩浆源区的耐熔残余。通过二长辉长岩与花岗闪长岩两种岩浆简单混合可形成细粒石英二长质包体,由二长辉长岩、关坻闪长岩和花岗闪长岩3种岩浆混合形成了微粒闪长质包体。主岩体的成分变异,也与岩浆混合有关。  相似文献   

17.
普朗斑岩铜矿岩浆混合作用:岩石学及元素地球化学证据   总被引:11,自引:1,他引:10  
普朗斑岩铜矿花岗闪长斑岩中存在大量的随机分布的镁铁质微粒包体,包体与寄主岩存在渐变接触关系。包体成分为闪长质,具有岩浆结构,存在针状磷灰石,显示了快速冷却结晶的特征。包体内可见具有暗色矿物镶边的眼球状石英,表明存在岩浆混合作用。寄主岩岩体规模较小,呈岩枝状产出,包体和寄主岩均为似斑状结构,说明两种岩浆侵位和发生岩浆混合作用的深度较浅。元素地球化学特征显示包体与寄主岩的之间有成分交换。包体和寄主岩强不相容元素均富集,高场强元素Nb、Ta、Ti均表现出显著的负异常,具有典型的岛弧岩浆岩的微量元素特征,包体和寄主岩Mg#较高,在同等Si条件下比玄武岩部分熔融体富K2O和MgO,意味着源区必须有幔源岩浆的贡献。普朗斑岩铜矿蚀变矿化模式反映了其成矿环境偏基性,暗示镁铁质岩浆的加入对成矿具有贡献。  相似文献   

18.
The Xiangshan volcanic-intrusive complex is composed of rhyolitic crystal tuffs, welded tuffs, rhyodacite, porphyroclastic rhyolitic lava, subvolcanic rocks such as granite porphyry, and late quartz monzonitic porphyry and lamprophyre dikes. We report the first occurrence of a quartz–amphibole schist (QAS) xenolith enclosed within a mafic microgranular enclave (MME) in the Xiangshan volcanic-intrusive complex. The mineralogy of this xenolith consists of amphibole, biotite, quartz, and minor plagioclase. Petrographic and mineral composition studies indicate that the protolith of this xenolith likely originated from the metamorphic basement beneath Xiangshan. The amphibole (actinolite and magnesiohorblende) has been partially replaced by orthopyroxene at 800–1000°C and by diopside at <700°C, according to mineral thermometers; this replacement process may have taken place after the xenolith was trapped by the mafic magma host (now an MME). Studies of the QAS xenolith provide new information on the emplacement history of the mafic magma. The peak metamorphic temperature for amphibole replaced by pyroxene is higher than the crystallization temperature of the subvolcanic magma, which indicates that the heat of pyroxene formation must have been provided by the engulfing mafic melt. This magma must have emplaced to crustal level and trapped the QAS as a xenolith and then injected into the felsic magma. We suggested that the hybridization processes for the major elements of the pristine mafic magma may have been contaminated by crustal rocks to form its present composition of MME before mafic magma injection. However, the hybridization process appears not to have been formed via a single-stage process because various types of MMEs are presented in the Mesozoic magmatic rocks of SE China.  相似文献   

19.
The Late Mesozoic geology of Southeast China is characterized by extensive Jurassic to Cretaceous magmatism consisting predominantly of granites and rhyolites and subordinate mafic rocks, forming a belt of volcanic-intrusive complexes. The Xiangshan volcanic-intrusive complex is located in the NW region of the belt and mainly contains the following lithologies: rhyodacite and rhyodacitic porphyry, porphyritic lava, granite porphyry with mafic microgranular enclaves, quartz monzonitic porphyry, and lamprophyre dyke. Major and trace-element compositions, zircon U?CPb dating, and Sr?CNd?CHf isotopic compositions have been investigated for these rocks. The precise SHRIMP and LA?CICP?CMS zircon U?CPb dating shows that the emplacement of various magmatic units at Xiangshan took place within a short time period of less than 2?Myrs. The stratigraphically oldest rhyodacite yielded a zircon U?CPb age of 135?±?1?Ma and the overlying rhyodacitic porphyry has an age of 135?±?1?Ma. Three porphyritic lava samples yielded zircon U?CPb ages of 136?±?1?Ma, 132?±?1?Ma, and 135?±?1?Ma, respectively. Two subvolcanic rocks (granite porphyry) yielded zircon U?CPb ages of 137?±?1?Ma and 137?±?1?Ma. A quartz monzonitic porphyry dyke, which represented the final stage of magmatism at Xiangshan, also yielded a zircon U?CPb age of 136?±?1?Ma. All these newly obtained precise U?CPb ages demonstrate that the entire magmatic activity at Xiangshan was rapid and possibly took place at the peak of extensional tectonics in SE China. The geochemical data indicate that all these samples from the volcanic-intrusive complex have an A-type affinity. Sr?CNd?CHf isotopic data suggest that the Xiangshan volcanic-intrusive complex derived mainly from remelting of Paleo-Mesoproterozoic crust without significant additions of mantle-derived magma. However, the quartz monzonitic porphyry, which has zircon Hf model ages older than the whole-rock Nd model ages, and which has ??Nd(T) value higher than the other rocks, may indicate involvement of a subordinate younger mantle-derived magma in its origin. Geochemical data indicate that the various rocks show variable REE patterns and negative anomalies of Ba, Nb, Sr, P, Eu and Ti in the trace element spidergrams, suggesting that these rocks may have undergone advanced fractional crystallization with separation of plagioclase, K-feldspar and accessory minerals such as allanite. We suggest that this Cretaceous volcanic-intrusive complex formed in an extensional environment, and the formation of the Xiangshan mafic microgranular enclaves can be explained by the injection of mafic magma from a deeper seated mantle magma chamber into a hypabyssal felsic magma chamber at the crustal emplacement levels.  相似文献   

20.
小兴安岭晚石炭世花岗岩具有明显的岩浆混合特征。岩体中暗色岩浆包体发育,主要为细粒闪长质岩浆包体,包体形态多样、大小不一,与寄主岩石呈截然、模糊或过渡关系。包体的矿物组合明显不平衡,如出现了寄主岩石中的碱性长石捕虏晶,有时可见其具暗色矿物镶边,发育针状磷灰石。这表明小兴安岭晚石炭世花岗岩的岩浆混合表现为基性岩浆和酸性岩浆的混合。这为探讨这些花岗岩的成因提供了岩石学依据,同时也暗示晚古生代佳木斯—松嫩古陆可能发生过地壳的垂向生长。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号